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This Issues Column! This issue’s Open Problem Column is by Bogdan Grechuk is titled On the smallest open
Diophantine equations. It searches for the smallest Diophantine equations that are non-trivial to solve.
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a column about open problems in that area. That area can be (1) broad or narrow or anywhere in between, and
(2) really important or really unimportant or anywhere inbetween.

On the smallest open Diophantine equations
by Bogdan Grechuk2

Abstract

This paper reports on the current status of the project in which we order all polynomial Diophantine
equations by an appropriate version of “size”, and then solve the equations in that order. We list the “small-
est” equations that are currently open, both unrestricted and in various families, like the smallest open
symmetric, 2-variable or 3-monomial equations. All the equations we discuss are amazingly simple to write
down but some of them seem to be very difficult to solve.

Key words: Diophantine equations, Hilbert’s tenth problem, Hasse principle, quadratic reciprocity, sum of
squares.

1 Introduction.

In many areas of mathematics researchers order instances of difficult problems by some natural parameters
and try to solve the problems at least for “small” instances, while in other areas such systematic approach is
currently missing. To illustrate this point, let us look at some recent breakthroughs in knot theory and in number
theory.

One of the most amazing recent results in knot theory is the 2020 theorem of Lisa Piccirillo, stating that
the Conway knot is not slice [23]. Here, a knot is called (smoothly) slice if it bounds a smoothly embedded
2-dimensional disk in 4-dimensional space, and the Conway knot is a certain knot labeled 11n34 in the standard
knot tables. Here, “11” refers to the fact the the diagram of this knot has 11 crossings. The question whether
the Conway knot is slice or not has been opened for about 50 years, and has attracted a lot of attention because
all other knots of under 13 crossings were classified according to whether they are slice knots or not, and the
Conway knot has been the only exception.

One of the most amazing results in number theory is the Andrew Wiles’ proof [32] of Fermat Last Theorem.
The Theorem states that exponential Diophantine equation xn + yn = zn has no non-trivial integer solutions
for n ≥ 3, has been an open question for many centuries, and has attracted a lot of attention because... Fer-
mat claimed that he has a beautiful proof of this fact which he never wrote down, and many generations of
mathematicians were trying to find the missing proof.

A more recent example of an amazing result in the area of Diophantine equations is the 2021 paper of
Booker and Sutherland [5], which studies equations in the form

x3 + y3 + z3 = k. (1)

Note that (1) has no solution if k ≡ ±4 (mod 9). It is known that there are infinitely many integer solutions
for k = 1 and 2. For k = 3, (1) has the solutions (1, 1, 1) and permutations of (4, 4,−5). Miller and Woolett
[20] asked if there is always a solution when k 6≡ ±4 (mod 9). Mordell [21] asked if there are other solutions
when k = 3. Brooker and Sutherland showed that
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(i) x3 + y3 + z3 = 42 has a solution (combined with prior work this shows that for |k| 6 100, k 6≡ ±4
(mod 9), there is always a solution), and

(ii) there is another solution to x3 + y3 + z3 = 3, namely: x = 569, 936, 821, 221, 962, 380, 720, y =
−569, 936, 821, 113, 563, 493, 509, z = −472, 715, 493, 453, 327, 032.

As you can see, in knot theory researchers ordered all knots by a natural parameter, number of crossings,
and then try to answer questions of interest systematically for all knots with the given number of crossings.
A similar approach is taken in many other areas of mathematics: if a problem is difficult or undecidable in
general, researchers order the instances of the problem in some natural way, and then try to “solve” at least
“small” instances. For example, the Halting problem has been solved for all 2-symbol Turing machines with
2, 3 and 4 states, so the next open case is 5-state machines. In contrast, Diophantine equations are not studied
in order, and often attract interest just because some time ago a famous mathematician wrote down an equation
and asked to solve it.

One reason for this is that it is not obvious how to order all Diophantine equations is a natural way. It is
easy to arrange in order some specific infinite families of equations. For example, Fermat Last Theorem can
be treated as one exponential equation or as an infinite family of polynomial Diophantine equations ordered by
the value of parameter n. Similarly, equations (1) can be naturally ordered by parameter k. However, it is less
easy to order all polynomial Diophantine equations, that is, all equations of the form

P(x1, . . . , xn) = 0, (2)

where P is a polynomial with integer coefficients. For this, we need to assign to every Diophantine equation
a “size” parameter, such that for any bound B there is only a finite number of equations of size at most B.
Many natural notions of “size” or “height” do not satisfy this condition. For example, if we define the height
of the equation as the maximum (or sum) of absolute values of its coefficients, then there are infinitely many
equations of height 1, e.g. xn = 0, n = 1, 2, . . . .

It is natural to define the “size” of equation (2) as a sum of sizes of monomials of P, so it is left to define the
size of a monomial axk1

1 . . . xkn
n . If we consider an equation as an input to a computer program which then tries

to solve it, then standard way to measure the size of the input is the number of bit needed to describe it. For
simplicity, let us assume that we do not use the power symbol, and write xk1

1 as x1x1 . . . x1 (k1 times) and so on.
Then we need d = k1 + · · ·+ kn symbols to write xk1

1 . . . xkn
n , where d is the degree of the monomial. We also

need about log2 |a| symbols to write the coefficient a in binary, so we can define the length of the monomial
as l = log2 |a|+ d. This is not an integer, but ordering the monomials by l is equivalent to ordering them by
H = 2l = |a|2d, which is an integer. Hence, let us define the size of equation (2) as

H(P) =
k

∑
i=1
|ai|2di , (3)

provided that polynomial P consists of k monomials with integer coefficients a1, . . . , ak and degrees d1, . . . , dk,
respectively. For example, for the equation (1) with k = 3 we have H = 23 + 23 + 23 + 3 = 27. This notion
of size has been suggested by anonymous mathoverflow user Zidane who asked in 2018 what is the smallest
open Diophantine equation, see [33]. Note that H is always a non-negative integer, and, for any B, there is a
finite number of equations with H ≤ B. Hence, we may list all equations with sizes H = 0, 1, 2, . . . , try to
solve them in this order, and report the smallest equations we cannot solve. This is exactly the purpose of this
paper.

In [15], this project is implemented for the Hilbert 10th problem, that is, the problem of determining whether
an equation has any integer solution. In this paper, we consider more general problem of determining all integer
solutions, but also re-iterate the open questions posted in [15]. Section 2 considers the most general problem
of solving the equations completely, including the description of the solution set even if it is infinite. Section
3 considers this problem for the 2-variable equations only. In Section 4, we consider an easier problem of
determining whether the solution set is finite, and if so, list all the solutions. In Section 5, we study an even
easier problem of determining whether a given equation has any integer solution or not. For each of these
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problems, we have identified the smallest equations for which the problem is non-trivial, and challenge the
readers to try to solve these equations.

2 Describing all solutions: polynomial families

We have exactly one equation 0 = 0 of size H = 0, and exactly two equations ±1 = 0 of size H = 1. More
generally, for every H > 0, we have two equations ±H = 0 with no variables and no solutions. If we do not
count these as “equations” and insist that every equation should have at least one variable, then the smallest
equations are ±x = 0 of size H = 2 and the nest smallest are ±x± 1 = 0 of size H = 3. All these equations
are trivial to solve. More generally, for any equation in one variable

amxm + · · ·+ a1x + a0 = 0 (4)

with integer coefficients am, . . . , a0, any non-zero integer solution must be a divisor of ak, where k is the smallest
integer such that ak 6= 0. This gives an algorithm to list all integer solutions of (4). Moreover, this can be done
in polynomial time, see [8].

Further, we will consider only equations in at least two variables. The smallest such equations are±x± y =
0 and ±xy = 0 of size H = 4. To avoid solving essentially the same equations multiple times, we call two
equations equivalent if one can be transformed into another after multiplication by −1 and/or substitutions in
the form xi → −xi. Obviously, it suffices to consider only one equation from each equivalence class. With this
convention, the only equations of size H = 4 we need to consider are

x + y = 0 (5)

and
xy = 0. (6)

Both these equations have infinitely many integer solutions, which can be presented in a parametric form. For
equation (5), the solutions are (x, y) = (u,−u), where u is an integer parameter. This is a special case of
polynomial family, as defined below.

Definition 2.1. We say that a subset S ⊂ Zn is a polynomial family if there exist polynomials P1, . . . , Pn
is k variables u1, . . . , uk such that (x1, . . . , xn) ∈ S if and only if there exists integers u1, . . . , uk such that
xi = Pi(u1, . . . , uk), i = 1, . . . , n.

In this terminology, the solution set of the equation (5) is a polynomial family with k = 1 parameter u,
P1(u) = u and P2(u) = −u. More generally, the solution set of any equation in the form

xn + Q(x1, . . . , xn−1) = 0 (7)

can be represented as polynomial family xi = ui, i = 1, . . . , n− 1, xn = −Q(u1, . . . , un−1).
The solution set to the equation (6) is (x, y) = (0, u) or (x, y) = (u, 0) for any integer u. Note that it is

not a polynomial family but a union of two polynomial families. Obviously, if we can represent the solution set
as a union of any finite number of polynomial families, then we can classify the equation as “solved”. Note that
if the solutions sets of equations P1 = 0 and P2 = 0 are finite unions of polynomial families, then the same is
true for the equation

P1 · P2 = 0. (8)

From now on, we will exclude the equations of the forms (7) and (8) from further analysis.
For H = 5, we would like to mention equation

2x + 1 = 0. (9)

It is a one-variable equation (4), and we have already discussed and excluded all such equations. However, it
is interesting as the smallest equation for which the left-hand side is always odd and therefore cannot be equal
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to 0. More generally, if there exists an integer m ≥ 2 such that P(x1, . . . , xn) is never divisible by m, then
equation (2) has no integer solutions. Hence, we may exclude such equations.

The only non-excluded equation of size H = 5 is

xy + 1 = 0 (10)

whose solutions are (x, y) = (1,−1) and (x, y) = (−1, 1). There are no other integer solutions because every
potential solution must be a divisor of 1. More generally, any equation of the form

P1 · P2 = c (11)

for some integer c can be solved by enumerating divisors d of c, and, for every divisor, solve the system of
equations P1 = d, P2 = c/d. From now on, we will exclude the equations of the form (11) as well. Families
(4), (7) and (11) cover all the equations of size H ≤ 7.

For H = 8, there are some equations not considered so far, for example, equation

x2 + y2 = 0, (12)

whose only integer solution is x = y = 0 because this is the only real solution. More generally, we can exclude
all equations (2) in n variables whose set of real solutions is a bounded region in Rn, because any bounded
region has at most a finite number of integer points, and we may use the direct substitution to check which of
these points are the solutions to (2).

Another equation not excluded so far is
xy + 2z = 0. (13)

Because xy is even, then either x or y must be even. In the first case, let us write x = 2u for some integer
u, while in the second case y = 2v for some integer v. Hence, we get two families of integer solutions
(x, y, z) = (2u, v,−uv) and (x, y, z) = (u, 2v,−uv) for some integers u, v. More generally, any equation of
the form

axn + Q(x1, . . . , xn−1) = 0, (14)

where a 6= 0 is an integer, can be solved by enumerating all possible |a|n−1 remainders x1, . . . , xn−1 can give
after division by a, and in each case representing xi = aui + ri, i = 1, . . . , n− 1, with 0 ≤ ri < |a|. Then
each case when Q(au1 + r1, . . . , aun−1 + rn−1) is divisible by a lead to a polynomial family of the solutions
of (14).

All equations we have considered so far are completely trivial. The first equation that deserves to be given
to students as an exercise is the equation

x2 − yz = 0. (15)

The question is, of course, how to represent all solutions as a polynomial family. To solve this exercise, the
students should note that any integers y and z can be represented as y = uv2 and z = u′w2 with u, u′ square-
free. Now, for yz to be a perfect square we must have u = u′, hence z = uw2, from which we find x = uvw.
Conversely, for any u, v, w (not necessarily square-free), the triple (x, y, z) = (uvw, uv2, uw2) is a solution to
(15).

A bit more difficult exercise is to write as a polynomial family the set of all solutions to the equation

xy− zt = 0. (16)

The answer is (x, y, z, t) = (u5u1u2, u5u3u4, u5u1u3, u5u2u4) for integers u1, u2, u3, u4, u5. It is trivial to
check that the given family satisfies (16). We leave it to the reader to show that, conversely, all solutions to (16)
are covered by this parameterization. This finishes the analysis of all equations of size H ≤ 8.

With H = 9, the problem suddenly jumps from student-exercise level to research level. The question
whether the set of integer solutions of the equation

xy− zt = 1 (17)
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is a polynomial family has been first asked by Skolem [28] in the 1930’s, remained open for over 70 years,
and has been answered by Vaserstein [30] in 2010, who proved that it is indeed a polynomial family with 46
parameters. As a corollary of this result, Vaserstein also showed that, for any integer c, the solution set of the
equation

x2 − yz = c (18)

is the union of a finite number of polynomial families. In particular, this covers the equations x2 − yz = ±1,
and finishes the analysis of all equations of size H ≤ 9.

Vaserstein also proved that, for any c, the solution set of the equation

xy− zt = c (19)

is the union of a finite number of polynomial families. His theorem is applicable to many other equations. For
example, let x, y, z be a solution to the equation

x2 + x− yz = 0. (20)

Because x2 + x = x(x + 1), the prime factors of y are distributed between x and x + 1, hence y can be
written as y = ab, where a and b are divisors of x and x + 1, respectively. With c = x

a and d = x+1
b , we get

db− ac = (x + 1)− x = 1, which is exactly (17), hence the set of such (a, b, c, d) is a polynomial family.
Then (x, y, z) = (ac, ab, cd) is also a polynomial family.

This finishes the analysis of all equations of size H ≤ 10. With H = 11, we meet some easy equations
with 2 variables that we will discuss in the next section, as well as the equations

x2 + x± 1− yz = 0. (21)

We leave them to the reader as the first open question of this paper.

Open Question 2.2. Are the solution sets to the equations (21) polynomial families? If not, are they unions of
a finite number of polynomial families?

3 Describing all solutions: equations in 2 variables

As we have seen in the previous section, describing the solution set of a 3-variable equation may be a quite
non-trivial problem even with H ≤ 11. In this section, we will restrict out attention to 2-variable equations, for
which many powerful results and techniques are available. The smallest 2-variable equations not of the form
(11) or (14) are the equations

y2 = x2 + x± 1

of size H = 11. If |x| > 2, then

(|x| − 1)2 < x2 + x± 1 < (|x|+ 1)2,

and also x2 + x± 1 6= |x|2, hence x2 + x± 1 cannot be a perfect square. By checking cases |x| ≤ 2, we may
easily list all the solutions. For H = 12, we meet similar equations y2 = x2 + x± 2 and y2 = x2 + 2x, that
can be solved by exactly the same method. A little bit different is the equation

y2 + y = x2 + x,

which, after multiplication by 4 and adding 1, can be reduced to (2y + 1)2 = (2y + 1)2, from which we derive
two families of solutions (x, y) = (u, u) and (x, y) = (u,−u− 1). A notable equation is

y2 = 2x2 (22)
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whose only integer solution is (x, y) = (0, 0). If it would have a non-zero integer solution (x, y), then rational
number t = y

x would satisfy t2 = 2, hence the non-existence of non-zero integer solutions to (22) is equivalent
to the irrationality of

√
2, a famous old question with rich history. Similarly, equations

x2 + xy± y2 = 0

reduce to non-existence of rational solutions to t2 + t± 1 = 0. Finally, equation

2xy + x + y = 0

reduces to the question for which x the ratio x
2x+1 can be an integer. It is easy to see that this is possible only

for x = −1 and x = 0, leading to the solutions (x, y) = (−1,−1) and (x, y) = (0, 0). The more general
equation

Q(x)y + R(x) = 0 (23)

reduces to the question when R(x)
Q(x) is an integer, which can be easily answered in full generality.

For H = 13, we meet more interesting equations, such as

y2 − 2x2 = 1 (24)

and
y2 − 2x2 = −1, (25)

which are known as Pell equation and negative Pell equation, respectively. These equations are interesting
because if a pair (x, y) of positive integers solves any of them, then ratio y

x is an approximation to
√

2 with a
good trade-off between the quality of the approximation and the size of the denominator. For this reason, these
equations has been studied since ancient times. It is easy to check that both equations have infinitely many
integer solutions. For example, equation (24) has a solution (x0, y0) = (1, 0), and direct substitution shows
that if (xn, yn) is a solution, then so is

xn+1 = 3xn + 2yn, yn+1 = 4xn + 3yn.

This gives an infinite sequence of solutions defined by recurrence relations. A bit more difficult to show that this
sequence gives all solutions with x ≥ 0 and y ≥ 0 (and then all integer solutions can be obtained by changing
signs), but this is also well-known, see, for example, Theorem 3.2.1 in [2]. Similarly, all the non-negative
solutions to (25) can be obtained starting from (x0, y0) = (1, 1) and applying the same recurrence relations.
As a side note, we remark that Pell equations (24) and (25) are the simplest examples of the equations whose
solution sets are known to be not finite unions of polynomial families, see [30].

All the equations we have considered so far in this section are quadratic equations. In fact, there is a general
algorithm that, given integers a, b, c, d, e, f as an input, solves the general 2-variable quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0. (26)

The algorithm is implemented online at [1]. For an equation (26), it lists all the solutions if there are finitely
many of them, and otherwise describes all solutions as a union of polynomial families or in the form of linear
recurrence relations.

Based on this, we can exclude all quadratic equations (26) from further analysis. Together with the previ-
ously excluded families, this eliminates all the equations of size H ≤ 13 with two exceptions:

y2 = x3 + 1 (27)

and
y2 = x3 − 1. (28)

Equations of the form y2 = x3 + k are known as Mordell’s equations and are well studied. It is known that
there is a finite number of integer solutions for each k, and there is an algorithm that, given k, outputs all the

6



solutions. See [14] for the description of the algorithm and for the explicit list of all solutions in the range
|k| ≤ 10, 000.

More generally, there are known practical algorithms for finding integer solutions to the equations in the
form

y2 + axy + cy = x3 + bx2 + dx + e (29)

under some minor conditions on the integer coefficients a, b, c, d, e that guarantee that the solution set is finite.
One such algorithm is implemented in an open-source and free to use computer algebra system SageMath [34],
that can be run online at https://sagecell.sagemath.org/. To solve (29), we run the command

sage : EllipticCurve([a, b, c, d, e]).integral points() (30)

For example, command

sage : EllipticCurve([0, 0, 0, 0, 1]).integral points()

returns [(−1 : 0 : 1), (0 : 1 : 1), (2 : 3 : 1)], which means that the only integer solutions to (27) are (x, y) =
(−1, 0), (0, 1), and (2, 3). In a similar way, we find that the only integer solution to (28) is (x, y) = (1, 0).

This finishes the analysis of the equations of size H ≤ 13. Starting with H ≥ 14, we will exclude all the
equations in the form (29). After this, the only remaining equation of size H = 14 is

y2 + yx2 + x = 0. (31)

This equation is not directly in the form (29), but can be easily reduced to it. Indeed, after multiplication by
4y and adding 1 to both sides, we can rewire the equation as 4y3 + (4x2y2 + 4xy + 1) = 1, or (2xy + 1)2 =
−4y3 + 1. With new variable z = 2xy + 1, this simplifies to z2 = −4y3 + 1. Now multiply both sides by 16
to get (4z)2 = (−8y)3 + 16, or

Y2 = X3 + 16 (32)

with new variables Y = 4z = 4(2xy + 1) and X = −8y. Note that if x, y are integers then so is X, Y. Now,
command

sage : EllipticCurve([0, 0, 0, 0, 16]).integral points()

shows that the only integer solutions to (32) are (X, Y) = (0,±4). For these solutions, y = −X/8 = 0
happen to be an integer, and substitution y = 0 in (31) returns x = 0. Hence, (x, y) = (0, 0) is the only integer
solution to (31).

Computer algebra system Maple has a command Weierstrassform that helps to transform a broad range of
equations to the form (29). In this example, command

Weierstrass f orm(x + x2y + y2, x, y, X, Y)

returns [X3 − 1/4 + Y2, y, x ∗ y + 1/2, (−1 + 2 ∗ Y)/(2 ∗ X), X], that shows that the equation can be trans-
formed to X3− 1/4+Y2 after substitutions X = y, Y = xy+ 1/2. The remaining steps can be easily done by
hand. A combination of Weierstrassform and EllipticCurve commands allows to solve all 2-variable equations
of size H ≤ 15, and many equations afterwords.

The algorithms we have discussed so far are the special cases of much more general algorithms applicable
to much broader classes of 2-variable equations

P(x, y) = 0. (33)

To introduce them, we need a few definitions. A polynomial P with integer coefficients is called absolutely
irreducible if it cannot be written as a product P = P1 · P2 of non-constant polynomials, even if we allow
complex coefficients. It is known that if P is irreducible over Q but not absolutely irreducible, then all integer
solutions to (33) can be determined easily, see e.g. [15]. On the other hand, if P is not irreducible over Q, then
equation (33) reduces to equations of the same form for each of the factors. Hence, we may assume that P in
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(33) is absolutely irreducible. In this case, the set of all complex solutions to (33) forms a connected surface.
The genus g of such surface is the maximum number of cuttings that can be made along non-intersecting closed
simple curves on the surface without making it disconnected. The genus–degree formula

g ≤ 1
2
(d− 1)(d− 2), (34)

where d is the degree of P, implies that all quadratic polynomials have genus 0, while all cubic polynomials
have genus at most 1. Poulakis [24, 25] developed practical algorithm to solve all 2-variable equations of genus
g = 0. The algorithm can decide whether a given equation has finite or infinite number of solutions, list all
solutions in the former case, and describes them in the parametric form and/or using recurrence relations in the
latter case.

Hence, it suffices to consider equations with g ≥ 1. In this case, there is always a finite number of integer
solutions [27]. In 1970, Baker [4] developed an effective upper bound for the absolute value of all possible
solutions as an explicit function of the coefficients of P, provided that g = 1. This gives an algorithm to list
all the solutions of an arbitrary genus 1 equation. In particular, by the genus–degree formula (34), this result
covers all 2-variable cubic equations. While Baker’s bounds are enormous and the corresponding algorithm
is impractical, a practical method for finding all integer solutions to genus 1 equations was later developed by
Stroeker and Tzanakis [29].

Further, Baker [3] developed in 1969 a general method for solving equations in the form

y2 = P(x), (35)

where P(x) is a polynomial of arbitrary degree that has at least three simple (possibly complex) zeros. As
proved in [15], this implies the method to determine all integer solutions to the equation

a(x)y2 + b(x)y + c(x) = 0. (36)

where a(x), b(x) and c(x) are arbitrary polynomials with integer coefficients. Indeed, if (36) has an integer
solution, then b2(x)− 4a(x)c(x) must be a perfect square, and we can apply Baker’s algorithm to determine
all such x, see [15] for details.

This allows us to focus on the equations of degree at least 4 that are at least cubic in each of the variables.
The simplest examples of such equations are, say, y3 = x4 + 1 or y3 = x4 + x + 1. However, such equations
are covered by another theorem of Baker [3], who developed an algorithm for listing all the solutions of the
equation

ym = P(x), (37)

provided that m ≥ 3, and P(x) is a polynomial with integer coefficients of degree at least 3 with at least two
simple zeros. In 1984, Brindza [6] showed the the conditions on P can be significantly relaxed. It is easy to see
[15] that this result also implies the algorithm for solving equation

aym = P(x). (38)

Baker’s and Brindza’s methods for solving equations (35) and (37) are impractical even for the equations with
small coefficients. However, there are practical methods for which we do not have proof that they work in
general, but which seem to work for any individual equation in this form. For example, Bruin and Stoll [7]
decided the solvability in rationals of all the equations (35) where P is a square-free, has degree at most 6, and
has integral coefficients of absolute value at most 3. More recently, Hashimoto and Morrison [18] determined
the set of all rational solutions for a large family of the equations in the form (37).

Based on this, we eliminate equations of the form (38) from further analysis. After this, the smallest non-
eliminated ones are

x3y + y3 ± x = 0 (39)

of size H = 26 and the next-smallest are

x3y + y3 ± x + 1 = 0 (40)
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of size H = 27. These equations can be easily solved directly (exercise!), but we instead note that all such
equations are covered by another deep result. Let F be a family of polynomials

P(x, y) =
m

∑
i=0

n

∑
j=0

aijxiyj

with integer coefficients aij of degree m > 0 in x and n > 0 in y which are irreducible over Q[x, y], and such
that either

(C1) there exists a coefficient aij 6= 0 of P such that ni + mj > mn,

or

(C2) the sum of all monomials aijxiyj of P for which ni + mj = nm can be decomposed into a product of two
non-constant relatively prime polynomials in Z[x, y].

In 1887, Runge [26] proved if P ∈ F then equation P = 0 has at most finitely many integer solutions. In
1992, Walsh [31] developed an effective upper bound for the size of possible solutions, which implies the
existence of an algorithm for listing all the solutions. Note that equations (39) and (40) satisfy (C1), because
in this case n = m = 3, there is a non-zero coefficient a31 = 1, and, for i = 3 and j = 1, we have
ni + mj = 3 · 3 + 3 · 1 > 3 · 3 = mn. Walsh’s theorem allows us to exclude all equations that satisfy either
(C1) or (C2) from further analysis.

This allows to exclude all equations of size H ≤ 27, and all equations of size H = 28 with three exceptions:

x4 + xy + y3 = 0, (41)

y3 + y = x4 + x (42)

and
y3 − y = x4 + x. (43)

The listed equations does not satisfy (C1) because for them we have m = 4, n = 3, and there is no non-zero
coefficient aij with 3i + 4j > 12. Equality 3i + 4j = 12 holds for coefficients a40 and a03, and polynomials
x4 ± y3 are irreducible, hence (C2) also fails.

Equation (41) has genus 2. Computer algebra system Magma has built-in method (called Chabauty) for
finding all rational solutions for some genus 2 equations, and the method happens to work for this particular
equation, returning that the only rational solution is x = y = 0. Equations (42) and (43) have genus 3, and
this Magma function is not applicable to them. By Siegel1’s Theorem [27], the set of their integer solutions is
finite. The direct search returns solutions (x, y) = (1, 0), (0, 0), and (1, 1) for (42) and (x, y) = (−1,−1),
(−1, 0), (−1, 1), (0,−1), (0, 0) and (0, 1) for (43), but the problem is to prove that no other solutions exists.
We leave this to the reader as open questions.

Open Question 3.1. Find all integer solutions to (42).

Open Question 3.2. Find all integer solutions to (43).

4 Finding the solution set if it is finite

Now let us return to Diophantine equations in 3 or more variables. As we have seen in Section 2, in this case
the problem of describing the solution set can be quite non-trivial even for simple equations. In general, this
problem is not even well posed: if the solution set is infinite but not a finite union of polynomial families and
cannot be described by recurrence relations, then was counts as an “acceptable description” of this solution set?
For the sets with no obvious “structure” this problem is more philosophical than mathematical, and we will not
discuss it further. Instead, we will focus on the following problem, which is completely well-defined.
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Problem 4.1. Given a polynomial Diophantine equation, decide whether its solution set is finite, and if so, list
all the solutions.

Note that proving that the solution set is infinite completely solves Problem 4.1, and no further analysis
is required. If we focus on Problem 4.1 only, equations (21) in the Open Question 2.2 are trivial, because
they obviously has infinitely many integer solutions. Indeed, we may choose z = 1, take arbitrary x, and set
y = x2 + x± 1. This finishes the analysis of all equations of size H ≤ 11.

With H = 12, we cannot resist mentioning famous equation

x2 + y2 = z2 (44)

whose integer solutions are known as Pythagorean triples. A standard approach of solving this equation is
noting that if z = 0 then x = y = 0 and otherwise the equation can be written as (x/z)2 + (y/z)2 = 1
and reduces to finding rational points in the circle x2 + y2 = 1. To find them, we can choose any one rational
point, say (x, y) = (1, 0), and draw all possible lines through this point with rational slope k. Any such line
intersects the circle at (1, 0) and in another point which can be easily seen to be a rational point. This way
we get parameterization of all rational points with rational parameter k. From this, we can easily write down
all integer solutions to (44). However, in the context of Problem 4.1, equation (44) is trivial, because it has
infinitely many integer solutions for y = 0. As another example, equation

x2 + y2 = z2 + 1 (45)

has infinitely many integer solutions (take x = z) for y = 1. From now on, we will exclude from consideration
all equations that have infinitely many integer solutions for some fixed value of one of the variables.

After this, the only non-excluded equation of size H ≤ 13 is

x2 + y2 = z2 − 1 (46)

This equation has at most a finite number of integer solutions for any fixed x, y, or z, but still has infinitely many
integer solutions. Indeed, for any integer t, we have a solution x = 2t2, y = 2t, z = 2t2 + 1. Integer solutions
to (45) and (46) are known as “almost polynomial triples” and “nearly polynomial triples”, respectively. See
[10] for the complete description of the solution sets to these equations.

More generally, for any integer a, equation

x2 + y2 = z2 + a (47)

has infinitely many integer solutions. Indeed, we can rewrite the equation as x2 − a = y2 − z2 = (y −
z)(y + z). For simplicity, assume that y− z = 1, so that x2 − a = y + z = 2z + 1, from which we can find
z = (x2 − a− 1)/2. Now, if a = 2k− 1 is odd, take x = 2t, z = 2t2 − k, and y = z + 1 = 2t2 − k + 1,
while if a = 2k is even, take x = 2t + 1, z = 2t2 + 2t− k, and y = z + 1 = 2t2 + 2t− k + 1. As a side note,
we remark that a complete description of the solution set to (47) with a = 3 has been an open question until
Vaserstein [30, Example 15] proved that it is the union of two polynomial families.

More generally, if there exist polynomials Q1(t), . . . , Qn(t) with integer coefficients, not all constant, such
that

P(Q1(t), . . . , Qn(t)) ≡ 0 (48)

then equation P(x1, . . . , xn) = 0 has infinitely many integer solutions. In general, deciding the existence of
such polynomials is a quite non-trivial problem. However, we can at least verify (48) for polynomials with
small degree and coefficients, and exclude the equations for which we managed to find the corresponding Qi.
This method allows us to solve all the remaining equations of size H ≤ 16.

The first equation of size H = 17 we discuss is

y2 + z2 = x3 − 1 (49)
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We will prove that it has infinitely many integer solutions. Equivalently, there exists infinitely many integers x
such that x3 − 1 is the sum of two squares. Identity

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2

shows that if two integers can be represented as sum of squares, then so is their product. Because x3 − 1 =
(x− 1)(x2 + x + 1), it suffices to find x such that x + 1 = u2 and x− 1 = v2 + w2, or v2 + w2 = u2 − 2.
But this is equation (47) with a = −2 which has infinitely many integer solutions. In fact, this leads to
explicit parametric family x = 3 + 8t + 12t2 + 8t3 + 4t4, y = 5 + 20t + 38t2 + 40t3 + 24t4 + 8t5 and z =
−1− 8t− 28t2 − 44t3 − 44t4 − 24t5 − 8t6 of the solutions to (49), but the coefficients in these polynomials
are too large for the direct search. This is the reason why (49) has not been excluded automatically and required
explicit argument.

Another equation of size H = 17 that requires attention is

y(x2 − y) = z2 + 1 (50)

We will prove that it has no integer solutions. For this, we will need a well-known fact [15] that all odd prime
factors of a sum of squares z2 + 1 must be congruent to 1 modulo 4. Hence the same is true for the odd prime
factors of positive integers y and x2 − y. Because the product of any number of such primes is again 1 modulo
4, this implies that if z2 + 1 is odd, then both y and x2− y are congruent to 1 modulo 4, but then x2 is congruent
to 2 modulo 4, a contradiction. If z2 + 1 is even, its prime factorization contains exactly one factor of 2, which
goes to either y or x2 − y, resulting in x2 being 3 modulo 4, again a contradiction.

This finishes the analysis of equations of size H = 17. For H = 18, we start with the equation similar to
(49),

y2 + z2 = x3 − 2 (51)

Unlike x3 − 1, x3 − 2 does not factorise, so different technique is required. We will present a solution given
by Max Alekseyev in the comment to mathoverflow question3. Let x = t2 + 2 for some integer t. Then
x3 − 2 = (t2 + 2)3 − 2 = (t3 + 3t)2 + (3t2 + 6). It is left to select y = t3 + 3t and note that equation
z2 = 3t2 + 6 has infinitely many integer solutions. This can be checked directly or using the Gauss theorem
[22, p. 57], that states that the general quadratic equation with integer coefficients

az2 + bzt + ct2 + dz + et + f = 0

such that D = b2− 4ac > 0, D is not a perfect square, and ∆ = 4ac f + bde− ae2− cd2− f b2 6= 0 has either
no integer solutions or infinitely many of them. In our case, D = −4 · 3 · (−1) = 12 > 0, ∆ 6= 0, and there is
an integer solution, say z = 3, t = 1. This finishes the proof.

Another equation of size H = 18 is

x2 + y2 + xyz− 2 = 0 (52)

This equation requires completely different techniques called Vieta jumping. The idea is that if (x, y, z) is any
solution to (52), then t = x is a solution to the quadratic equation

t2 + yzt + y2 − 2 = 0,

and this equation has another solution t′ = −yz− x = y2−2
x , which is also an integer. Hence, any solution

(x, y, z) to (52) produces another solution (−yz − x, y, z), and, by a similar argument, one more solution
(x,−xz− y, z). The technique suggests to consider a solution with |x|+ |y|+ |z| minimal and either prove
that there is no such solution, or find such minimal solution and then produce infinitely many other solutions
by the transformations above.

Returning to equation (52), it has solutions (x, y, z) = (±1,±1, 0) with z = 0. Let us prove that there are
no other solutions. Assume the contrary and let (x, y, z) be a solution with z 6= 0 such that |x|+ |y|+ |z| is

3https://mathoverflow.net/questions/409857/representing-x3-2-as-a-sum-of-two-squares
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minimal. By symmetry, we may assume that |x| ≥ |y|. By Vieta jumping, there is another solution (x′, y, z)
with |x′| ≥ |x| and xx′ = y2 − 2. Then |y2 − 2| = |x||x′| ≥ x2 ≥ y2, hence either y2 = 0 or y2 = 1. But
y2 = 0 implies x2 = 2 which is impossible, while y2 = 1 implies that z = 0, a contradiction. Hence, the only
solutions are (x, y, z) = (±1,±1, 0).

To apply this technique to general equation P(x1, . . . , xn) = 0, let us denote S the set of all variables xi for
which the equation can be written as

aix2
i + Qixi + Ri = 0

where |ai| = 1 and Qi and Ri are polynomials in other variables. We can then use any computer algebra
system to solve optimization problem of maximizing t over (x1, . . . , xn, t) ∈ Rn+1 subject to constraints
P = 0, |xi| ≥ t for each i, and | − (Qi/ai)− xi| ≥ |xi| for each variable xi ∈ S. If the optimal value t∗ to
this optimization problem is infinite, then the method does not work for this equation. But if t∗ < ∞, then we
have min{|x|, |y|, |z|} ≤ t∗ < ∞ for any solution (x, y, z) with |x|+ |y|+ |z| minimal. So, we next check,
for each integer t such that |t| ≤ t∗ and each i = 1, . . . , n, whether the equation has any integer solutions
with xi = t. If there are no such solutions, then the equation has no integer solutions at all. If there are such
solutions, we next check whether any of them produces an infinite chain of solutions via Vieta jumping. In the
rest of the paper, we will exclude the equations solvable by this method.

This finishes the analysis of all equations of size H ≤ 18. Starting with H = 19, we get several equations
in the form

ax2 + bx + c + dy + exyz = 0,

such as, for example, 1 + x − x2 + 2y + xyz = 0, 1 + x2 + 3y + xyz = 0, etc. These equations are not
covered by techniques discussed so far, but are in fact easy. Indeed, solutions with x = 0 or y = 0 can
be found by direct substitution. Otherwise fraction dy+c

x is an integer, hence we have |dy + e| ≥ |x|, or
|x/y| ≤ |d + e/y| ≤ |d|+ |e|. Then |z| = |(ax2 + bx + c + dy)/(exy)| ≤ |(ax2 + bx + c + dy)/(xy)| =
|ax/y + b/y + c/(xy) + d/x| ≤ |a|(|d|+ |e|) + |b|+ |c|+ |d|. Now direct search in this region returns the
full set of solutions.

A more interesting equation that require a new idea is

y2 + z2 = x3 + 3 (53)

To solve it, recall that a positive integer is the sum of two squares if and only if all its prime factors congruent
to 3 modulo 4 enters its prime factorization an even number of times, see e.g. [15]. In particular, this implies
that if a and b do not share prime factors congruent to 3 modulo 4, and ab is the sum of two squares, then so
are both a and b. Now note that x(x3 + 3) = (x2 − 1)2 + (2x2 + 3x − 1). Let x be any integer such that
2x2 + 3x− 1 is a perfect square (there are infinitely many such integers). Then x is not divisible by 3 (otherwise
2x2 + 3x− 1 would be 2 mod 3 and could not be a perfect square), hence x and x3 + 3 are co-prime. But their
product x(x3 + 3) is the sum of two squares, hence x3 + 3 is a sum of two squares as well.

The same method allows to solve many other similar equations, such as y2 + z2 = x3 + x + 1, y2 + z2 =
x3 − x − 1, y + y2 + z2 = x3 − 1, etc. (The last equation after multiplication by 4 can be rewritten as
(2y + 1)2 + (2z)2 = 4x3 − 3, so it suffices to prove that 4x3 − 3 is the sum of squares infinitely often, and
then the same method applies). We will exclude any further equations solvable by this method. This finishes
the analysis for H ≤ 19.

The only new equations of size H = 20 are homogeneous quadratic equations like

x2 + y2 = 3z2.

The only integer solution to this equation is (x, y, z) = (0, 0, 0). Indeed, if there is any other solution then
we can divide it by any common factor and obtain a new solution for which (x, y, z) are co-prime. However,
the sum of squares x2 + y2 is divisible by 3 only if both x and y are divisible by 3. But in this case x2 +
y2 is divisible by 9, hence z is divisible by 3, a contradiction with the co-primality assumption. Famous
Hasse–Minkowski theorem (Hasse principle) states that if a homogeneous quadratic equation has non-zero real
solutions but no non-zero integer solutions, then this can always be proved by divisibility analysis modulo some
p as above. This allows us to exclude such equations as well.
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For H = 21, the only equation of different type is

y(x2 + 2) = 2z2 − 1. (54)

So far we have used only the information about prime factors of sum of two squares, while this equation requires
the analysis of prime factors of other quadratic polynomials, in this case x2 + 2 and 2z2− 1. As shown in [15],
all odd prime factors of x2 + 2 must be 1 or 3 modulo 8, while all prime factors of 2z2 − 1 must be 1 or 7
modulo 8. A combination of these facts imply that if (x, y, z) solves (54), then all prime factors of x2 + 2 are
congruent to 1 modulo 8. But then x2 + 2 must be itself congruent to 1 modulo 8, which is a contradiction. We
refer to [15] how to apply this method in general, but here will not list further equation solvable in this way.

For H = 22, we start to meet equations like

y2 + yz + z2 = x3 − x (55)

that require the analysis of which integers can be represented in the form y2 + yz + z2. Let S be the set of all
such integers. It is known that S is also the set of integers representable as 3y2 + z2, and also the set of integers
n such that every prime p of the form p = 3k + 2 enters the prime factorization of n in the even power. We
need to prove that x3 − x belongs to S for infinitely many x. Choose any odd x such that 2x2 − 2x− 4 = 3t2

for some integer t (there are infinitely many such x). Then (x3− x)(x− 2) = (x2− x− 2)2 + (2x2− 2x− 4)
belongs to S. Because (x3− x) and (x− 2) do not share any prime factors in the form p = 3k + 2, this implies
that x3− x ∈ S. The same method allows to solve other equations of this type, such as y2 + yz + z2 = x3 + x
and y2 + yz + z2 = x3 − 2.

The next equation we discuss is
y(z2 − y) = x3 + 2.

We present a solution given by Mathoverflow user Tomita4. By considering the equation as quadratic in y, we
conclude that it has infinitely many integer solutions if and only if the determinant D = (−z2)2− 4(x3 + 2) =
z4 − 4x3 − 8 is a perfect square infinitely often. Now assume that x = −3t2 − 2t − 2 and z = 3t + 1 for
some integer t. Then D = (3t + 1)4 − 4(−3t2 − 2t− 2)3 − 8 = (12t2 + 8t + 25)(3t2 + 2t + 1)2. It is left
to remark that 12t2 + 8t + 25 is a perfect square for infinitely many integers t.

The same method solves another equation,

xyz = x3 + y2 − 2.

We need D = x2z2 − 4x3 + 8 to be a perfect square. Select x = 6t2 + 1 and z = 6t, then D = 4(6t2 −
1)2(3t2 + 1). It is left to note that there are infinitely many integers t such that 3t2 + 1 is a perfect square.

However, we currently do not see how to use these (or other) methods to solve similar equations

y(z2 − y) = x3 − 2 (56)

and
xyz = x3 + y2 + 2. (57)

These are the only remaining open equations of size H ≤ 22. A computer search for polynomials x = Q(t)
and z = R(t) with small degree and coefficients returns no polynomials for which the same method works.
Hence, we need either a deeper search for polynomials with large coefficients, or a new idea. We will leave
these equations to the readers as open questions.

Open Question 4.2. Are there infinitely many integer solutions to (56)?

Open Question 4.3. Are there infinitely many integer solutions to (57)?

4https://mathoverflow.net/questions/411958
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One may also study Problem 4.1 for some restricted families of polynomials. For example, if we restrict
the number of variables and consider 2-variable equations only, then the smallest equations for which Problem
4.1 is open are equations (42) and (43) of size H = 28, see open questions 3.1 and 3.2.

Another nice class of equations we may consider are symmetric equations, ones that are invariant after
cyclic shirt of variables. The smallest symmetric equation not directly solvable by the methods described above
turns out to be the equation

x2y + y2z + z2x = 1 (58)

of size H = 25.

Open Question 4.4. Solve Problem 4.1 for the equation (58).

Finally, we may also restrict the number of monomials. It is easy to solve all 2-monomial equations [15],
hence the first interesting case is 3-monomial ones. The smallest 3-monomial equation which seems to be not
solvable by the described methods is the equation

x3y2 = z3 + 2 (59)

of size H = 42. This equation has obvious solutions (x, y, z) = (1,±1,−1). Note that any integer n can
be represented in the form x3y2 if and only if for every prime number p dividing n, p2 also divides n. Such
integers are called powerful numbers. So, the question is to find all integers z such that z3 + 2 is a powerful
number.

Open Question 4.5. Find all integer solutions to the equation (59).

5 Existence of solutions: Hilbert 10th problem

In addition to Problem 4.1, one may consider the following problem with Yes/No answer.

Problem 5.1. Given a polynomial Diophantine equation, check whether it has any integer solution.

Hilbert’s 10th problem asks for a general method for solving Problem 5.1 for all Diophantine equations.
Building on the work of Davis, Putnam and Robinson [9], Matiyasevich [19] proved in 1970 that no such
general algorithm exists. See excellent recent surveys of Gasarch [13, 11, 12] for a detailed discussion for
which Diophantine equations Problem 5.1 can be solved, and in which cases it is known to be undecidable. For
all the equations we left open in the previous sections, Problem 5.1 is trivial because these equations have some
obvious small solutions.

In [15], we found the smallest Diophantine equation for which Problem 5.1 is currently open. This is the
equation

y(x3 − y) = z3 + 3 (60)

of size H = 31.

Open Question 5.2. Do there exist integers x, y, z satisfying (60)?

The same question can also be asked for restricted families of equations. Among the 2-variable equations,
the smallest open are

y3 + xy + x4 + 4 = 0, (61)

y3 + xy + x4 + x + 2 = 0, (62)

y3 + y = x4 + x + 4 (63)

and
y3 − y = x4 − 2x− 2 (64)

of size H = 32.
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Open Question 5.3. Determine whether each of the equations (61)-(64) have any integer solution.

The smallest open symmetric equation is

x3 + y3 + z3 + xyz = 5 (65)

of size H = 37.

Open Question 5.4. Do there exist integers x, y, z satisfying (65)?

Finally, the smallest open 3-monomial equation is

x3y2 = z3 + 6 (66)

of size H = 46.

Open Question 5.5. Do there exist integers x, y, z satisfying (66)?

In addition, we may consider the smallest open equations with respect to alternative measures of size. As
noted in the introduction, a natural measure of “length” of a monomial M of degree d with coefficient a is
l(M) = log2 |a|+ d. Then we can define the length l(P) of a polynomial P consisting of k monomials with
coefficients a1, . . . , ak and degrees d1, . . . , dk, respectively, as

l(P) =
k

∑
i=1

(log2 |ai|+ di). (67)

Then, instead of ordering the equations by H, we may order them by length l, or, equivalently, by an integer

L(P) := 2l(P) =
k

∏
i=1
|ai| · 2∑k

i=1 di .

Note that the formula for L(P) is the same as the formula (3) for H(P), except that the summation is replaced
by a product.

As established in [15], the shortest equations for which Problem 5.1 is open are the equations

y(x3 − y) = z4 + 1, (68)

2y3 + xy + x4 + 1 = 0 (69)

and
x3y2 = z4 + 2 (70)

that have length l = 10.

Open Question 5.6. Do there exist integers x, y, z satisfying (68)?

Open Question 5.7. Do there exist integers x, y satisfying (69)?

Open Question 5.8. Do there exist integers x, y, z satisfying (70)?

6 Conclusions

We have ordered all Polynomial Diophantine equations by a parameter H defined in (3) and tried to solve the
equations in that order. We have considered the following problems in the decreasing level of difficulty.

• Completely solve the equation: list all solutions if there are finitely many and describe all solutions (for
example, as a union of polynomial families) if the solution set is infinite.
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• Determine whether the solution set is finite, and if yes, list all the solutions.

• Check whether an equation has any integer solution.

For each of the problems, we have identified the smallest equations for which the problem is open. In
some cases, we also identified the smallest open equations is certain families, such as the smallest open 2-
variable, symmetric, or 3-monomial equations. The list of current smallest open equations can also be found
on Mathoverflow [16, 17], where the plan is to always keep the list up-to-dated.

We suspect that some of the open equations listed in this paper are relatively easy, and are suitable for the
first research project of a graduate or even undergraduate student. On the other hand, we are confident that
some of our equations are quite difficult and may stimulate the development of new methods and techniques in
number theory.
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[26] Carl Runge. Ueber ganzzahlige lösungen von gleichungen zwischen zwei veränderlichen. Journal fur die
reine angewandte Mathematik, 1887.
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