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1 Introduction

The subject of elliptic curves is as old and rich as mathematics itself, going back
almost 2000 years to the work of Diophantus. Moreover, as a topic of study, it
may be among the leaders for the most number of connections to different areas
within mathematics and computer science. Notable among these are elliptic
curve cryptography, and the proof of Fermat’s Last Theorem, however elliptic
curves have shown up in many other modern topics, such as random number
generators, primality testing, and even post quantum cryptography.

In this article, we turn our attention to the Diophantine nature of elliptic
curves. The problem of finding all integer points on an elliptic curve has seen
enormous progress over the past fifty or so years, due in large part by the Fields
medal winning work of Baker [3], which reduced the problem to a finite search.
Since Baker’s work, numerous fundamental improvements in both transcenden-
tal number theory and Diophantine approximation, along with implementations
in computational packages, such as pari, magma and sage, have made it possible
to enumerate all integer points on a curve whose coefficients are not too large.
Despite all of this progress, many questions concerning integer points on elliptic
curves remain completely unsolved.

Simply put, an elliptic curve is a curve of the form

(1.1) y? =23 +ax + D,

where a and b are integers. In this article, we will focus entirely on the case
that b = 0 and @ = —n a negative integer, so that the equation becomes

(1.2) y? =% —na.

The choice of having a negative integer as the coefficient is somewhat arbitrary,
as much of what will be discussed can also be done with a positive coefficient.



The type of problems we pursue here include describing the set of integral
points on elliptic curves, and as a byproduct, we will be able to derive a heuristic
for an upper bound on the number of integral points on a curve. Such bounds
were proved by the author [20], and improved by Akhtari [1]. The upper bounds
given in those papers include a dependence on various quantities related to the
given curve, however it is surely the case that some of the quantities appearing
in those upper bounds appear primarily because of the method used. Our com-
putations show that the actual upper bounds depend almost exclusively on the
number of prime factors of n.

Let n = p{*p5? - - - pi* be the factorization of n into primes. Our computa-
tions indicate that the number of integral points on (1.2) is highly influenced
by the size of ¢, in that, as ¢ is allowed to get larger, one can find curves with
more integral points, although a precise relation between ¢t and the maximal
number of integral points, should there be a maximum, eludes us. The current
record we have found is the curve having 89 integral points with n = 3129357,
an integer which is a product of 6 primes. This large number of integral points is
related to the large number of associated quartic diophantine equations that are
connected to the elliptic curve, a matter that we will see more of in subsequent
sections. As the number of such equations is so large, the analysis is extremely
cumbersome, and so for the purpose of this article, we will focus only on the
case t = 2. We point out that the case ¢ = 1 has been covered in previous work
of this author [21]. We will see that, even for the case t = 2, there are numerous
cases to consider, and also, that these cases have connections to various well
known and popular topics in number theory. We note that the case of n being
even was solved completely in a paper by Bennett [4], wherein it was proved
that for n = 2%p®, and p outside a small and explicit finite set, integral points
on (1.2) must have b = 1. For the remainder of this article, it will be assumed
that n has exactly two distinct odd prime factors p and gq.

Consequently, this article will be an in depth study of the set of integral
points on elliptic curves given by

(1.3) y? = 2% — pd’u,

where p and ¢ are odd primes. In particular, each pair of positive integers (a, b)
will be considered in detail. Though it may not be apparent, covering all such
pairs of positive integers will turn out to be a finite process.

Although this article will focus entirely on the dependence on a and b, the
number of integral points on the curve does seem to have some dependence on
p and ¢. In particular, for a fixed pair of positive integers a and b, the number
of integral points on the curve typically decreases as p and g get large.

It is worth pointing out here that the status of solving the problem of de-
termining the set of integral points on an elliptic curve has seen extraordinary



progress over the past fifty or so years, both in theoretical advances, and in
computation. This progress can be viewed as the resolution of Hilbert’s tenth
problem for elliptic curves in that, given a curve, theoretical advances have al-
lowed for the determination of an upper bound for the size of the coefficients of
any integral point, and computational methods combined with implementations
in various packages, such as pari, magma, and sage, are able to give a complete
list of the integral points with absolute value below that upper bound. The
reader is referred to the excellent survey by Gasarch [10] for more on Hilbert’s
tenth problem and its connections.

Regarding our computations performed on the problems we state, these were
primarily done on one node on a pc using magma for varying lengths of time.
Some of the problems involved searches of one to three days, but all were quite
moderate, and certainly never lasting more than a week (the reader can down-
load our program from https://mysite.science.uottawa.ca/gwalsh/ecprog.txt).

Finally, depending on the context, most of the open problems in this article
are phrased in such a way as to suggest what we believe to be the truth (based
on our computations), and thus, can also be viewed as conjectures.

2 Primitivity

Integer points on an elliptic curve given by (1.3), with max(a,b) > 4, often arise
as points derived from points on curves with smaller values of a and b.

Definition Let (x,y) be an integral point on E given by y? = 2® — p¢®z. If
a > 4 and p? divides z, or b > 4 and ¢? divides z, then (z,y) is an imprimitive
point on E. Otherwise, (z,y) is a primitive point on F.

To see why such a condition is valuable in tracking integral points, suppose
that = p?z; is the = coordinate of a point on a curve y? = z3 — p®¢®x for
which a > 4. Then p°® divides the right side of the equation, forcing p? to divide

y. If y = p3yy, then it is easy to verify that (z1,v;) satisfies y? = 23 —p*~4¢x;.

The notion of primitivity gives a glimpse as to the reason the process of
tracking integral points, as a and b get large, is finite. We will see that a
combination of some big theorems in number theory, along with the profound
ABC conjecture, show that once a and b do become large, all integral points on
(1.3) are imprimitive.

3 Small Values of ¢ and b

In the sections below we will give specific details on the set of primitive integral
points, and state open problems related to the number of such points. The



amount of detailed analysis we provide will subside as we move from case to
case, as the analyses differ only slightly from one case to the next.

3.1 a=b=1

The curve of interest is given by
(3.1.1) E: y? =23 — pgx,

with p and ¢ distinct odd primes. Let us assume that (x,y) is an integral point
on E with z # 0, y > 0, and assume that x factors as x = du? with d a squarefree
integer and u a positive integer. As y? = 2® — pgr = (du?)(d*u* — pq), and d is
squarefree, it follows that d divides y, and also that u divides y/d. In particular,
if we let v = y/(du), then dividing by du? gives

(3.1.2) dv? = d*u* — pq,

and we see that d is necessarily a divisor of pg. Therefore, d must be in the
set {+1, £p, £q, £pq}. We will examine each of these possibilities individually,
and deduce the resulting quartic equation that arises in each case.

3.1.1 d = 1. In this case, (3.1.2) is the quartic equation v? = u* — pq, which is
the same as u* — v? = pq, and as the left side of this equation naturally factors,

we may rewrite it as
(3.1.3) (u® —v)(u® +v) = pq.

The sum of the two factors on the left side of (3.1.3) is evidently positive,
and so each factor appearing therein must also be positive. We deduce that
either

2

U —v:p,u2+v:q or u?

—v= 1au2+1}:pq7
which respectively imply that

2u = p+q or 2u® =pqg+1,

or equivalently, u = ((p + ¢)/2)%/? and u = ((pg + 1)/2)"/2. In particular, it
is easily determined if integral points arise for this case, and if they do exist,
they can be given explicitly. It is worth noting that there are examples of pairs
(p,q) for which integral points on E of both kind described above exist. We
invite the reader to verify this for (p,q) equal to either (7,193) or (73,89). Tt
is worth pointing out here that Goldbach’s Conjecture implies that there are
infinitely many pairs of primes (p,q) for which a nonzero integral point exists
on the curve (3.1.1).

3.1.2 d = —1. In this case, (3.1.2) becomes u* +v? = pq, and an integral point
on F corresponds to such a sum with either summand being a fourth power.
From the arithmetic in the Gaussian integers, pq is a sum of two squares only



if both p and ¢ are primes that split in the Gaussian integers, i.e. that they are
both 1 modulo 4. Furthermore, it is a simple matter to prove that the product
of two primes can only have two representations as a sum of two squares. There-
fore, there are at most four summands that can give rise to an integral point on
E, and thus, there can be at most four points on F with x coordinate having
d = —1, and explicitly determining these points can be achieved by factoring p
and ¢ in the Gaussian integers. We point out that there is an example of (p, q)
for which three points on E occur in this way. Namely, with (p, q) = (73,89),
three points (z,y) on E have the property that x = —u? because of the repre-
sentations of 73 -89 = 4* 4 792 = 74 4 8%,

The above cases were elementary to deal with. Things change quite dras-
tically as we move on to other cases. The diophantine equations that arise
involve various types of quartic equations which have been considered by nu-
merous authors, using methods from transcendental number theory, diophantine
approximation and algebraic number theory, and the current state-of-the-art re-
mains quite far from what the observed truth seems to be. Our primary goal
is to exhibit what the truth is on these problems by way of computational evi-
dence, along with theoretical justification when applicable.

3.1.3 d = p. In this case, after division by p, (3.1.2) can be written as
v? —put = —q.

Upper bounds for the number of solutions to quartic equations were given by
the author [20], although the bounds that are given there depend on p and
q, and are far from the observed truth. Along those lines, appealing to the
overall gist in a separate paper by the author [22], we expect an absolute up-
per bound of no more than 4 for the number of positive integer solutions to
any equation of this type having the right hand side being prime. In fact, one
can easily verify that three positive integral solutions (u,v) exist for the cases
(p,q) = (11,7),(3,47),(5,149) and (83,79). We forego a detailed analysis in
favour of a summary of what we observe concerning the number of integral
points. The interested reader may wish to delve further using the references
given above. This brings us to our first open problem.

Open Problem 1. Is there a maximal number of positive integer solutions
(x,9) to a quartic equation of the form x? — py* = —¢q, where the maximum
is taken over all pairs of distinct odd primes p and ¢, and if so, what is that
maximum? In particular, is there a pair of distinct prime p,q for which this
equation has more than 3 positive integer solutions (z,y)?

3.1.4 d = —p. In this case, after division by p, (3.1.2) can be written as

v? +put =g,

which evidently has a much lower chance of solvability than the previous case.
Our computations have failed to find a single pair (p,q) for which 2 positive



integer solutions (z,y) exist, which leads us to our second open problem.

Open Problem 2. For any pair of distinct odd primes p, q, does the equation
x2 + py* = ¢ have at most 1 solution in positive integers = and y?

3.1.5 d = pq. In this case, after division by p, (3.1.2) can be written as
v — pqu4 = -1,

which is an equation that has been extensively studied in the literature. In
particular, it was shown by Chen and Voutier [7] that, for d > 3, the general
equation X2 — dY* = —1 has at most one solution in positive integers. They
showed also that if a solution (X,Y) does exist, then X + Y2/d is the fun-
damental unit in the quadratic field Q[\/E], which is an important concept in
computational number theory. As for the equation we are considering, we see
that there is an upper bound of one positive integer solution for this case.

3.1.6 d = —pq. The last case to consider, d = —pq, leads to the equation
v? + pgu* = 1, which clearly cannot have any positive integer solutions.

We now pull all of these cases together into one statement regarding the
number of integral points on any elliptic curve of the form (3.1.1) in the follow-
ing.

Open Problem 3. Let p and ¢ denote distinct odd primes, and let £ be the
elliptic curve given by the equation y? = x> — pgz. Determine an upper bound
for the number of integral points on F which is independent of p and q.

Toward this problem, we summarize our findings by adding up the various
bounds for each of the cases, noting that for the two middle cases, one must
swap p and ¢, giving a total of (conjecturally) at most 15 integral points with
nonzero coordinates for any curve given by (3.1.1).

The current record holder for the case a = b =1 is (p,q) = (73,89), with a
total of 8 integral points with nonzero coordinates; 2 with d = 1, 3 with d = —1,
1 with d = 73, 1 with d = —73, and 1 with d = 89.

3.2 a=2b=1
For these values of a and b the curve of interest becomes
(3.2.1) E: y? =2 — pPqz,

where as before, p and ¢ are distinct odd primes. As before, we assume that
(x,y) is an integral point E with z # 0, and let 2 = du? with d a squarefree



integer. In this case, with v = y/(du), (3.1.2) becomes

(3.2.2) dv? = dPu* — p?q,

and so d is therefore a divisor of p?q. It follows that d is in the set
{1, £p, £q,+p*, £pq, £p?q},

giving rise to the twelve equations, which we have listed in the following ta-
ble, along with their respective upper bounds for the number of integral points
arising for each case. The two with an asterisk are conjectural. A detailed dis-
cussion on the upper bounds follows the table.

’ d \ Equation \ Maximum ‘
1 ut —v? = pq 2
-1 ut + 0% = p?q 4
p ut —pui =g¢ 3
—p ut +pu? =g 1*

q | v —(ujg)’q=—1 1

—q | —v{ — (ufg)’q = —1 0
pg|  qut—pvi=1 2
—pq qu4 +pv% =1 0
2 W =g 1
—p? ut +vr=g¢ 1
p2q v — ]92(]u4 =-1 1
—p2q | —v? —pPqut=—1 0

We briefly discuss each of these cases, although it is clear that cases 6, 8
and 12 are not solvable. The first two cases were covered in the previous sub-
section, and can give rise to at most 2 and 4 points on F respectively. We defer
the unsolved cases 3 and 4 to the end of this analysis. Case 5 (and 11) is an
equation of the form X2 — dY* = —1, which we have already seen can have
at most 1 solution by the theorem of Chen and Voutier. Case 7 is covered by
a fairly recent result of Akhtari [2], who proved that any equation of the form
aX?* — bY? =1 has at most 2 positive integer solutions. Case 9 is clearly only
possible if ¢ is of the form 2u? — 1, and can contribute at most 1 point. Case
10 can contribute at most 2 points, and this occurs when ¢ is a sum of 2 fourth
powers.

This only leaves cases 3 and 4 to consider, which are analogous to the un-
solved problems in the previous subsection. Our computations have failed to
find a pair (p,q) with more than 3 positive integer solutions to the equation
X* — pY? = ¢, and more than 1 such solution to the equation X* + pY? = g.
This leads us to our next set of open problems.



Open Problem 4 Is there a pair of distinct odd primes p and ¢ for which either
the equation X* — pY? = ¢ has more than 3 positive integer solutions, or the
equation X* 4+ pY? = ¢ has more than 1 positive integer solution?

On the basis of upper bounds of 3 and 1 solution respectively for the equa-
tions in Open Problem 4, we can collect the contribution from all of the equa-
tions listed above in order to state the main open problem for this subsection.
The derived upper bound from these equations is 18 integral points.

Open Problem 5 Prove an absolute upper bound for the number of integer
points on any elliptic curve given by an equation of the form y? = 3 — p?qz,
which is independent of p and ¢, where p and ¢ are distinct odd primes.

The record holder for this case is F : 3% = 23 — 32 - 13z, which has 10
integral points.

3.3 a=tb=1

Before moving on to the case max(a,b) > 2, we point out that for any t > 1,
one can heuristically produce primes (p, q) for which the curve y? = 2* — p'qx
contains a nonzero integral point with x = u? for some integer u. To see this,
as described in 3.1.1 above, one needs to solve an equation of the form

2u2:pt+q

in integers u,v, p*, ¢ with p and ¢ prime. One way to do so is simply to begin
by choosing any odd prime power p, let ug = |[p'|, and test 2(ug + i)? — p* for
primality for ¢ > 1.

Despite the fact that one can construct primitive integral points on curves
with ¢ large, our computations show that for fixed p and ¢, there is some positive
to for which all curves y? = 23 — p'qx, with t > ty, do not contain primitive
integral points. The following is an equivalent formulation.

Open Problem 5a. Let p and g be distinct odd primes, and for ¢t > 1, let
S; denote the set of primitive integral points on y? = 23 — p’qz. There is an

absolute constant ¢ > 0, independent of p and ¢, for which | U; S;| < c.

The value of ¢ in the above open problem may in fact be as small as 11. The
pair of primes (p,q) = (3,13) is currently the record holder with at least this
value, as we have failed to find a pair of primes for which the value of ¢ is at
least 12.



3.4 (a,b) = (2,¢) and (a,b) = (3,3)

We expect by now that the reader can see how one can go through an analysis
for each possible pair of fixed positive integers a and b, and so we will forego the
details that have been given for the first two cases above. Our computations
indicate that the number of integral points starts to decrease quite noticeably
as a and b begin to grow.

For (a,b) = (2,2), the curve y? = 23 — 72 - 2322 was the only curve found
which has 7 integral points. For (a,b) = (3,2), the curve y? = 2% — 531122 was
the only curve found containing 6 integral points. For (a,b) = (3, 3), the curves
y? =23 —3%. 733z and y? = 23 — 53 - 3132 were the only ones found containing
2 integral points (one nonzero integral point).

Despite these findings, we can find arbitrarily many curves which have non-
zero integral points in each of the cases listed in the title of this subsection, and
we will describe how to do so.

Let us first consider the case (a,b) = (2,t), where t is any positive integer.
Let g be any prime satisfying ¢ = +1 (mod 8), so that ¢ splits in the ring R
of integers of the field Q[v/2], and let a € R be an element of norm ¢. Let u
be the unit in R given by u = 1 + v/2. Then —¢' is the norm of ot - u" for
any odd integer 7, and since R is a unique factorization domain, this explicitly
gives integers p and u for which —¢* = p? — 2u? for each choice of r. Select 7
so that the integer resulting integer p is a prime. Heuristically, this is doable,
according to standard conjectures on the distribution of primes (namely, that
the probability that an integer n is prime is roughly 1/log(n)). By putting
v = (q* —p?)/2, one can verify that (z,y) = (u?,uv) is a nonzero integral point
on the curve y? = 23 — p?¢z. Although this construction works extremely well
in practice, it is based on heuristics concerning the distribution of primes, and
hence proving that this construction always gives a point is quite difficult.

Open Problem 6 Prove that for every positive integer ¢, there are infinitely
many pairs of distinct odd primes p and ¢ for which the elliptic curve

y? = 23 — p?¢'x contains a nonzero integral point.

The case (a,b) = (3, 3) is quite interesting, and a method which conjecturally
gives an infinitude of curves y? = 3 — p>¢>x containing a nonzero integral point
will be described below. As in the previous case, the construction will give a
point whose x coordinate is a square i.e. d = 1. The construction is derived
from the following simple observation. Let f1(X,Y) and f2(X,Y) denote the
bivariate polynomials given by

AXY) =4X* +12X%2Y2 -3V, fo(X,Y) = —4X1 +12X2Y? 4+ 374,
and

f(X,Y) =24X°Y + 18XY".

10



Then
2/(X,Y)? = fi(X,Y)? + fo(X,Y),

and both f1(X,Y) and f>(X,Y) are irreducible polynomials in Z[X,Y]. Com-
putationally, one simply searches over values of f; and fo until two primes p
and ¢ are hit. Already with X =Y = 1, the pair (p,q) = (11, 13) immediately
arises, and therefore the curve 32 = 23— 1131332 has a primitive integral point.

Standard conjectures in analytic number guarantee the existence of infinitely
many such prime pairs, and consequently, the corresponding curve given by
y? = 23 — p*¢3x will have a nonzero integral point with x coordinate being
the value of f(X,Y) with the same inputs as those which gave p and ¢q. The
reader interested in the topic of prime values of irreducible polynomials, a good
starting point is p.323 in Serge Lang’s textbook Algebra [12]. Admittedly, we
are supposing much more than primality of one polynomial here, however, if one
regards the primality of each polynomial as independent, then the assertion is
not just reasonable, but falls in line with the famous prime k-tuples conjecture
of Hardy and Littlewood. For this, the reader may wish consult p.66 in Riesel’s
classic book on primes and factorization [17].

Open Problem 7 Prove that there are infinitely many pairs of distinct primes
p and ¢ for which the curve y? = 2% — p3¢3z contains a nonzero integral point.

It is worth pointing out at this juncture that if min(a,b) > 3 and (z,y) is a
primitive integral point, then ged(x, pg) = 1, and thus either x = u? or z = —u?
for some integer u. This is quite simple to prove using the derived quartic
equation dv? = d?u* — p®q®, where = du® and d is squarefree dividing pq.
This observation reduces the number of derived quartic equations to consider
considerably as both a and b grow.

Despite the apparent phenomena of the existence of non-zero integral points
on curves of the form y? = 2% — p%¢®z with a = 3, the situation changes sharply
for a > 4, which leads us to the next section.

4 The Diagonal Case and FLT

As is well known, Andrew Wiles used the theory of elliptic curves and mod-
ular forms to prove Fermat’s Last Theorem [23]. Since then, Wiles’ approach
has been developed considerably by many authors to solve other Diophantine
problems, a subject which is commonly referred to as modular methods. Two
such results that pertain to the topic at hand are those of Bennett and Skinner
[5], and of Bennett, Ellenberg and Ng [6]. In particular, Bennett and Skinner
used modular methods to prove, among other things, that for n > 4, the only
nonzero integer solution to the equation

272 =X"+Y"

11



is (X,Y,Z) = (1,1,1), while Bennett, Ellenberg and Ng proved that for n in
that same range, the Diophantine equation

Yi4Z4=X"
has no nonzero solutions (X,Y, 7).

These two theorems imply that if @ = b and a > 4, then the elliptic curve
y? = 2% — p?¢®x has no primitive integral points. To see this, following the
arguments given above, a primitive integral point (z,y) would have to have
either * = w2, in which case either 2u? = p® + ¢% or 2u? = (pq)® + 1¢, or
else x = —u?, in which case there would be a positive integer v coprime to
u for which u* + v? = p®¢®. The diophantine results stated just above show
that these cases are all impossible to solve. The reader should bear in mind
the extremely deep mathematics that underlie these statements, which this au-

thor feels is testimony to the state of the art in the area of Diophantine analysis.

5 An Illustrative Example

As our study heads into the space of curves with a and b getting larger, it is
a good idea to know what to expect. This can be achieved in multiple ways.
One can speculatively do computations to see what patterns arise. There is also
a tool for such questions in number theory, which is extremely useful when it
applies. It is referred to as the ABC conjecture. We will come back to this tool,
and for the time being, look at the results of doing some computations for the
specific pair of primes p = 3 and ¢ = 13. This pair of primes was chosen simply
for the reason that there exist primitive integral points for the various pairs
(a,b), and it shows quite explicitly, as a and b increase, the general phenomena
that has been observed for all elliptic curves of this type.

For these two primes, we searched for primitive integral points on y? =
x3 — p®qbx with 1 < a,b < 10. The results of the search yield such points in the
following cases:

(a,b) = (1,2): 2 points
(a,b) = (2,1): 9 points
(a,b) = (2,2): 4 points
(a,b) = (2,3): 1 point
(a,b) = (4,3): 1 point
(a,b) = (5,2): 1 point
(a,b) = (6,1): 1 point

The main thing to notice is the sharp drop off of primitive points once
min(a,b) > 3, and the lack of primitive points once this minimum reaches 4.

12



To illustrate the existence of imprimitive points, we computed the integral
points on 32 = 23 — 3% . 13%2, and not too surprisingly, the only points on
this curve are of the form (p?q®xy, p3y1), where (z1,%1) is a point on the curve
y? =3 —32.13%2.

6 The ABC Conjecture

Succinctly put, the ABC conjecture is an attempt to capture the essence of a
fundamental relationship between the multiplicative structure of two positive
integers and that of their sum. Discovered first by Oesterlé [16], and later re-
fined by Masser [14], the ABC conjecture stands as one of the greatest open
problems in number theory. Such a relationship was discovered by Mason to
hold for polynomials [13], and a substantially weaker form of this relationship
has been proven by Stewart and Yu for integers using transcendental number
theory [19]. The reader is referred to the website of Nitaj [15] for many aspects
of the ABC conjecture, including its applications, numerical examples and ref-
erences.

The ABC Conjecture Given any € > 0 there is a positive constant k = k(e),
depending only on e with the property that if a, b and ¢ are positive coprime
integers satisfying a + b = ¢, then ¢ < k(Hp‘abc p)ite

For our purpose, we will make use of a consequence of the ABC conjecture
that was proved by Darmon and Granville [8]. This conditional result states that
if the ABC conjecture is true, then for any triple of pairwise coprime positive
integers R, S, T, there is only a finite number of pairwise coprime triples of pure
powers x”,y%, 2% (all of 7, s,t are > 1) satisfying both

Ra" + Sy* =T~

and

1 1 1

-+ -+-<L

r s

Let’s see how this result can be used for the cases (a,b) = (1,1), (2,t), (3,1)

and (4,t). Recall equation (3.1.2), which assumes that the x coordinate of a
point is of the form & = du® with d squarefree, and deduces from the curve that
there is an integer v which satisfies

d’l}2 _ d2u4 o paqb’

which, in the cases being considered, is one of dv? = d?u* — p'q* with 1 <1 < 4.
The primitivity criterion, shows that either d = +1 or d = #+p, and so these
equations become one of +v? = u* — p'q’ or +v? = pu* — ¢* with 1 <1 < 4.
For each choice of [ and equation given, the statement of Darmon and Granville
shows that there are no coprime integer solutions for ¢ sufficiently large. The
upshot of all of this is, once p and ¢ are chosen, and one of their respective

13



exponents a or b is kept no larger than 4, while the other exponent is allowed to
grow, only a bounded number of primitive integer points will arise, no matter
how large that exponent becomes.

Example Let us have a close look at the particular case (p,q) = (421,5). This
example is illuminating because it shows explicitly the general pattern for the
number of integral points on elliptic curves of this type. Consider the set of
integral points on curves of the form 32 = x3 — pg'x, with 1 < t < 20. For
t =0,2,3 (mod 4), the number of points is constant at 2, 1 and 2 respectively,
which means that only imprimitive points lie on those curves with ¢t > 3. For
t = 1 (mod 4), the situation is a little different. At ¢t = 1, the curve has 5
integral points, and then at t = 5, 3 new primitive points arise giving a total
of 8 integral points on the curve y? = 23 — 421 - 55z. Then, at t = 9, 1 more
primitive point arises for a total of 9 integral points on y? = z3 — 421 - 5%z,
and the total of 9 points remains constant from that point onward (¢t = 13 and
t = 17). We remark that the primitive point of the curve y? = 2® — 421 - 5%
has d = —1, which corresponds directly to the fact that one of the represen-
tations of 421 - 5° as a sum of two squares has a summand which is a fourth
power (421 -5% = 79332 +166%). Further computation on this example failed to
find any further primitive points as ¢ increased. Therefore, we conjecture the
following to be true, albeit a fairly specific problem.

Open Problem 8 Prove that for any positive integer ¢, the curve
y? =a® —421 -5l

has at most k integral points, where k = 2 if ¢ is even, k = 1 if t = 3 (mod 4),
and k =9 if both ¢ =1 (mod 4) and t > 9.

Our ultimate goal in the use of the ABC conjecture is to get a sense of
how many primitive integral points there can be for a fixed pair of distinct odd
primes as the exponents are allowed to range over all pairs of positive integers.
We have seen that the ABC conjecture implies that the union of all points on
curves y? = 23 —p®q¢x, with a and b in the strips determined by 1 < a <4, 1 < b
and 1 < a, 1 < b < 4 contains a finite set of primitive integral points, and hence
there is a positive constant C' = C(p, q), depending only on p and ¢, for which
the number of integral points on any one of these curves is bounded by C.

We now look at the remaining set of pairs of positive integers (a,b), which
is the set of pairs (a,b) with min(a,b) > 5. As noted above, a primitive integral
point (z,y) on the curve y? = 2% —p?q®x forces * = +u?, and we will simply deal
with the case z = u?, as the other case is identical. Equation (3.1.2) becomes
v? = u* — p?q®, which we can rewrite as v? + p?¢® = u*, and primitivity gives
that these terms are pairwise coprime. We apply the ABC conjecture with
e = .05. We will use the fact that v < u? and p®¢® < u*. Lastly, we will use [

to represent a prime dividing terms in the product. The ABC conjecture gives

14



a constant k, depending on this choice of ¢, for which the following sequence of
inequalities hold.

u4 < k( H 1)1.05 < k(uqu)l.OS < k(u3pq)1405 < k(u3'8)1‘05 _ k.u3.99.
l|luvpg

In other words, the ABC conjecture implies that u is bounded by an absolute
constant, and this is for all possible choices of a,b > 5. We have shown the
following result.

Theorem Let p and ¢ be distinct odd primes. Let £ denote the union of all
elliptic curves of the form y? = z® — p%¢®z with a and b positive integers. The
ABC conjecture implies that the number of primitive integral points contained
in £ is finite.

Another way to view this result is simply that if one were to fix p and g,
then the ABC conjecture shows that if either of a or b is large enough, the
curve 3% = 2% — p®¢x cannot have primitive integral points, and hence that if
it were to have an integral point, it must come from a point on a similar curve

y? = 23 — pY¢hr o with at least one of a; < a or by < b.

The ABC conjecture gives deep insight into this problem, however our com-
putations go beyond this. To be more specific, the ABC conjecture gives a
uniform upper bound for the number of integer points on any curve of the form
y? = 2% — p®¢®x as a and b range over the positive integers, but with p and ¢
fixed. Our computations show that there is an upper bound which is also inde-
pendent of p and g. The following open problem is intended to summarize our
findings, which combines the theoretical truth dictated by the ABC conjecture,

together with the findings of our computations.

Open Problem 9 Is there a uniform upper bound for the number of integral
points on a curve of the form 32 = 23 — p®¢®x which is independent of p, ¢, a
and b? If so, what is the correct upper bound?

Our computations have failed to find a curve with more than 11 integral
points. Moreover, finding primitive integral points on curves with ¢ > 3 and
b > 4 is not such a simple task. We list below some of the points we have found
just to give an idea of how sparse they are.

7 Numerical Examples
It was observed earlier that if a > 3 and b > 3, a primitive integral point (z,y)

necessarily has the property that the x coordinate is either of the form z = u?
or z = —u? for some integer u. We refer to the former case as a Type 1 primitive
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point and the latter as a Type 2 primitive point. We first exhibit a straightfor-
ward method to produce curves containing a Type 1 point witha =3 and b =4

Using methods from Invariant Theory, discussed in the work of Edwards [9],
one can sometimes compute polynomial solutions to equations having integer
coefficients. For such equations, if there is one solution in integers, then there
is a polynomial solution, and hence infinitely many solutions in integers. Now
recall that if the equation

2U2 — pa 4 qb
has a solution, then (z,y) is a primitive integral point on y? = 23 —p®qx, where
r=1u? y=uv, and v = (¢® — p»)/2. In the case a = 3 and b = 4, we then wish
to find integral solutions to

27° = X* +Y*.

It was shown in Edwards [9] how equations of this type are parametrizable
provided that at least one integer solution exists. In particular, the work of

Edwards shows that because 1 + 1 = 2, we can find bivariate polynomials
f1, f2, f3 satisfying 2f2 = f3 + f3. Indeed, let
12
fi(X,Y) = Za X127V fo(X,Y) st Y f3(X,Y) chxﬁ iyt
=0 =0
with
la;] =

[1,0,66,88, —693, —3168, —2772, —14256, 13959, 9504, —65934, —29160, —34803),
[b;] = [1, -8, —28, —168, —42, 840, —252, 1512, 1233],
and [¢;] = [1,6, —15, 60,135,198, —153],

then the polynomial equation 2f? = f3 + fi holds. Much to our delight, the
polynomials f2(X,Y) and f3(X,Y) are irreducible in Z[X,Y], which conjec-
turally implies that they will be simultaneously prime infinitely often. In fact,
evaluating them at the point (2,1) gives the two primes p = 1361 and ¢ = 1279,
and we find that p? + ¢* = 2u? with u = 1157259. Therefore, z = u? is the x

coordinate of a primitive point on the curve y? = 2% — p3¢ta.

The critical aspect to this construction goes back to the sum of the recipro-
cals of the exponents, as we saw earlier. In the case above, this sum is greater
than one, which allows for the parametrization we have given. A similar con-
struction is achievable for exponents (2,3,5) because 1/2+1/34+1/5 > 1 and
a solution exists with (X,Y,Z) = (1,1,1). In particular, there are bivariate
homogeneous polynomials f; of degree 10, fy of degree 6, and f3 of degree 15
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which satisfy 2f2 = 3 + f5. The more motivated reader may wish to work out
the details on this. In the meantime, the smallest numerical example found is
(p,q) = (37,19), which means specifically that the curve y? = 23 — 372 - 192
contains a primitive integral point.

When the sum of the reciprocals of the exponents is larger than one, an
equation as above is referred to as being in the spherical case. For exponents
(2,3,6), the sum of the reciprocals is equal to 1, which is referred to as the
FEuclidean case, and the solvability depends entirely on the solution set of an
associated elliptic curve. If the sum is less than one, this is referred to as the
Hyperbolic case, which has only a finite number of rational solutions, which is
a consequence of Faltings’ theorem on curves of genus larger than 1. For more
about Faltings’ theorem, the reader may consider looking at Part E in the text-
book of Hindry and Silverman [11].

The case (2,3,6) is an easy case to deal with, as it implies integers (X,Y)
for which one of the polynomials f1(X,Y), f2(X,Y) given in the section above
concerning solutions to 2u? = p3 + ¢ would have to have a value which is of the
form p2. But this is easily seen to be impossible, as p?> = 1 (mod 8) for any odd
prime p, while the values of those polynomials are 5 and 3 modulo 8 respectively.

An extensive search for Type 1 primitive points with ¢ > 3 and b > 7 turned
up only one example. Namely, the point (z,y) = (342,35054) is a primitive
point on y? = 23 — 37 - 532. This brings us to our next open problem.

Open Problem 10 Let a and b be positive integers for which 1/a+1/b < 1/2,
and p,q distinct odd primes. Prove that the only Type 1 primitive point
on any elliptic curve given by y? = 2% — p%¢z is (x,y) = (342,35054) on
y2 =z —37.5%,.

Type 2 primitive points do exist for various pairs (a,b) with a > 3 and b > 4,
but these appear to be more controlled by the ABC conjecture than by the alge-
braic methods stemming from Invariant Theory as we saw for Type 1. Primitive
points in this case arise from solutions to equations of the form u?* + v? = p2¢®,
and once a and b are sufficiently large, the ABC conjecture tells us that integer
solutions cannot exist. We provide some examples below, and state an open
problem which relates directly to what are known as ABC triples.

326% + 1935252 = 413 . 29*
4892* 4 3155277% = 97693 - 5%
4084* + 8382669% = 73 - 173*

6416* 4 1502058172 = 338573 - 54
1799* + 68007962 = 1933 - 53*
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44470391025* + 7923409608980072275882 = 1009 - 257819713*
74 439182 =173 . 5°
3883% 4 106357402 = 13% . 173°
965514* + 30534726875412 = 577* - 613°
203130 4 39350943593% = 601* - 157°
(¥)  43* 4297322 = 5*. 175

The reason we put an asterisk in the last example is because it is our current
ABC record, which we explain below. The ABC conjecture relates the bitlength
of the largest integer appearing in the sum to that of the product of primes
dividing the three integers. Thus, the quality of a triple a,b,c is measured
explicitly by
log(max({al, |bl, |¢[))

08 (1L, 0 7)

The notion of quality gives a very nice interpretation of what the ABC con-
jecture actual tells us. The essence of the ABC conjecture is simply that for
any real number o > 1, there exist only a finite number of triples of coprime
positive integers (A, B, C) satisfying C = A + B whose quality is larger than «.
Consequently, it has become customary to label any triple whose quality is well
above 1 as an ABC triple. A list of record holders of ABC triples (and their
qualities) is available for perusal on a website maintained by Nitaj [15]. We re-
mark finally that the last example above has quality 1.1568, which is not in the
top ten of ABC triples, but still considerably away from 1 that it is worth noting.

quality(a, b, c) =

Open Problem 11

a. Find a Type 2 integral point with exponents a, b satisfying either a > 4,56 > 5,
ora>4,b>5.

b. Find a Type 2 integral point with ABC quality larger than 1.1568.

7.1 Finale

Combining our numerical searches for Type 1 and Type 2 integral points, to-
gether with the ABC conjecture, we end with the following.

Conjecture Let a and b denote positive integers satisfying min(a,b) > 5, and
let p and ¢ be distinct odd primes. Then the elliptic curve

y2 — .%'3 _paqu

does not contain any primitive integral points.
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