
Open Problems Column
Edited by William Gasarch

This issue’s Open Problem Column is by Ryan Williams and is on Some Open Problems Regarding Lower
Bounds For NP. Ryan himself has made progress on lower bounds for SAT and is an expert in the area.

I invite any reader who has knowledge of some area to contact me and arrange to write a column about
open problems in that area. That area can be (1) broad or narrow or anywhere inbetween, and (2) really
important or really unimportant or anywhere inbetween.

Some Open Problems Regarding Lower Bounds For NP
by Ryan Williams

It looks obvious that LOGSPACE 6= NP, but it also looks like we are far from proving it. In 1997,
Fortnow [For00] proved that at least one of the following is true:

• SAT is not solvable in O(n · poly(log n)) time.

• NP 6= LOGSPACE.

In complexity class notation, we may write this as

SAT /∈ TIME[n · poly(log n)] ∩ LOGSPACE.

Fortnow’s lower bound holds for general-purpose algorithms, including pointer machines, word RAMs, etc.
In that sense, his method truly exploits the nondeterministic expressiveness of the SAT problem, rather
than artifacts of a particular machine model. A nice property of such “general purpose” lower bounds is
that there is nothing particularly special about SAT: a host of other NP-complete problems such as Vertex
Cover, Hamiltonian Path, and Max Cut also exhibit essentially the same lower bound (with some notable
exceptions, as we shall see below). However, in the following we stick to SAT for simplicity. (In fact, one
may think of “SAT” as “satisfiability of 3-CNF formulas.”)

Here we present some open problems concerning possible extensions of this basic lower bound.

Improve the State of Affairs. After Fortnow’s paper, there was a short flurry of work in the late
90s and early 2000s regarding time-space tradeoff lower bounds for SAT and related problems (surveyed
in [vM07]). Note that LOGSPACE 6= NP is equivalent to “there is no algorithm for SAT running in nk

time and k log n space, for every constant k,” so it is a significant open problem to understand the largest
k for which such statements can be proved. The state of the art in this direction, as reported in several
papers [Wil08, Wil13, BW15], is that there is no algorithm for SAT running in n2 cos(π/7)−o(1) time and no(1)

space, simultaneously. In complexity class notation, we write this as

SAT /∈ DTISP[n2 cos(π/7)−o(1), no(1)].

Unfortunately, 2 cos(π/7) < 1.802, so this is not even a quadratic lower bound. Buss and I proved in a
rigorous sense that current techniques cannot exceed the curious 2 cos(π/7) exponent, so there is a real
barrier here [BW15]. An immediate open problem is:

Problem 1: Improve the time lower bound for solving SAT on log-space machines. Even showing
that there is an ε > 0 such that SAT is not in DTISP[n2 cos(π/7)+ε, O(log n)] would be interesting.

It is clear that some genuinely new ideas are needed to resolve Problem 1. Fortnow’s approach (followed
by all others) is to give a proof by contradiction: show that a super-fast SAT algorithm would imply a
too-good-to-be-true speedup: for example, nondeterministic time t is contained in nondeterministic time
t0.999 for some time bound t, which contradicts the time hierarchy theorem for nondeterminism. Perhaps
we could use a hypothetical super-fast SAT algorithm to contradict other known lower bounds (such as
circuit/formula lower bounds) instead of those based on a time hierarchy?

1



Boolean Formulas. A special case of log-space computations are LOGTIME-uniform Boolean De Morgan
formulas. A De Morgan formula family of size s(n) is a collection of formulas {Fn} such that Fn has n
variables, gates of the form AND, OR, or NOT of fan-in two, and at most s(n) leaves. Such a family is
LOGTIME-uniform if there is an algorithm which can return any desired bit of the encoding of Fn in only
O(log n) time (see Vollmer [Vol99] for a formal definition). Proving that SAT does not have LOGTIME-
uniform De Morgan formulas of nk size, for every constant k, is equivalent to proving NC1 6= NP.

Without the LOGTIME-uniform condition, it is known that there are functions computable in linear
time (namely, Andreev’s function [And87, H̊as98]) which require Boolean formulas of size n3−o(1). By tight
reductions, this implies that SAT needs formulas of at least n3−o(1) size as well (with a slightly worse o(1)
factor). Can we prove a stronger formula-size lower bound assuming that the formulas are LOGTIME-
uniform?

Problem 2: Prove that SAT requires LOGTIME-uniform De Morgan formulas of n3+ε size, for
some ε > 0.

Intuitively, one could hope to combine both the diagonalization and simulation-based techniques of
Fortnow with the combinatorial/variable restriction ideas in the lower bounds for Andreev’s function. These
are somewhat orthogonal approaches to lower bounds that together could potentially be “amplified” to prove
something stronger.

TC0 Circuits. Depth-three TC0 circuits, composed of MAJORITY gates of unbounded fan-in and NOT
gates, represent a very difficult “frontier” of circuit lower bounds. Exponential-gate lower bounds for depth-
two circuits have been known for a long time [HMP+93], but for depth-three, even non-linear gate lower
bounds were only recently obtained. Recently, Kane and I proved that an extension of Andreev’s function
requires depth-three circuits composed of MAJORITY and NOT gates with at least n1.5−o(1) gates and
n2.5−o(1) wires, via random restriction methods [KW16]. This suggests the problem:

Problem 3: Prove that SAT requires LOGTIME-uniform depth-three MAJORITY/NOT circuits
of n2.5+ε wires, for some ε > 0.

In earlier work, Allender and Koucky [AK10] proved that for every d, there is an ε ∈ (0, 1) such that SAT
cannot be solved by LOGTIME-uniform depth-d MAJORITY/NOT circuits with O(n1+ε) wires. Their
lower bound works by showing that, if such circuits existed, then we’d have a provably false time-space
tradeoff algorithm for SAT (appealing to previously proved lower bounds). Can these ideas be combined
with the random restriction methods to prove an even stronger lower bound? One could imagine setting
some variables of a particularly structured SAT formula at random, in such a way that it does not “kill”
the formula entirely, but rather leaves behind “hard” sub-formulas from some class that are still difficult to
solve for another (diagonalization-based) reason.

Max Clique. Due to tight reductions between many NP-complete problems, any “general purpose” lower
bound for SAT extends to other problems such as Vertex Cover, Independent Set, and Max Cut. These
problems require 2Ω(n) time to solve (where n is either the number of variables or the number of nodes)
assuming the Exponential Time Hypothesis (ETH) [IPZ01], even on O(n)-edge graphs.

However, the “sparse” version of Max Clique (where the number of edges is linear in the number of
nodes) looks much easier: for one, Max Clique on O(n)-edge graphs is solvable in 2O(

√
n) time (see for

example Lemma 11.6 in Chapter 11 of Fomin and Kratsch [FK10]). Note that ETH implies that there is no
2o(
√
n) time algorithm; in general, known reductions from SAT (and its variants) to Max Clique blow up the

instance size by a quadratic factor. For this reason, the following problem appears to be open:

Problem 4: Show that Max Clique on m-edge graphs has no algorithm running in both m ·
poly(logm) time and O(logm) space.

Gurevich and Shelah [GS90] proved that the lower bound holds when the input is accessed on a Turing
machine tape (with at most poly(log n) read-only tape heads that move back and forth over the input,

2



each reading one bit per step). Perhaps their lower bound can be generalized to resolve the problem for
random-access models of computation?

Rossman [Ros08] has shown that for small enough `, the `-Clique problem requires AC0 circuits of size
at least n`/4, where n is the number of nodes. This implies a lower bound of m`/8. If this lower bound
could be extended to hold for ` > mδ for some constant δ > 0, then by a folklore translation of time-t

log-space computations into depth-d size-2Õ(t1/(d−1)) circuits (see for instance Lemma 7 in Gutfreund and
Viola [GV04]), Problem 4 would be answered... but we would have also proved LOGSPACE 6= NP(!).

Randomized Algorithms? Although deterministic linear-time and log-space algorithms for SAT have
been ruled out, randomized algorithms are another story. Diehl and Van Melkebeek [DvM06] proved a lower
bound for quantified Boolean formulas with two alternations, but the following remains open:

Problem 5: Show that SAT on n-bit instances has no randomized algorithm running in both
n · poly(log n) time and O(log n) space with one-sided error.

Here, the “one-sided error” needs to be in the satisfiable case, i.e., there may be an error in the algorithm’s
output when the input formula is satisfiable, but there’s no error when the formula is unsatisfiable. Note
that this is the error condition satisfied by every randomized (incomplete) SAT solver. If the one-sided error
condition is placed on the unsatisfiable side (so there is no error when formulas are satisfiable), non-trivial
lower bounds are known (see Diehl and Van Melkebeek [DvM06]).

As Diehl and Van Melkebeek point out, this problem may seem not so hard at first: why couldn’t we
assume SAT has such an algorithm, then apply Nisan’s deterministic simulation (RL ⊆ SC [Nis94]) to obtain
a contradiction with known deterministic time-space lower bounds for SAT? The trouble is that Nisan’s
simulation yields a large polynomial running time, larger than known time lower bounds for deterministically
solving SAT.

The main difficulty in attacking Problem 5 seems to be that we do not know enough interesting con-
sequences of randomized super-fast SAT algorithms. Fortnow’s approach to SAT lower bounds (and all
others after his) derives a contradiction, by using an assumed SAT algorithm to remove alternations from
certain alternating machines which simulate log-space computations. We do not know how to effectively
remove alternations when we assume a randomized algorithm for SAT, in such a way that we can derive a
contradiction.

References

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3), 2010.

[And87] Alexander E. Andreev. On a method for obtaining more than quadratic effective lower bounds
for the complexity of π-schemes. Moscow Univ. Math. Bull., 42:63–66, 1987.

[BW15] Samuel R. Buss and Ryan Williams. Limits on alternation trading proofs for time-space lower
bounds. Computational Complexity, 24(3):533–600, 2015.

[DvM06] Scott Diehl and Dieter van Melkebeek. Time-space lower bounds for the polynomial-time hier-
archy on randomized machines. SIAM J. Comput., 36(3):563–594, 2006.

[FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2010.

[For00] Lance Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci., 60(2):337–353,
2000.

[GS90] Yuri Gurevich and Saharon Shelah. Nondeterministic linear-time tasks may require substantially
nonlinear deterministic time in the case of sublinear work space. J. ACM, 37(3):674–687, 1990.

3



[GV04] Dan Gutfreund and Emanuele Viola. Fooling parity tests with parity gates. In RANDOM-
APPROX, pages 381–392, 2004.

[H̊as98] Johan H̊astad. The shrinkage exponent of De Morgan formulae is 2. SIAM J. Comput., 27:48–64,
1998.

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold
circuits of bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[KW16] Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds
for depth-two and depth-three threshold circuits. In STOC, pages 633–643, 2016.

[Nis94] Noam Nisan. RL <= SC. Computational Complexity, 4:1–11, 1994.

[Ros08] Benjamin Rossman. On the constant-depth complexity of k-clique. In STOC, pages 721–730,
2008.

[vM07] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related problems, volume 7.
Now Publishers Inc, 2007.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 1999.

[Wil08] R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Computa-
tional Complexity, 17(2):179–219, 2008.

[Wil13] Ryan Williams. Alternation-trading proofs, linear programming, and lower bounds. TOCT,
5(2):6, 2013.

4


