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This issue’s Open Problem Column is by Neil Lutz and is on Some Open Problems in Algorithmic Fractal
Geometry. Neil uses techniques from theoretical computer science to gain insight into problems in pure math.
The synergy is awesome!

I invite any reader who has knowledge of some area to contact me and arrange to write a column about
open problems in that area. That area can be (1) broad or narrow or anywhere inbetween, and (2) really
important or really unimportant or anywhere inbetween.

Some Open Problems in Algorithmic Fractal Geometry
by Neil Lutz
The standard notion of dimension in fractal geometry has a natural interpretation in terms of algorithmic
information theory, which enables new, pointwise proof techniques that apply theoretical computer science to
pure mathematics. This column outlines recent progress in this area and describes several open problems,
with a focus on problems related to Kakeya sets and fractal projections.

1 Classical Fractal Dimensions

There are various ways to define the dimension of a set, but most formalize a familiar intuition: A set’s
dimension is the number of free parameters within the set, i.e., the number of parameters needed to specify
a point in the set when the set is already known. For simple geometric figures, this number is obvious:
Specifying a point on a known segment requires one parameter, and specifying a point in a known disc
requires two parameters.

For certain complex figures like the Koch curve in Figure 1, the answer is less clear. This curve is the
limit of the sequence , /N, A", ..., generated by iteratively replacing the middle third of each
segment with an equilateral “tooth.” The length increases by a factor of 4/3 with every iteration, so the
curve has infinite length. Moreover, every portion of the curve contains a scaled copy of the entire curve and
therefore also has infinite length. This means that a single parameter will be insufficient to specify a point.
On the other hand, it seems inaccurate to say that there are two free parameters; once the z coordinate of
a point on the curve is known, the possibilities for its y coordinate are severely limited. Notions of fractal
dimension address this ambiguity by allowing the dimension of a set to be any non-negative real value.

Figure 1: The Koch curve, which has box-counting and Hausdorff dimension log; 4 ~ 1.26.

One basic notion of fractal dimension is boz-counting dimension. Given a bounded set E C R?, we
count the number of squares in an infinite grid of size ¢ > 0 that have nonempty intersection with £. We
then look at the asymptotic behavior of this number, N.(F), as ¢ — 0. For example, it is easy to see that
N.(E) = O(c7!) when E is a line segment, and N.(E) = O(e~2) when E is a disc. In general, we say
that E has box-counting dimension d if N.(E) = ©(¢~%). This simple definition succeeds at quantifying
non-integral dimension for bounded sets and is adequate for many applications, including the Koch curve.
Unfortunately, it also has some undesirable mathematical properties. In particular, countable sets can have
positive box-counting dimension; consider E = {(q,0) : ¢ € [0, 1] is rational}, which is countable but has
N.(E)=¢1.



In contrast, Hausdorff dimension is a more sophisticated notion of fractal dimension for which every
countable set E has dimension dimg(F) = 0. More generally, Hausdorff dimension is countably stable,
meaning that dimgy (U;E;) = sup, dimpy (E;) for any sequence of sets Eq, Eo,... € R™. This property is
achieved by optimizing over a much larger class of covers for E, compared to the uniform grid covers used in
box-counting dimension. This optimization is used to define s-dimensional Hausdorff measure H* for all
s > 0, which essentially generalizes Lebesgue outer measure. The Hausdorff dimension of a set £ C R" is
the unique value d such that H*(E) = oo for all s < d and H*(E) = 0 for all s > d. For this column it is
important that every set E C R™ with positive Lebesgue measure has dimyg (E) = n, and that the converse
does not hold. See Falconer’s textbook [12] for formal definitions and more discussion of these quantities.

2 Algorithmic Dimension and Randomness

Hausdorff dimension is mathematically robust and is the most studied notion of fractal dimension, but its
definition obscures the original intuition that dimension is the number of free parameters. We now discuss a
different characterization of Hausdorff dimension that uses algorithmic information theory to reason about
“partially free parameters” and preserve that intuition.

Let U be a fixed universal prefix-free Turing machine, and let o be a binary string. The Kolmogorov
complexity, or algorithmic information content, of o is

K(o) =min{|7|: U(1) =0},

the length of the shortest binary program 7 that outputs ¢ when run on U. Conveniently, this quantity is
well defined up to an additive constant without any further specification of the universal machine; see the
standard reference [16] for details. Informally, if K (o) is much less than |o|, then we consider o to be very
compressible.

In order to translate algorithmic statements into statements with no reference to computation, we will
allow U to be an oracle machine that can query any bit in some infinite oracle sequence w € {0,1}> as
a computational step. We write K" (o) = min{|7| : UY = o}, where U" is a universal oracle machine
with access to w, for the Kolmogorov complexity of o relative to w. Many results related to Kolmogorov
complexity, including Theorems 2 and 3 below, hold relative to arbitrary oracles.

When z € R™ and r is a positive integer, we write x[r for the string that interleaves binary representations
of 2’s n coordinates, each truncated r bits to the right of the binary point. Intuitively, K (z[r) is the amount
of information needed to describe the location of x up to r bits of precision. The (effective Hausdorff)
dimension of an individual point x € R™ is defined as

dim(z) = lim inf K(xlr) .
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This quantity was originally defined by Jack Lutz [18], and the above characterization was proven by Elvira
Mayordomo [26]. Similarly, the dimension of z relative to an oracle w € {0,1}*°, dim"(«) is given by

w
dim"(x) = lim inf K (zr) .
rT—00 T

If y € R™, then dimY(x) denotes dim""(z), where w, € {0,1}° is some standard binary representation of y.

Almost all points = € R™ are (Martin-Léf) random or incompressible, meaning that there is some constant
¢ such that K(z[r) > nr — c for all r [25, 8]. Notice that every random point x € R™ has dim(z) = n, and
that the converse does not hold.

We can interpret dim(z) informally as the number of parameters needed to specify the individual point x.
To express the dimension of a set E, we take the supremum over all 2z € E (since we should be able to specify
any point in the E with the given number of parameters), and we make the set known by granting access
to an oracle w that is optimized for the set E. Jack Lutz and I proved the following point-to-set principle,
showing that this algorithmic information theoretic formulation of the dimension of a set is identical to
Hausdorff dimension.

Theorem 1 (Point-to-set principle for Hausdorff dimension [20]). For every set E C R™,

dimg (E) = min sup dim"(z).
w zEER



3 Kakeya Sets and Points on Lines

A Kakeya set in R™ is a set containing line segments of length 1 in all directions. Formally, £ C R" is a
Kakeya set if, for every point u on the unit sphere S"~!, there is some point v € R™ such that the segment
{tu+v :t €]0,1]} is contained in FE.

The study of Kakeya sets is nearly a century old, and it has strong connections to other areas of
mathematics, including harmonic analysis, arithmetic combinatorics, and PDE [14, 32, 5]. Within computer
science, Kakeya sets have been shown to emerge from optimal strategies in certain pursuit games [1], and
studying finite-field versions of Kakeya sets has led to improved randomness mergers and extractors [11, 10].
The famous Kakeya conjecture asserts that, for all n > 2, every Kakeya set in R™ has Hausdorff dimension n.
Davies [6] proved that this statement holds for n = 2. For n > 3, it is an open and actively studied problem,
as are several variants. Dvir [9] proved a version of the conjecture for sets in finite fields.

The algorithmic dimensional approach to this problem is to pursue bounds on the dimension of individual
points on individual lines rather than directly bounding the Hausdorff dimension of a set. This allows us to
disregard the global structure of the set. For example, Jack Lutz and I proved the following theorem, which
concerns only a single point in R2.

Theorem 2 ([20]). Let a,b,x € R. If a is random and x is random relative to (a,b), then dim(x, ax +b) = 2.

This may be considered a strong pointwise version of Davies’s theorem stating that every Kakeya set in
R? has Hausdorff dimension 2. In fact, Davies’s theorem follows easily from Theorems 1 and 2. The proof is
included here as a simple example of the point-to-set principle in action.

Alternative proof of Davies’s theorem. Let E C R? be a Kakeya set, and let w be the minimizing oracle of
Theorem 1. Let a be random relative to w, and let b be such that the intersection of E with the line y = ax+b
contains a segment. Choose z random relative to (a, b, w) such that (z,ax + b) € E. Then

dimg (E) = sup dim®(z) > dim"(z,ax + b) ,
z€E

which is 2 by Theorem 2, applied relative to the oracle w. O

This proof is very different from Davies’s original argument and served as a “proof of concept,” demon-
strating that algorithmic dimension techniques can be used to prove non-trivial results in classical fractal
geometry. It also seems to be more susceptible to generalization, which has motivated pursuing more general
bounds on dim(z, ax + b) for a,b, z € R.

It is trivial to show that dim(z, ax + b) < dim(a, b, z), and given Theorem 2, we might hope to show that
dim(z, ax + b) > dim(a, z). In fact, no such result can hold, at least not relative to all oracles, because this
pointwise problem is related to the Hausdorff dimension of Furstenberg sets, which are variants of Kakeya
sets in R2. We first describe generalized Furstenberg sets, as introduced by Molter and Rela [27].

Instead of containing segments in all directions, a generalized Furstenberg set contains a-dimensional
subsets of lines in a B-dimensional set of directions, for some parameters «, 8 € (0, 1]. Formally, F C R? is an
(o, B)-Furstenberg set if there is some J C S* with dimg(J) > 3 such that, for all u € J, there is a line £,
in direction u with dimg (£, N F) > «. (Non-generalized) a-Furstenberg sets are («, 1)-Furstenberg sets with
J = S, and Kakeya sets are a special case of 1-Furstenberg sets.

Molter and Rela [27] showed that that («, 5)-Furstenberg sets must have Hausdorff dimension at least
o+ max{g, a+ B — 1}, and it is known that a-Furstenberg sets may have Hausdorff dimension as low as
1t3a 33]. Now suppose that dim(z, az + b) > dim(a, z) held for all a,b,z € R and relative to all oracles.
Then the point-to-set principle could be used to show that all a-Furstenberg sets have Hausdorff dimension
at least 1+ o, which would contradict the 322 upper bound. Hence, we should aim for more modest lower
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bounds on dim(x, az + b). Don Stull and I proved the following.

Theorem 3 ([22]). For all a,b,z € R, dim(z, az + b) > dim®’(z) + min{dim®*(z), dim(a, b)}.

Notice that Theorem 2 follows immediately from Theorem 3. Theorem 3 also yielded the first instance
of a new result in classical fractal geometry via algorithmic dimension techniques: The following corollary
improves on the previous lower bound for («, 5)-Furstenberg sets whenever o, 8 < 1 and a > 3/2.



Corollary 4 ([22]). If F C R? is an («, B)-Furstenberg set, then dimg(F) > o + min{a, 3}.

Improving the bound in Theorem 3 (or proving that it is tight) is a general goal. The following problem
asks about a specific case and is a pointwise version of a question that Katz and Tao [15] asked about
a-Furstenberg sets.

Problem. Is there some ¢ > 0 such that, for all a,b,xz € R with a random and dima’b(:c) = %, we have
dim(z,ax +b) > 1+ c?

Finding bounds on dim(z,ax + b) is closely related to describing the dimension spectrum of the line
Loy = {(z,az +b) : x € R}, defined as sp(Lqp) = {dim(z) : € L4} Don Stull and I [23] showed that this
spectrum must have infinite cardinality, and that it contains a unit interval whenever dim(a, b) is equal to

K((a,b)IT)

the effective packing dimension Dim(a,b), i.e., whenever lim, exists.

Problem. Does sp(Lyp) contain a unit interval for all a,b € R?

Although the above problems concern refinements of Theorem 2 in R2, the original motivation for the
present line of research was the hope that Theorem 2 can eventually be extended to higher dimensions.

Problem. Letn > 2, a,b € R", and x € R. If a is random and x is random relative to (a,b), then must
dim(z, ax +b) =n?

If the answer is yes relative to all oracles, then the same argument used above for Davies’s theorem would
imply that the classical Kakeya conjecture also holds. So far very little is known about the dimension of
points on lines in higher-dimensional Euclidean spaces. Any non-trivial results on that subject would be
interesting.

4 Resource-Bounded Measure of Kakeya Sets

While the minimum dimension of Kakeya sets in R™ is still an open question for n > 3, their minimum
Lebesgue measure is not; Besicovitch [2, 3] constructed a Kakeya set of Lebesgue measure zero and decades
later [4] constructed a set of Lebesgue measure zero that contains an entire line in every direction, which we
call a Besicovitch set. Notice that in both cases it was sufficient to construct the set in R?, since taking the
Cartesian product with R”~2 yields a set with the desired property in R™. This section discusses strengthening
Besicovitch’s results by showing that they hold even for weaker, resource-bounded versions of Lebesgue
measure.

These measures are closely related to weak, complexity-theoretic notions of randomness, which are
defined in terms of a sequence’s unpredictability instead of its incompressibility. Very informally, a sequence
w € {0,1}*° is computably random if no computable function that places fair bets on successive bits of w
can win infinite money. This intuition is formalized using betting strategies called martingales and can be
modified to define computable randomness for points in R”; see [19] for details. Computable randomness was
introduced by Schnorr [29, 30]. The martingale formalism also establishes a notion of computable measure,
and a set £ C R™ has computable measure zero if and only if it contains no computably random point.

Computable randomness is strictly weaker than Martin-Lof randomness, meaning that every computably
random point is Martin-Lof random and that the converse does not hold. Jack Lutz [17] defined even weaker
randomness notions (and corresponding measures) by placing resource bounds on the bettor. For instance, w
is exponential time random or exp-random if no exponential time-computable function can win infinite money
by placing fair bets on w, and F C R™ has exp-measure zero if and only if it contains no exp-random point.

By effectivizing Schoenberg’s simplified construction of a Kakeya set with measure zero [31], Jack Lutz
and I [19] showed that there are Kakeya sets of double exponential time measure zero, meaning that in every
direction there are segments of arbitrary length that contain no double exponential time random point. In
the same work [19], by effectivizing the original Besicovitch set construction [4], we showed that in every
direction there are lines that contain no computably random point. A positive solution to the following
problem would improve on both of those results, demonstrating that Besicovitch sets and Kakeya sets have
measure zero in a very strong sense.

Problem. Is it true that for all a € R there exists b € R such that Lap contains no exp-random point?



5 Fractal Projections

As described in the survey of Falconer, Fraser, and Jin [13], Marstrand’s projection theorems have been central
fixtures in fractal geometry in recent decades. We approach them here from an algorithmic dimensional
perspective. For any set £ C R? and any 6 € [0, 7), let proj, E be the orthogonal projection of E onto a line
through the origin in direction 6.

Theorem 5 (Marstrand’s projection theorems [24]). If E C R? is analytic, then for almost all 6 € [0,7),
(a) dimg(proj, E) = min{l,dimg (E)}.
(b) if dimy (E) > 1, then projy E has positive Lebesgue measure.

By the fact that dimension is preserved by locally bi-Lipschitz computable bijections [28] and a simple
geometric duality argument, Theorem 3 implies the following pointwise analogue to Theorem 5(a).

Corollary 6. If z € R? and 0 € [0, 7) is random relative to z, then dim(6, proj, z) = 1 + min{1,dim(z)}.

This correspondence suggests two directions of inquiry. First, can Corollary 6 be used to strengthen
Theorem 5(a)? There is some precedent to suggest that it might. For example, I recently used algorithmic
dimensional techniques to extend another fundamental result in fractal geometry, Marstrand’s slicing
theorem [24], from analytic sets to arbitrary sets. Given a set £ C R?, this theorem concerns E’s vertical
slices, B, = {y: (z,y) € E}:

Theorem 7 ([21]). If E C R? is any set, then for almost all z € R, dimy (E,) > max{0,dimy (E) — 1}.

Unfortunately, the situation for projections is more delicate; it was shown by Davies [7], using the continuum
hypothesis, that neither part of Theorem 5 can be extended even to arbitrary Hausdorff-measurable sets.
More modest refinements or extensions to classes of non-analytic sets are hopefully still possible.

Second, can we prove a pointwise analogue to Theorem 5(b)? This is equivalent to the following question.

Problem. Ifa,b € R with dim(a,b) > 1 and z € R is random relative to (a,b), then is (x,ax + b) random?

6 More Algorithmic Fractal Geometry

Although this column is focused on Kakeya-like sets, the results stated above should be considered early
steps in a larger program of applying ideas from the theory of computation to problems in classical fractal
geometry. Direct progress on those problems, such as Corollary 4, is obviously a desirable outcome. There
are other ways to advance this program, though, and some progress in the following broad categories seems
likely to be relatively straightforward.

First, we can pursue more generalizations in the vein of Theorem 7. The analytical techniques used in
classical fractal geometry often depend on set properties like measurability or compactness, and pointwise
techniques seem well-suited to circumvent these restrictions in some cases. Second, these techniques can
be used to simplify classical proofs. The proof of an important theorem about the Hausdorff dimension
of Cartesian products, for example, is much simpler when algorithmic dimension is used [21]. Third, we
can ask non-classical questions about classical sets. Dimension spectra (in the sense described above) and
resource-bounded measure are both algorithmic concepts, but they allow us to ask more nuanced questions
about dimension and measure, which may lead to further structural insights. Finally, we can establish
further pointwise, algorithmic characterizations of classical set properties, along the lines of Theorem 1.
Packing dimension, for example, admits such a characterization [20]. Results in any of these categories would
contribute to a more robust and intuitive foundation for fractal geometry.
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