
SIGACT News Complexity Theory Column 101

Lane A. Hemaspaandra
Dept. of Computer Science
University of Rochester

Rochester, NY 14627, USA

Introduction to Complexity Theory Column 101

This Issue

This issue’s column brings to a close the half-year of Bill in the Complexity Theorem Column.
In particular, the previous issue’s Complexity Theory Column was Bill Gasarch’s third P versus
NP poll, and this issue’s column is Bill, Erik, Jacob, and Scott’s article on the muffin problem.
Warmest thanks to Bill, Erik, Jacob, and Scott for their splendid baking! Quite naturally given
that their article is rich in conjectures, this article is brought to you not just by the Complexity
Theory Column, but in fact is a joint production with the Open Problems Column, the letter M,
and the number 157

286 .

Have You Seen... the History of Computing?

Things I wish I had known of earlier:

1. The muffin problem.

2. Two lovely windows into the history of computing.

Bill, Erik, Jacob, and Scott’s column made me aware of the first issue and their article provides a
lovely invitation to the problem. But let me please also take a moment to point to the abovemen-
tioned lovely windows into the history of our field.

The first window into history is the 2018 book, “The Making of a New Science: A Personal
Journey Through the Early Years of Theoretical Computer Science,” by the terrific theoretical
computer scientist Giorgio Ausiello, who is able to recount the history because he was there in
the midst of it (and, as I personally know and deeply benefited from, he has had a tremendous

influence on so many generations of the field, both through his own work and through his warm,
kind, enthusiastic way of finding ways to bring researchers together).

The second window into history (which I did know of previously, though not how extensive
it is) is the ACM Oral History Project, which is a series of interviews with many of the people
whose work has shaped the field. At least some of these can be found via the ACM Digital Library,
e.g., via the web page https://dl.acm.org/citation.cfm?id=1141880&preflayout=flat#prox,
where you can for example find fascinating interviews with Juris Hartmanis, Michael Rabin, and
many others across a broad range of the areas that computer science encompasses. Despite the fact
that as of this writing there are no recent interviews listed at that URL and the page shows a 2006
proceedings-like date/entry (although some interviews are from as recently as 2012), I know of at
least one interview—that of Dick Stearns—that has been conducted very recently and does not yet
appear in that page’s Table of Contents. And so with luck, maybe this valuable ACM effort is an
ongoing project.

Coming Issues

Please stay tuned for future Complexity Theory Columns here from Emanuele Viola (topic: TBD);
from Aviad Rubinstein (topic TBD); and from Sabine Broda, António Machiavelo, Nelma Moreira,
and Rogério Reis (tentative title: Average Descriptional Complexity of Regular Languages).

And now please put on your oven mitts, because it is Muffin Time!

Guest Column: The Muffin Problem1

William Gasarch 2 Scott Huddleston3 Erik Metz 4 Jacob Prinz 5

Abstract

You have m muffins and s students. You want to divide the muffins into pieces and give the
shares to students such that every student has m

s muffins and the minimum piece is maximized.
Let f(m, s) be the minimum piece in the optimal protocol. We present, by examples, several

methods to obtain upper and lower bounds on f(m, s).

1 Introduction and Notation

At The Twelfth Gathering for Gardner (2016), I (William Gasarch) saw a booklet:

Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles

Compiled by Nancy Bachman.
On Page 2 was the following:

Begin Excerpt
The Muffin Puzzle

Invented by Recreational Mathematician Alan Frank
Described by Jeremy Copeland in

The New York Times Numberplay Online Blog
wordplay.blogs.nytimes.com/2013/08/19/cake

You have 5 muffins and 3 students. You want to divide the muffins evenly, but no student wants
a tiny sliver. What division of muffins maximizes the smallest piece? What about 3 muffins and
5 students? 6 muffins and 10 students? 4 muffins and 7 students.

End Excerpt
Bill began working on the general problem of m muffins and s students and yada-yada-yada

the following has transpired:

1 c© 2019 W. Gasarch, S. Huddleston, E. Metz, and J. Prinz.
2Dept. of Computer Science, Univ. of MD at College Park, College Park, MD 20742, USA. gasarch@cs.umd.edu.
313850 Harness Lane, Beaverton, OR 97008, USA. c.scott.huddleston@gmail.com.
4Dept. of Mathematics, Univ. of MD at College Park, College Park, MD 20742, USA. emetz1618@gmail.com.
5Dept. of Mathematics, Univ. of MD at College Park, College Park, MD 20742, USA.

jacobeliasprinz@gmail.com.

1. Bill and a large set of co-authors have an article in the conference Fun with Algorithms
titled A Muffin Theorem Generator 6on The Muffin Problem.

2. Bill Gasarch, Erik Metz, Jacob Prinz, and Daniel Smolyak have a book coming out tentatively
titled The Mathematics of Muffins.

3. Bill Gasarch, Scott Huddleston, Erik Metz, and Jacob Prinz have a survey in Lane Hemas-
paandra’s Complexity Column titled The Muffin Problem. You are reading it now.

4. Bill gave a talk at the MIT combinatorics seminar on The Muffin Problem.

5. At the seminar Bill met (this was pre-arranged) Alan Frank who brought muffins cut { 5
12 ,

7
12}

and was delighted that someone was working so hard on his problem.

Independent of the work of mentioned above, Scott Huddleston worked on the muffin problem
and came up with an algorithm that seems to always work.

This article is a survey of some aspects of The Muffin Problem including Scott’s work. Many
details omitted here will be supplied in the book. So let’s get started!

You have 5 muffins and 3 students. You want to divide the muffins evenly so each student gets
5
3 muffins. You could do the following:

1. Leave 3 muffins uncut and cut the remaining 2 muffins {13 ,
2
3}.

2. Give Alice and Bob {23 , 1}.

3. Give Carol {13 ,
1
3 , 1}.

Note that the smallest piece is of size 1
3 . Can we do better? Yes:

Theorem 1.1 There is a procedure that divides 5 muffins evenly among 3 students such that the
smallest piece is 5

12 . There is no procedure that yields a larger smallest piece.

Proof:
Part One: There is a procedure with smallest piece 5

12 .
The following procedure divides and distributes 5 muffins to 3 people with smallest piece 5

12 .

1. Divide 4 muffins { 5
12 ,

7
12}.

2. Divide 1 muffin { 6
12 ,

6
12}.

3. Give 2 students { 6
12 ,

7
12 ,

7
12}.

4. Give 1 student { 5
12 ,

5
12 ,

5
12 ,

5
12}.

6A Muffin Theorem Generator, Ninth International Conference on Fun with Algorithms, 2018. Complete list of
authors: Guangiqi Cui and John Dickerson and Naveen Durvasula and William Gasarch and Erik Metz and Jacob
Prinz and Naveen Raman and Daniel Smolyak and Sung Hyun Yoo. This can be found at http://drops.dagstuhl.
de/opus/portals/lipics/index.php?semnr=16069.

Part Two: Every procedure has a piece of size ≥ 5
12 .

Assume there is a procedure for dividing up 5 muffins and distributing the shares to 3 students
such that every student gets 5

3 muffins. We show that some piece is ≤ 5
12 . We can assume that

every muffin is cut because if a muffin is uncut, we will cut it {12 ,
1
2} and give both halves to the

intended recipient.
Case 1: Some muffin is split into ≥ 3 pieces. Then some piece is ≤ 1

3 <
5
12 .

Case 2: All 5 muffins are cut into 2 pieces. Hence there are 10 pieces. Alice gets ≥ 4 shares (if
everyone got ≤ 3 shares then there would be ≤ 9 < 10 shares). One of those shares is ≤ 5

3 ×
1
4 =

5
12 .

Definition 1.2 Let m, s ∈ N. An (m, s)-procedure is a procedure to cut m muffins into pieces and
then distribute them to the s students so that each student gets m

s muffins. An (m, s)-procedure
is optimal if it maximizes the size of the smallest piece of any procedure. Let f(m, s) be the size of
the smallest piece in an optimal (m, s)-procedure. Theorem 1.1 can be restated as f(5, 3) = 5

12 .

It is not obvious that f(m, s) exists or is rational. One can set up a Mixed Integer Program with
rational coefficients whose answer is f(m, s). Hence f(m, s) exists, is rational, and is computable.
This results in algorithm that runs in time 2ms. We will later conjecture that f(m, s) can be
computed in time poly in m, s.

Notation 1.3 Let m, s ∈ N and α ∈ R.

1. f(m, s) ≥ α means that there is an (m, s)-procedure with smallest piece ≥ α.

2. f(m, s) ≤ α means that every (m, s)-procedure has a piece ≤ α.

We leave the following to the reader:

Theorem 1.4 Let m, s ∈ N.

1. s divides m if and only if f(m, s) = 1.

2. m divides s if and only if f(m, s) = m
s .

3. For all k ∈ N, f(km, ks) ≥ f(m, s).

4. If s does not divide m then f(m, s) ≤ 1
2 .

5. f(m, s) ≥ 1
s .

Note that Theorem 1.4 does not imply
For all k ∈ N, f(km, ks) = f(m, s).

However, we conjecture that this is true:

Conjecture 1.5 For all m, s, k, f(km, ks) = f(m, s).

Theorem 1.6 For all m ≥ 1 the following hold.

1. f(m, 1) = 1.

2. If m is even, then f(m, 2) = 1.

3. If m is odd, then f(m, 2) = 1
2 .

We leave the proof of the following theorem to the reader.

Theorem 1.7 Let m, s ∈ N. Then f(s,m) = s
mf(m, s).

Throughout the rest of the article we have the following conventions.

1. We assume m ≥ s. This suffices to cover all cases by Theorem 1.7.

2. We will assume that m, s are relatively prime. By Theorem 1.4 we have f(km, ks) ≥ f(m, s).
Every technique we have that finds a bound α such that f(m, s) ≤ α, also shows that, for all
k ∈ N, f(km, ks) ≤ α. Hence, our techniques provide evidence for Conjecture 1.5.

3. When we are trying to prove f(m, s) ≥ α > 1
3 then we will assume every muffin is cut into

exactly two pieces. We call this by convention.

The following definitions will be used throughout the paper

Definition 1.8 Let m, s ∈ N and assume there is an (m, s)-procedure.

1. A student who gets V shares is called a V -student.

2. If a share is given to a V -student, it is a V -shares.

Definition 1.9 Assume there is a procedure where every muffin is cut into exactly 2 pieces. Let
x be a piece. The buddy of x, denoted B(x), is 1 − x. This definition extends naturally to sets of
pieces. We will be using it on intervals of pieces. We write B(a, b) rather than the more proper
B((a, b)). Similarly we use B[a, b] rather than B([a, b]). Note that B(x) = 1− x.

2 Generating Upper Bounds: The Floor-Ceiling Theorem

The proof of the upper bound in Theorem 1.1 generalizes to what we call the Floor-Ceiling Theorem:

Theorem 2.1 Let m, s ≥ 1 and s does not divide m.

f(m, s) ≤ max

{
1

3
,min

{
m

s
× 1⌈

2m
s

⌉ , 1− m

s
× 1⌊

2m
s

⌋}}.
Proof: Assume there is an (m, s)-procedure. Since s does not divide m every muffin is cut into
≥ 2 pieces.
Case 1: If some muffin is cut into ≥ 3 pieces then there is a piece ≤ 1

3 .
Case 2: If all muffins are cut into ≤ 2 pieces, then by convention, all muffins are cut into 2 pieces;
therefore, there are 2m pieces. Since there are s students both of the following hold:
Case 2a: Alice gets ≥

⌈
2m
s

⌉
shares, therefore she gets a share ≤ m

s ×
1

d 2ms e
.

Case 2b: Bob gets ≤
⌊
2m
s

⌋
shares, therefore he gets a share ≥ m

s ×
1

b 2ms c
. The buddy of that share

is ≤ 1− m
s ×

1

b 2ms c
.

We define FC (Floor-Ceiling) to encompass both Theorem 2.1 and the trivial case where s
divides m. This will make later exposition smoother without special cases.

Notation 2.2 If s divides m then FC(m, s) = 1. Otherwise:

FC(m, s) = max

{
1

3
,min

{
m

s
× 1⌈

2m
s

⌉ , 1− m

s
× 1⌊

2m
s

⌋}}.
By the Floor-Ceiling Theorem, f(m, s) ≤ FC(m, s). We are interested in knowing if, for all

m, s, f(m, s) = FC(m, s). The answer is NO. However (1) for 1 ≤ s ≤ 4, f(m, s) = FC(m, s), and
(2) for fixed s, for all but a finite number of m, f(m, s) = FC(m, s). We will not prove either of
these.

3 Generating Upper Bounds: The Half Method

The smallest s for which f(m, s) 6= FC(m, s) is s = 5. The smallest m in the s = 5 case is m = 11.
We show f(11, 5) = 13

30 < FC(11, 5) = 11
25 .

Theorem 3.1 f(11, 5) = 13
30 .

Proof: We show f(11, 5) ≤ 13
30 . We leave the proof that f(11, 5) ≥ 13

30 to the reader. In Section 6
we discuss how one might find the procedure systematically.

We derive the upper bound during the proof. We will denote it α.
Assume there is an (11, 5)-procedure with smallest piece α. By convention every muffin is cut into
exactly 2 pieces. Hence there are 22 pieces. Note that there can be at most 11 pieces > 1

2 . This
will be a key to getting a contradiction.

We make a leap here and assume there is some V such that every students is either a V -student
or a (V − 1)-student. (see Definition 1.8). With some trial and error we find that V = 5 works (we
define works soon). We now proceed with the proof.
Case 1: If Alice gets ≥ 6 shares then some share is

≤ 11

5× 6
=

11

30
≤ α.

We will need 11
30 ≤ α.

Case 2: If Alice gets ≤ 3 shares then some share is

≥ 11

5× 3
=

11

15

so its buddy is

≤ 1− 11

15
=

4

15
≤ α.

We will need 4
15 ≤ α.

Case 3: Everyone is either a 4-student or a 5-student.
Let s4 (s5) be the number of 4-students (5-students). Since every muffin is cut into 2 pieces

there are 11× 2 = 22 pieces.

We have
4s4 + 5s5 = 22
s4 + s5 = 5.

Hence s4 = 3 and s5 = 2. So there are twelve 4-shares and ten 5-shares. (This is why V = 5
works—it leads to the above equations having a natural number solution. No other choice of V
does.) Since there are 11 muffins, each cut in half, there are at most 11 pieces > 1

2 . In particular
not all 12 of the 4-shares can be > 1

2 . We will derive what α needs to be to ensure that all the
4-shares are > 1

2 . This will be our contradiction.
We want α such that there are no 4-shares ≤ 1

2 . Assume, by way of contradiction, that there is
a 4-share ≤ 1

2 . The remaining 3 shares add up to ≥ 11
5 −

1
2 = 17

10 ; hence one of the other shares is
≥ 17

10 ×
1
3 = 17

30 . The buddy of that share is ≤ 1− 17
30 = 13

30 .
We will need 13

30 ≤ α.
Putting it all together we need

α = max

{
11

30
,

8

30
,
13

30

}
=

13

30

to get a contradiction. We have just proved f(11, 5) ≤ 13
30 .

In the proof that f(11, 5) ≤ 13
30 we guessed that everyone was either a 4-student or a 5-student

and this turned out to be true. The following seems to be true empirically:

Conjecture 3.2 (The V -Conjecture) Let m ≥ s. Let V =
⌈
2m
s

⌉
. If f(m, s) < FC(m, s) then in

every optimal (m, s)-procedure everyone is either a V -student or a (V −1)-student. (If we only insist
that some optimal procedure has this property than we think we can drop the f(m, s) < FC(m, s)
condition.)

Note 3.3 We show that the f(m, s) < FC(m, s) condition is needed. f(15, 8) ≤ 3
8 by the Floor-

Ceiling Theorem. Note that V =
⌈
30
8

⌉
= 4. f(15, 8) ≥ 3

8 by the following two procedures:
Procedure One: This procedure has 3-students and 5-students. Hence it is a counterexample to
the V -condition without the condition f(m, s) < FC(m, s).

1. Divide 15 muffins {38 ,
5
8}.

2. Give 3 students {58 ,
5
8 ,

5
8}.

3. Give 5 students {38 ,
3
8 ,

3
8 ,

3
8 ,

3
8}.

Procedure Two: This procedure has 3-students and 4-students. Hence f(15, 8) is not a counterex-
ample to the weaker V -conjecture where we only require that some procedure use only V -students
and (V − 1)-students.

1. Divide 6 muffins {38 ,
5
8}.

2. Divide 9 muffins {48 ,
4
8}.

3. Give 2 students {58 ,
5
8 ,

5
8}.

4. Give 6 students {38 ,
4
8 ,

4
8 ,

4
8}.

One can (roughly) take the technique used to get f(11, 5) ≤ 13
30 and make it into a program that

will, on input (m, s), output HALF(m, s) which is the bound you get from applying the method.
Hence we have

f(m, s) ≤ min{FC(m, s),HALF(m, s)}.

Is this an equality? No. But for 1 ≤ s ≤ 8 and m ≥ s equality holds.

4 Generating Upper Bounds: Other Methods

There are four methods to generate an upper bound on f(m, s) which we will not describe: Interval
(INT), Midpoint(MID), Easy Buddy Match (EBM) and Hard Buddy Match (HBM). INT and
MID are similar to, but harder than, HALF. There are two methods to verify an upper bound on
f(m, s): GAPS and TRAIN (we will describe GAP in the next section, though not TRAIN). Both
are similar to though harder than HALT, INT, MID.

The Buddy-Match methods only work when there is a 2-student and uses the fact that if such
a student has a share of size x, the other share is of size m

s − x.
When all is said and done we have:

f(m, s) ≤ min{FC(m, s),HALF(m, s), INT(m, s),MID(m, s),EBM(m, s),HBM(m, s)}.

Is this an equality? No. But we have empirical evidence that, for 1 ≤ s ≤ 18 and m ≥ s,
equality holds.

5 Verifying Upper Bounds: The Gap and Train Methods

For all of the prior methods discussed we end up with a function that, on input m, s, outputs an
upper bound. The GAPS method has to be given α and then verifies that f(m, s) ≤ α or fails to
do so. In Section 7 we will discuss how to use the method within a program to find f(m, s).

We do one example of the GAPS method.

Theorem 5.1 f(31, 19) = 54
133 .

Proof: We show f(31, 19) ≤ 54
133 . We leave the proof that f(31, 19) ≥ 54

133 to the reader. In
Section 6 we discuss how one might find the procedure systematically.

We express everything with denominator 266. Note that 31
19 = 434

266 .
Assume there is a (31, 19)-procedure with smallest piece > 108

266 . Then the biggest piece is of
size < 1 − 108

266 = 158
266 . We leave it to the reader to show that there are fourteen 3-students, five

4-students, forty-two 3-shares, twenty 4-shares.
Assume Alice is a 3-student with shares x ≤ y ≤ z. If x ≤ 118

266 then y + z ≥ 434
266 −

118
266 = 316

266 .
Hence z ≥ 316

266 ×
1
2 = 158

266 . Hence all 3-shares are > 118
266 . By similar reasoning all 4-shares are < 110

266 .
The following picture captures what we know:

(20 4-shs)[0](42 3-shs)
108
266

110
266

118
266

158
266

(here and below, “shs” is shorthand for “shares”).
There are no shares in (110266 ,

118
266). Hence, by buddying, there are no shares in (148266 ,

156
266). The

following picture captures what we know:

(20 4-shs)[0](22 3-shs)[0](20 3-shs) .
108
266

110
266

118
266

148
266

156
266

158
266

There are the same number of shares in (118266 ,
133
266) as in (133266 ,

148
266) by buddying. There are an

even number of shares of size 133
266 . We will think of them as being divided between the two intervals.

Hence there are 11 shares in each of the two intervals.
The following picture captures what we know about the 3-shares:

(11 3-shs | 11 3-shs)[0](20 3-shs) .
118
266

133
266

148
266

156
266

158
266

We define the following intervals.

1. I1 = (118266 ,
133
266).

2. I2 = (133266 ,
148
266) (|I1| = |I2| = 11).

3. I3 = (156266 ,
158
266) (|I3| = 20).

There may be shares of size 133
266 but this will not affect our proof.

We need a finer classification of 3-students. We need to know how many shares from I1, I2, and
I3 they have.

Notation 5.2

1. If 1 ≤ i ≤ 3 then an Ii-share is a share from Ii.

2. Let 1 ≤ j1 ≤ j2 ≤ j3 ≤ 3. A (j1, j2, j3)-student is a student who has an Ij1-share, an Ij2-share,
and an Ij3-share. The j’s could be equal.

3. yj1,j2,j3 is the number of students of type (j1, j2, j3).

4. If a proof that a student is impossible is exact then we put a * on it. This will be clearer
when we do it.

Claim 1:

1. The following are the only students who are allowed.

(a) (1, 2, 3).

(b) (1, 3, 3).

(c) (2, 2, 2).

(d) (2, 2, 3).

2. There are no shares in [122266 ,
128
266].

3. There are no shares in [138266 ,
144
266] (this follows from the last item and buddying).

Proof of Claim 1:
1) We establish that some students are impossible.

A (1, 2, 2)-student has less than 133
266 + 2× 148

266 = 429
266 <

434
266 .

A (1, 1, 3)-student has less than 2× 133
266 + 158

266 = 424
266 <

434
266 .

A (2, 3, 3)-student has more than 133
266 + 2× 156

266 = 445
266 >

434
266 .

The result follows.
2) How big does an I1-share have to be?

A (1, 2, 3)-student has I1-share > 434
266 −

306
266 = 128

266 .
A (1, 3, 3)-student has I1-share < 434

266 − 2× 156
266 = 122

266 .
These are the only students who use I1-shares. The result follows.

End of Proof of Claim 1
We define new intervals.

1. I1 = (118266 ,
122
266).

2. I2 = (128266 ,
133
266).

3. I3 = (133266 ,
138
266) (|I2| = |I3|).

4. I4 = (144266 ,
148
266) (|I1| = |I4|).

5. I5 = (156266 ,
158
266) (|I5| = 20).

(We also know that |I1|+ |I2| = |I3|+ |I4| = 11 but this is not needed.)
Claim 2: The following are the only students who are allowed.

1. (1, 5, 5).

2. (2, 4, 5).

3. (3, 4, 5).

4. (4, 4, 4).

Proof of Claim 2:
We establish that some students are impossible. (Regarding the two “*” symbols below, please

recall the final part of Notation 5.2.)
A (1, 4, 5)-student has less than 122

266 + 148
266 + 158

266 = 428
266 .

A (3, 4, 4)-student has less than 138
266 + 2× 148

266 = 434
266 .*

A (3, 3, 5)-student has less than 2× 138
266 + 158

266 = 434
266 .*

A (2, 5, 5)-student has more than 128
266 + 2× 156

266 = 440
266 >

434
266 .

A (4, 4, 5)-student has more than 2× 144
266 + 156

266 = 444
266 >

434
266 .

The result follows.
End of Proof of Claim 2

Let x be the number of (1, 5, 5)-students. Note that since |I2| = |I3|, there are an equal number
of (2, 4, 5)-students and (3, 4, 5)-students. Call that number y. Finally, let z be the number of
(4, 4, 4)-students.

Since |I1| = |I4|,
x = 2y + 3z.

Since there are s3 = 14 students,

x+ 2y + z = 14.

If you substitute x = 2y + 3z into the equation x+ 2y + z = 14, you get

y + z =
7

2

which is a contradiction since y, z ∈ N.

There is an extension of the GAPS method called the TRAIN method. We omit it.
Let GAPS(m, s, α) be computed as follows: try to apply the GAPS method to show f(m, s) ≤ α.

If it succeeds output YES, otherwise NO. Similar for TRAIN(m, s, α).

6 Verifying Lower Bounds: Linear Algebra

In this section we derive procedures systematically. From what we present the reader can easily
devise an algorithm that will given m, s, α either find a procedure for f(m, s) ≥ α or fail to do so.
Failure does not mean that there is no such procedure.

We will be assuming the following conjecture:

Conjecture 6.1 Let m ≥ s. Let a, b ∈ N. Let d = gcd(s, b). If f(m, s) ≥ a
b then there is an

(m, s)-procedure where all of the shares are multiples of 1
d .

We will need the following notation.

Definition 6.2 A multiset is a set where elements may be repeated. A multisubset of a set B is a
multiset where every elements is in B. Note that if an elements appears n times in B then it can
appear ≤ n times in a multisubset of B.

Definition 6.3 Let B be a set of L numbers, and let S be a multisubset of B. The vector
representation of S is a vector (n1, n2, . . . , nL) where ni is the number of times that the ith element
of B appears in S (when B is ordered least to greatest).

Definition 6.4 The sum of a multiset simply means the sum of the elements in the multiset.

We now derive the procedure for f(5, 3) ≥ 5
12 . We do it in steps.

1) By Conjecture 6.1 all of the pieces are in the set A:

A =

{
5

12
,

6

12
,

7

12

}
.

Each muffin will be split into two piece sizes from A. We can represent this with a multiset
of piece sizes. For example, if a muffin is split into two halves, then we may represent it by the
multiset { 6

12 ,
6
12} or with the vector representation (0, 2, 0).

In order to avoid cluttering the page with denominators, we will multiply all piece sizes by 12.
So instead, let

B = {5, 6, 7}.

If we want to know all ways to cut a muffin, rather than say We need all multiset subsets of A
that sum to 1 we say We need all multiset subsets of B that sum to 12.

2) Find all vectors that correspond to how a muffin can be cut. We need all subsets of B that sum
to 12 (since 1 = 12

12).
It is easy to see that the sets are
{6, 6} which is (0, 2, 0). Let m1 be the number of muffins cut this way.
{5, 7} which is (1, 0, 1). Let m2 be the number of muffins cut this way.

3) We can also use multisets to represent the pieces which a student receives. Each student receives
5
3 muffin total, so each of these multisets will sum to 20 (since 5

3 = 20
12).

It is easy to see that the sets are

• {6, 7, 7} which is (0, 1, 2). Let s1 be the number of students who get these shares.

• {5, 5, 5, 5} which is (4, 0, 0). Let s2 be the number of students who get these shares.

4) Set up equations to find m1,m2, s1, s2.
The number of each piece size that the muffins give is equal to the number of each piece size

that the students receives. Therefore, we get the equation:

m1(0, 2, 0) +m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0).

This equation implies:
m2 = 4s2

2m1 = s1
m2 = 2s1.

Since there are 5 muffins and 3 students we have:

m1 +m2 = 5
s1 + s2 = 3.

The 5 equations have one solution in the naturals: m1 = 1, m2 = 4, s1 = 2, s2 = 1. It is easy
to take this solutions and make a procedure out of it.

The above technique can be used on any (m, s, α). Let FINDPROC(m, s, α) be the algorithm
that uses the technique above to try to prove f(m, s) ≥ α. If it succeeds then output YES, otherwise
output NO.

7 An Algorithm that Tries to Find f(m, s) But Probably Fails
Sometimes

We give an algorithm tries to find f(m, s). Does it always succeed? This is an open problem. We
comment on it at the end of this section.

1. Input(m, s). If s = 1 then output 1.

2. If m < s then run f(s,m) and output m
s f(s,m).

3. If s divides m output(1) and halt.

4. If m, s are not relatively prime then let d = gcd(m, s) and run the program on (m/d, s/d).
Once you get the answer α see what techniques were used and see if they apply to (m, s).
They will. Output α.

5. (We can assume m > s, m, s relatively prime, s ≥ 2.) Compute the min of the following and
call it α:

{FC(m, s),HALF(m, s), INT(m, s),EBM(m, s),MID(m, s),HBM(m, s)}.

6. Run FINDPROC(m, s, α).

7. If the answer is YES then output α.

8. If the answer is NO then let α = a
b . Compute FINDPROC(m, s, a−1b), FINDPROC(m, s, a−2b),

. . . until you get a YES. (In practice this has always been a−1
b .) We know

a− i
b
≤ f(m, s) ≤ a

b
.

9. Look at all the numbers between a−i
b and a

b that have denominators of the form bx where
1 ≤ x ≤ C where C is a constant or function of b chosen by the programmer (we only used
denominators ≤ 600, however one can replace this with some increasing function of b).

Sort them to produce
α1 < α2 < · · · < αn.

By using FINDPROC(m, s, αi) and GAPS(m, s, αi) do a binary search to find an αi that is
both an upper and lower bound. (You might also use TRAIN(m, s, αi).)

This method might not be that fast since FINDPROC may be slow. However, in practice it is
usually fast. Does it always work?

Conjecture 7.1 The above algorithm always produces f(m, s).

We don’t really believe this conjecture. At various times we thought (1) FC would always give
the right answer, (2) the min of FC and HALF would always give the right answer,. . ., (7) the min
of FC, HALF, INT, MID, EBM, HBM, GAP (using GAP together with FP) always gave the right
answer, and then it did not work for f(67, 21). We then came up with TRAIN which handled that
and some other cases. Will this process ever end? Will we find (perhaps with Scott’s algorithm
from Section 8) some other m, s such that none of FC, HALF, INT, MID, EBM, HBM, GAP, or
TRAIN give the value of f(m, s)? We do not know. So this is less a conjecture and more of a
question. Sadly, even if this algorithm does work, it is not very fast. Formally we do not think this
algorithm works in time polynomial in m, s.

8 An Algorithm that Tries to Find f(m, s) and Probably Never
Fails

Scott Huddleston has devised a method that does the following: on input m, s, generates an α and
an (m, s)-procedure that shows f(m, s) ≥ α. His algorithm has three amazing properties:

• Recall that the algorithm in Section 7 will verify that f(m, s) ≥ α. Scott’s algorithm will,
given m, s, find an α such that f(m, s) ≥ α. This is not impressive in and of itself but the
next two points make it impressive.

• Scott’s algorithm is extremely fast. The algorithm in Section 7 currently can verify f(m, s) ≥
α (given an α we suspect is an answer) for most m, s with m, s ≤ 100, in about an hour.
With some fine tuning and a faster language we suspect we can get it up to m, s ≤ 200 in
about an hour. Scott’s algorithm can compute a lower bound for f(m, s) for all m, s with
m+ s ≤ 100, 000 in a few minutes.

• The α Scott gets seems to always be f(m, s). We believe that Scott’s algorithm does compute
f(m, s) (not just a lower bound for it) though we have not been able to prove this.

In this exposition we omit much including the case where f(m, s) = 1
3 .

We sketch two examples of his method. We assume the V -conjecture throughout. Hence we
will always assume that the everyone is either a (V − 1)-student or a V -student where V =

⌈
2m
s

⌉
.

8.1 Five Muffins, Three Students

We assume f(5, 3) > 1
3 . By convention every muffin is cut into 2 pieces, so there are 10 shares. We

leave it to the reader to show that there are two 3-students, one 4-student, six 3-shares, and four
4-shares. So far this is all standard.

We introduce several new ideas that we use throughout this section.

New Idea One: Generalize The Problem
We first restate the (5,3)-problem:

1. We have 5 muffins that are worth 1 each and cut into 2 pieces. We denote this as (5, 1, 2). In
the future we will have muffins that have values other than 1.

2. We have one 4-student who needs 5
3 via 4 shares. We denote this as (1, 53 , 4).

3. We have two 3-students who need 5
3 via 3 shares. We denote this as (2, 53 , 3).

We denote this problem as

scott

[
(5, 1, 2) ,

(
1,

5

3
, 4

)
,

(
2,

5

3
, 3

)]
.

We call it SC(5,3)-0. We will soon recast it as a problem about finding weights on edges in a
graph. We will still call this recast problem SC(5,3)-0.

This is an example of a Scott-Muffin Problem. We now give the formal definition and conven-
tions.

Definition 8.1 A Scott-Muffin Problem is a 3-tuple of 3-tuples:

(nm, vm, pm)

(ns1 , vs1 , ps1)

(ns2 , vs2 , ps2),

(1)

with the following meaning.

1. All three tuples are in N×Q× N. All 9 numbers are ≥ 0.

2. The first tuple (nm, vm, pm) means that there are nm muffins, each with value vm, and each
cut into pm pieces. Later pm will be the degree of a muffin-vertex in a graph. All three of
these numbers are > 0.

3. Both the second and third tuples represent students.

(a) The second tuple (ns1 , vs1 , ps1) means that there are ns1 students (these are not all of
the students) who want muffins of value vs1 , in ps1 shares. These are called the major
students (we’ll see why in point c). Later ps1 will be the degree of a student-vertex in a
graph. All three of these numbers are > 0.

(b) The third tuple (ns2 , vs2 , ps2) means there are ns2 students who want muffins of value
vs2 , in ps2 shares. These are called the minor students (we’ll see why in point c). Later
ps2 will be the degree of a student-vertex in a graph. If all three numbers are 0 then
we leave it off and in this case the Scott-Muffin problem only has two tuples—a muffin
tuple and the major students.

(c) Which student-tuple is major and which is minor is determined as follows: the tuple

with the larger ratio
degree
value is the major muffins. In other words,

ps1
vs1

>
ps2
vs2

.

4. Be forewarned: you are used to thinking of pieces of muffins being given to students. We will
often invert that and think of students giving pieces to muffins. The graphs we use will be
undirected so either mentality is fine.

The Scott-Muffin problem is important since we will be taking a standard muffin problem and
transforming it into smaller Scott-Muffin problem, and then (possibly) again into an even smaller
Scott-Muffin Problem, until we get to a certain type of Scott-Muffin problem that is easy to solve
optimally. We will then use that to solve all the problems in the sequence (conjecturally) optimally.

So solving Scott-Muffin problems is an example of that trope: it’s sometimes easier to solve a harder
problem.

New Idea Two: Represent the Problem as a Graph
Since the 4-student only uses 4 shares and there are 5 muffins, there must be a muffin that

is shared among only the 3-students. Since each muffin is cut in two pieces, there will be two
3-students who share a muffin. We represent this in Graph 1 where the massive magenta7 vertices
are muffins and the small cyan vertices are students.

Graph 1: Five Muffins, Three Students, SC(5,3)-0

We will present many more graphs (actually multigraphs) where (1) vertices are either students
or muffins, and (2) a muffin vertex is connected to a student vertex if that student gets a piece of
that muffin. We state the conventions for such graphs.

Convention 8.2 In all of our graphs, the following hold.

1. Muffins are Massive Magenta (reddish) colored dots (M for Muffin, Massive, and Magenta).

2. Students are Small Cyan (blueish) colored dots (S for Student, Small, and (sort of) Cyan).

3. A muffin and a student are connected if a student has a piece of that muffin. Since muffins
can only be connected to students and vice versa, students and muffins are the two parts of
a bipartite graph. We do not draw the graphs as bipartite since that would be a mess.

4. Given a Scott-Muffin problem

(nm, vm, pm)

(ns1 , vs1 , ps1)

(ns2 , vs2 , ps2),

(2)

7Depending on the medium you are reading this in you may or may not see the colors.

we will associate a graph. This graph is not unique. That is, there may be more than one
graph that represents the problem. This will end up not mattering since the graphs are visual
aids and not used in the actual algorithm. The graph will have nm muffin-vertices of degree
pm, ns1 student-vertices of degree ps1 , and ns2 student-vertices of degree ps2 (we leave out
for now how to determine the edges). The problem is to assign nonnegative weights to the
edges such that every muffin-vertex has weighted degree vm, that every major-student-vertex
has weighted degree vs1 , and every minor-student-vertex has weighted degree vs2 . It is easy
to see how these weights can be used to obtain a solution to the Scott-Muffin problem.

5. Note that (1) all of the muffin-nodes are of degree pm, (2) all of the major-student-nodes are
of degree ps1 , and (3) all of the minor-student-nodes are of degree ps2 .

6. Note that the graph itself does not specify the entire Scott-Muffin problem. We often say
things like this graph captures some of the Scott-Muffin Problem.

7. The muffin-vertices for a standard muffin problem will have degree 2 since each muffin is cut
into exactly 2 pieces. For a Scott-Muffin problem where the muffins may have values other
than 1 and may be cut into more than 2 pieces, the muffin-vertices may have higher degree.

8. The weights on the edges represent the size of the piece that the muffin gave to the student.
To re-iterate: we will often invert that and think of a student giving pieces to a muffin.

Since there are two 3-students who share a muffin, and one 4-student, Graph 1 captures some
of what we know.

Note that a (5,3)-procedure is a way to assign nonnegative weights to the edges of Graph 1 such
that

• The weighted degree of each muffin vertex is 1.

• The weighted degree of each student vertex is 5
3 .

We call the problem of finding such weights SC(5,3)-0.

New Idea Three: Transform the Problem into a Smaller One—Clusters are Students
We need a notation for a certain part of the graph.

Definition 8.3 Let L ≥ 0. An L-cluster is a sequence of length 2L + 1 of the form student-
muffin-· · · -student that has L minor students, together with all the other muffins attached to
the students. The muffins in the student-muffin-· · · -student sequence are called internal muffins
whereas the muffins that are not in that sequence but are attached to the students are called
external muffins. The muffins in the sequence might have other students attached to them but
those students are not part of the cluster.

Graph 1 has a 1-cluster consisting of the 2 students and 1 internal muffin (at the bottom)
together with the four external muffins that are adjacent to the students. Here is the big new idea:

We will transform the problem by regarding this 1-cluster as being a student.

The internal and external muffins are part of the cluster. The 2 students in the cluster need
2× 5

3 = 10
3 . There is 1 internal muffin and there are 4 external muffins so the cluster has 5 muffins.

We are now going to view the students as having muffin pieces to give to the muffins. Hence the
cluster can be viewed as a student who has an excess of 5 − 10

3 = 5
3 (the fact that this is 5

3 is
an accident, do not let that confuse you). The degree of the cluster is 4. Hence we can view the
1-cluster as a student of value 5

3 and degree 4.
What to make of the remaining student? We have already used up all of the muffins, so that

student can be viewed as needing 5
3 but not having any muffins. So its value is −5

3 . Rather than
think of negative numbers we instead think of this student as being a muffin who needs 5

3 . Note
also that this vertex (which now represents a muffin) has degree 4. Hence we can view this as the
following Scott-Muffin Problem:

scott

[(
1,

5

3
, 4

)
,

(
1,

5

3
, 4

)]
.

We call it SC(5,3)-1 and it is represented by Graph 2. The problem is now to put nonnegative
weights on the edges such that

Graph 2: Five Muffins, Three Students, SC(5,3)-1

• The weighted degree of the muffin vertex is 5
3 .

• The weighted degree of each student vertex is 5
3 .

We now state a conjecture with two parts. One part we use now, one we use later.

Conjecture 8.4 If either (1) there are no minor students, or (2) no set of clusters contains all of
the minor students, then all the pieces being given to the major muffins will be the same size.

5
12

5
12

5
12

5
12

Graph 3: Five Muffins, Three Students, Solution to SC(5,3)-1

Using this conjecture, and the fact that there are no minor students, the problem is now easy:
Assign each edge 5

12 as in Graph 3.
How do we go from the solution of SC(5,3)-1 to a solution of SC(5,3)-0? The bottom node is

really a cluster of two student-vertices and an internal muffin-vertex. Recall that the weights were
how much these students were going to give away. Consider one of these students, Alice. Alice is
connected to 2 external muffin-nodes. Using the solution to SC(5,3)-1 (Graph 3) we see that, for
each of these muffins, she gives away 5

12 and hence keeps 7
12 . Hence each student keeps 2× 7

12 = 7
6 .

They now need to split the internal muffin so that each one gets 5
3 . Hence they each need 5

3−
7
6 = 1

2 .
Wow! We give the solution to SC(5,3)-0 in Graph 4.

In this case obtaining the solution to the SC(5,3)-0 from the SC(5,3)-1 was easy. It is not always
so easy and we do not always split internal muffins (12 ,

1
2).

In summary we transformed SC(5,3)-0

scott

[
(5, 1, 2) ,

(
1,

5

3
, 4

)
,

(
2,

5

3
, 3

)]
into the easier problem SC(5,3)-1

scott

[(
1,

5

3
, 4

)
,

(
1,

5

3
, 4

)]
.

We then solved SC(5,3)-1 and used its solution to solve SC(5,3)-0.

8.2 Thirty-Five Muffins, Thirteen Students

We now do the problem of f(35, 13). We will use the ideas from Section 8.1; hence we will assume
familiarity with the definitions and ideas presented there. We will need a few new ideas as well.

7
12

7
12

7
12

7
12

5
12

5
12

5
12

5
12

1
2

1
2

Graph 4: Five Muffins, Three Students, Solution to SC(5,3)-0

We assume f(35, 13) > 1
3 . By convention every muffin is cut into 2 pieces, so there are 70 pieces.

We leave it to the reader to show that there are eight 5-students, five 6-students, forty 5-shares,
and thirty 6-shares. We express this as the following Scott-Muffin problem:

scott

[
(35, 1, 2) ,

(
5,

35

13
, 6

)
,

(
8,

35

13
, 5

)]
.

We call this problem SC(35,13)-0. It is partially represented by Graph 6, though we need to
explain why that graph represents the problem, so we will look at Graph 5 first.

Since there are thirty 6-shares, the 6-students can only use pieces of 30 muffins. Hence there
are 5 muffins that are used entirely by the 5-students.

We will assume that the 5 muffins that are shared by the 5-students form one 1-cluster and two
2-clusters. Graph 5 shows those clusters (without the external muffins—that would make a mess)
along with the 6-students. It turns out that essentially every muffin problem begins this way: (1)
find V so that everyone is either a V -student or a (V − 1)-student (V =

⌈
2m
s

⌉
), (2) find that the

(V − 1)-students must share m′ muffins between them, (3) find an L such that the muffin-sharing
can be represented by clusters of length L and L− 1.

Given the Scott-Muffin problem and the clusters, Graph 6 represents it (other graphs might
also).

As in Section 8.1 we will transform SC(35,13)-0 into a smaller problem. Look at Graph 6.

1. The five 6-students will be viewed as not having any muffins adjacent to them (these are the
external muffins of the clusters in the next two items) hence these five 6-students need 35

13
each and have nothing to begin with. These are now viewed as muffins and denoted (5, 3513 , 6).

Graph 5: Thirty-Five Muffins, Thirteen Students: Clusters

2. There are two 2-clusters of 5-students (they are at the bottom of both Graph 5 and 6). We
focus on one of them; however, the same goes for the other one. The three students need
3 × 35

13 = 105
13 muffins. The cluster has 2 internal muffins and 11 external muffins for a total

of 13 muffins. Hence the cluster becomes a student of value 13 − 105
13 = 64

13 . Note that there
are 11 edges coming out of the cluster. Since there are 2 of these clusters we denote this

(2, 6413 , 11). Note that
degree
value = 11

64/13 ∼ 2.23. This ratio of degree to value is larger than the
one in the next item, so these are the major students.

3. There is one 1-cluster of 5-students (it is at the top of both Graph 5 and 6). The two students
need 2× 35

13 = 70
13 muffins. The cluster has 1 internal muffin and 8 external muffins for a total

of 9 muffins. Hence the cluster becomes a student of value 9 − 70
13 = 47

13 . Note that there
are 8 edges coming out of the cluster. Since there is only 1 of these clusters we denote this

(1, 4713 , 8). Note that
degree
value = 8

47/13 ∼ 2.21. This ratio of degree to value is smaller than the
one in the prior item, so these are the minor students.

Hence we have the following Scott-Muffin problem:

scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
.

We call this problem SC(35,13)-1. It is partially captured by Graph 7.
While we have spilled a lot of ink, all we’ve done so far is transformed SC(35,13)-0:

scott

[
(35, 1, 2) ,

(
5,

35

13
, 6

)
,

(
8,

35

13
, 5

)]

Graph 6: Thirty Five Muffins and Thirteen Students, SC(35,13)-0

Graph 7: Thirty-Five Muffins, Thirteen Students, SC(35,13)-1

into SC(35,13)-1:

scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
.

We will transform SC(35,13)-1 to a new problem SC(35,13)-2. We will then find a solution to
SC(35,13)-2 and use it to find and a solution to SC(35,13)-1, and use that to find a solution to
SC(35,13)-0.

8.2.1 Transforming SC(35,13)-1 to SC(35,13)-2

Recall SC(35,13)-1:

scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
,

which is represented by Graph 7. Since there are no clusters, by Conjecture 8.4 we give all the
major students equal amounts on all of their edges.

The two major students (the two student-vertices at the bottom of Graph 7) each want weighted
degree 64

13 and are of unweighted degree 11. Hence we give each of the edges coming out of it weight
64
13 ×

1
11 = 64

143 .
With these edges taken care of we will recurse into a smaller Scott-Muffin SC(35,13)-2. Before

defining SC(35,13)-2 we look at the muffin vertices of SC(35,13)-1 that have gotten some of the
way towards their weighted degree.

There are two kinds of muffin vertices in Graph 7. Note that the muffin vertices are the ones
in the middle layer. SC(35,13)-1:

• The 3 muffin-vertices that have 2 edges to the 1 minor student. Since these muffins originally
needed weighted degree 35

13 and now have, from the edges to the major students, 4× 64
143 = 256

143 ,
they now need just 35

13 −
256
143 = 129

143 .

• The 2 muffin-vertices that have 1 edge to the 1 minor student. Since these muffins originally
needed weighted degree 35

13 and now have, from the edges to the major students, 5× 64
143 = 320

143 ,
they now need just 35

13 −
320
143 = 5

11 .

We will now define the SC(35,13)-2 problem.

1. There is 1 muffin of value 47
13 and degree 8. We denote this as (1, 4713 , 8). (This used to be the

1 minor student, which is the top most student in Graph 7.)

2. There are 3 students of value 129
143 and degree 2. We denote this as (3, 129143 , 2). Note that

degree
value = 2

129/143 ∼ 2.22. These students have a larger
degree
value than those in the next item

so these are the major students. (These used to be the muffins that had 2 edges to the minor
student.)

3. There are 2 students of value 5
11 and degree 1. We denote this as (2, 5

11 , 1). Note that
degree
value = 1

5/11 ∼ 2.20. These students have a smaller
degree
value than those in the prior item

so these are the minor students. (These used to be the muffins that had 1 edges to the minor
student.)

Hence we have

scott

[(
1,

47

13
, 8

)
,

(
3,

129

143
, 2

)
,

(
2,

5

11
, 1

)]
.

We call this problem SC(35,13)-2. It is partially captured by Graph 8.

Graph 8: Thirty Five Muffins, Thirteen Students, SC(35,13)-2

This graph has no clusters.
We use Conjecture 8.4 and give all the major students equal amounts on all of their edges. Since

each major student has degree 2 and must get 129
143 all of those edges get weight 129

143 ×
1
2 = 129

286 . The
minor students need 5

11 and are of degree 1 so the edge to each one must be 5
11 . This completes

the solution, though we need to check that the muffins worked out (the first triple in SC(35,13)-2).
For the solution see Graph 9.

We need to check that the first part of SC(35,13)-2 works: (1, 4713 , 8). There are 2 edges going
into the muffin node of weight 5

11 and 6 of weight 129
286 . Hence the total weight going into the muffin

is

2× 5

11
+ 6× 129

286
=

47

13
.

Do not be surprised at this. The way we set it up it had to be that way.

8.2.2 Using the Solution to SC(35,13)-2 to Solve SC(35,13)-1

We use the solution to SC(35,13)-2 as expressed in Graph 9 to solve SC(35,13)-1. Actually, this is
quite easy, since when we went from SC(35,13)-1 to SC(35,13)-2, we had already assigned weights

5
11

5
11

129
286

129
286

129
286

129
286

129
286

129
286

Graph 9: Thirty Five Muffins, Thirteen Students, Solution to SC(35,13)-2

to edges and then removed them. Now all we need to do is put them back. Graph 10 shows a
solution to SC(35,13)-1.

5
11

129
286 129

286

129
286

5
11

64
143

64
143

64
143

64
143

64
143

64
143

Graph 10: Thirty Five Muffins, Thirteen Students, Solution to SC(35,13)-1

8.2.3 Using the Solution of SC(35,13)-1 to Solve SC(35,13)-0

We explain how to take a solution to SC(35,13)-1 and use it to obtain a solution to SC(35,13)-0.
This will be a case where clusters become vertices and some thought is needed to convert the
solution. We will be asking you to flip back and fourth between (1) the problem SC(35,13)-0 which
is Graph 6, (2) the solution to SC(35,13)-1, which is Graph 10, and (3) the solution to SC(35,13)–,
which is Graph 11.

The left bottom student-vertex in Graph 10 corresponds to the left bottom cluster of Graph 6.
The 11 edges coming out of the left bottom student-vertex in Graph 10 correspond to the 11 2-
paths (student-muffin-student) coming out of the left bottom cluster of Graph 6. We think of the
students in the left bottom cluster as giving away 64

143 and keeping 1 − 64
143 . Hence we get part of

Graph 11.

Look at the left most student-vertex in the cluster (the same will hold for the right most) who we
call Alice. Alice keeps for herself 4× 79

143 = 316
143 and needs (which will come from the internal muffin)

35
13 −

316
143 = 69

143 . Hence the muffin between left and middle is split 69
143 for left and 1− 69

143 = 74
143 for

middle.
The same happens for the right most student in the cluster. So now the left and right both

have weighted degree 35
13 . What about the middle? He has

3× 79

143
+ 2× 74

143
=

35

13
.

This should not surprise you. We set it up this way.
The rest of the edges are mostly forced. Look at the 5 student-vertices on the third level from

the bottom in Graph 11 (don’t look at the edge from those nodes going up). Look at the left
most student vertex. We already know that the 5 edges coming into it from the bottom contribute
5× 64

143 = 320
143 . Since the node needs weighted degree 35

13 , the edge coming out of it going upwards
must have weight

35

13
− 320

143
=

5

11
.

This edge of weight 5
11 goes into a muffin-vertex. Since this muffin vertex has weighted degree

the other edge coming out of it has weight

1− 5

11
=

6

11
.

In a similar manner we can find the weights of all of the edges. It will all work out. See Graph 11
for the full solution.

6
11

5
11

157
286

129
286

157
286

129
286

157
286

129
286

157
286

129
286

157
286

129
286

157
286

129
286

6
11

5
11

1
2

1
2

69
143 74

143 74
143 69

143
69
143

74
143

74
143

69
143

79
143

64
143

Graph 11: Thirty Five Muffins, Thirteen Students, Solution to SC(35,13)-0

8.3 Reflections on What We Have Done

We have demonstrated a way to, given Scott-Muffin A, find a smaller Scott-Muffin problem B, such
that a solution to B gives a solution to A. We do not know that an optimal solution to B gives an
optimal solution to A but we believe this to be true. This has held for every single case we have
tried. It will be one of our conjectures.

For the Problem of finding a (35,13)-procedure we did the following:
Recast it as finding a solution to SC(35,13)-0:

scott

[
(35, 1, 2) ,

(
5,

35

13
, 6

)
,

(
8,

35

13
, 5

)]
.

Reduced SC(35,13)-0 to SC(35,13)-1:

scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
Reduced SC(35,13)-1 to SC(35,13)-2:

scott

[(
1,

47

13
, 8

)
,

(
3,

129

143
, 2

)
,

(
2,

5

11
, 1

)]
.

This last problem, SC(35,13)-2, is easy (if it wasn’t we would have found a SC(35,13)-3). We
got the optimal solution to SC(35,13)-2 and used it to get a solution to SC(35,13)-1. We took
this solution to SC(35,13)-1 and used it to get a solution to SC(35,13)-0, our original problem. By
conjecture we have the optimal solution for SC(35,13)-0.

Carrying out the reduction of Scott problems to smaller scott problems is very fast. Using a
solution for Scott problem B to get a solution for Scott problem A is also very fast. Note that the
reduction in size is often large as well so there are not that many iterations.

9 Open Problems

We restate our conjectures and add one more.

Conjecture 9.1 For all m, s, k, f(km, ks) = f(m, s). We REALLY believe this one as does
EVERYONE who has ever tasted muffin mathematics. Seems hard to prove.

Conjecture 9.2 Let m ≥ s. Let V =
⌈
2m
s

⌉
. Assume f(m, s) < FC(m, s). There is an optimal

(m, s)-procedure in which everyone is either a V -student or a (V − 1)-student. We strongly believe
that this is true, but at an earlier time we thought it was true without the condition f(m, s) <
FC(m, s), so we could get fooled again. (See Note 3.3.)

Conjecture 9.3 Let m ≥ s. Let a, b ∈ N. Let d = gcd(s, b). If f(m, s) ≥ a
b then there is an

(m, s)-procedure where all of the shares are multiples of 1
d . We really believe this one. Seems hard

to prove.

Conjecture 9.4 The algorithm in Section 7 always produces f(m, s). As discussed in Section 7
we don’t really believe this one.

We strongly believe that Scott’s algorithm (1) always outputs the correct answer and (2) is fast,
both in practice (recall that it computed a lower bound on f(m, s) for all m, s with m+s ≤ 100, 000
in a few minutes) and in theory (polynomial in m, s).

Normally in problems with numbers as inputs (like factoring) we think of the input n as being
of length lg n. So we should be asking if there is an algorithm for f(m, s) that runs in time poly
in lgm, lg s. If we want to actually output the (m, s)-procedure then this is impossible since a
procedure itself takes roughly O(m+ s) to describe.

There is a way to modify Scott’s algorithm so that it only outputs the lower bound on f(m, s)
and not the (m, s)-procedure. It is plausible that this runs in time polynomial in lg s, lgm. However,
while we think it is fast, we do not think it is that fast in the worst case. In the average case (this
would need to be defined carefully) we think it is polynomial in lg s, lgm. We summarize:

Conjecture 9.5

1. Scott’s algorithm outputs an optimal (m, s)-procedure and does so in time poly in m, s.

2. Modified-Scott computes f(m, s) in time polynomial in lgm, lg s, on average (this needs to be
defined rigorously).

Conjecture 9.5 implies Conjectures 9.1, 9.2, and 9.3.

10 Acknowledgments

We thank Nathan Grammel for all the pictures and graphs. In particular, the graphs in Section 8
greatly improved the exposition. We would also like to thank Doug Chen and Lane Hemaspaandra
for extensive proofreading and discussion, which also greatly improved the exposition. And of
course we thank Lane Hemaspaandra for allowing us to present our work in his column.

