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INFORMATION AND COMPUTATION 77, 37-56 (1988)

1 of this
feas for Polynomial Terse Sets
 presen-
;hi;g‘: AMIHOOD AMIR* AND WILLIAM I. GASARCH
ixemNtSh}? Department of Computer Science, and
55 and *Institute for Advanced Computer Studies,
Defense University of Maryland, College Park, Maryland 20742
168.
Let A be a set and k€ N be such that we wish to know the answers to x, € A7,
x,€ A%, .., x,€ A? for various k-tuples (X, x3, . x, ). If this problem requires k
queries to A in order to be solved in polynomial time then A is called polynomial
terse or pterse. We show the existence of both arbitrarily complex pterse and non-
pterse sets; and that P # NP iff every NP-complete set is pterse. We also show con-
} nections with p-immunity, p-selective, p-generic sets, and the boolean hierarchy. In
lity and : our framework unique satisfiability (and a variation of it called kSAT is, in some
22 (2), sense, “close” to satisfiability. € 1988 Academic Press. Inc.
eaching
e Third
ins.” ‘ 1. INTRODUCTION
1 1986),
- omput. NP-complete problems are considered hard or “intractable.” However,
sresence problems appearing in the real world cannot be chosen because of their
! : H [T (i)
kium on ease, and practical concerns may necessitate solving “intractable” problem.
We consider a partial solution by “bounded query optimization.” The
tolerant , idea is the following: Assume S is a hard but useful problem for which we
rposiumm : wish to solve many instances. Further assume it is not a real time problem,
L a dis- 50 a solution is not needed immediately. If S is such that when presented

with k instances, there is one new instance whose solution gives enough
information to (quickly) solve the k instances, then a good strategy would
z clocks be to batch k queries, and solve the one that helps yield the other solutions.
Note that there are many optimistic assumptions in this scenario, and

S M. . .
the following questions need to be answered:
system, « Do such “hard” sets, that give many answers for the “price” of one,
scuracy, exist?
i11ACM « If they do, are they natural? Can we classify them?
tributed Roughly speaking, if membership in a set does not allow “quick”
S decisions about other members, we call the set polynomial terse. We show
':f’“]’),"’ that there are arbitrarily complex polynomial terse sets, and that there are
18- . . . . .
arbitrarily complex sets that are not polynomial terse. The big challenge 1s
to find out which sets are polynomial terse and which sets are not.
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38 AMIR AND GASARCH

Bounded queries can also be used to classify the complexity of functions.
Krentel [19] and Gasarch [11] have classified many functions as being
complete in certain bounded query classes. For example, (1) Krentel has
shown that the traveling salesman function (which returns the cost of
the minimum tour) is complete for the set of all functions that can be
computed with a polynomial number of queries to a SAT oracle, and
{2) Gasarch has shown that the minimum automata function (on input two
finite sets S and 7 return the size of the minimal deterministic finite
automata that accepts S and rejects T) is complete for the set of functions
that can be computed with a logarithmic number of queries to a SAT
oracle. Other problems remain to be classified.

Extensive work about terseness in the recursion-theoretic context has
been done by Beigel, Gasarch, Gill, Hay, and Owings [6, 7, 5]. Most of
the proofs and techniques used in these papers do not translate directly
into a polynomial framework; and some of the theorems that hold in a
recursion-theoretic framework do not hold in ours.

In Section 2 we define the notion of pterseness; informally, a set is pterse
if k questions must be asked in order to obtain k answers. In Sec-
tions 3,4, 5, and 8 we relate the notion of pterseness to complexity, bi-
immunity, p-genericity, NP-completeness, p-selectivity, and polynomial
reals. In Section 6 we look at kSAT (the set of formulas that have exactly k
satisfying assignments) in our framework and prove that “not too far” from
being NP. In Section7 we compare some of the complexity classes we
define with the Boolean )hierarchy of Cai and Hemachandra [10].

2. DEFINITIONS, NOTATION, AND CONVENTIONS
We are interested in classifying sets and functions that can be computed
with a bounded number of queries to an oracle. In particular we are
concerned with the function that computes membership in some set 4 of
each element in a given k-tuple. Formally:
DEerINITION.  If A4 is any set and ke N then
F//:(xl’ oty xk) = (XA(XI )’ ey XA(xk)>

(where y , is the characteristic function for A).

Some notation, definitions, and conventions follow:

DeriNtTION.  If g is a function and ke N then Q(k, g) is the class of sets
that can be decided by a polynomial oracle Turing machine with function

POLYNOMIAL

oracle g that makes at most k& queries

Q(k, A).

The class Q(k, A) is related to tr
Be Q(k, A) then B< 5 _,_,A. The v
we deal with functions in general, and
sets and with how the different types

DeriniTION.  If g is a function anc
functions that can be computed by ¢
with function oracle g, that makes a
denote this class FQ(k, A).

CONVENTION. Let k be any nature
NP-complete then Q(k, 4) and Q(k, .
sets Q(k, NPC). Also note that in tern
the functions F{ and F? are equally |
FXPC in the following way: Whateve
where A4 is any NP-complete set.

We are interested in finding out wh
to A. In recursion theory (no time b
[6]. In a polynomial framework we

DEFINITION. Let i>2. A set 4 is
polynomial time by an M“ machine
every input. A set is pterse if it is i-pt

All machines mentioned are assurr
oracle machine where the oracle has n
phrase “run M")(x) along every possi
a query arises, and then run the mact
the answer is YES, and the path taker
we know that M~ asks at most i qu
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POLYNOMIAL TERSE SETS 39

oracle g that makes at most k queries. If g =y, then we denote this class

Ok, A).

The class Q(k, 4) is related to truth-table reductions [21] in that if
BeQ(k, A) then B< 5 _,,_,, A. The work in [21] differs from ours in that
we deal with functions in general, and F{ in particular, while they deal with
sets and with how the different types of reducibilities relate.

DerINITION.  If g is a function and k=1 then FQ(k, g) is the class of
functions that can be computed by a polynomial oracle Turing machine
with function oracle g, that makes at most k queries. If g=y, then we
denote this class FQ(k, A).

CONVENTION. Let k be any natural number. Note that if 4 and B are
NP-complete then Q(k, A) and Q(k, B) are identical. We call this class of
sets Q(k, NPC). Also note that in terms of queries to any NP-complete set,
the functions F{ and Ff are equally hard to compute. We use the symbol
FYPC in the following way: Whatever is said of F)NPC will be true of F{
where 4 is any NP-complete set.

We are interested in finding out when the function F{ requires k queries
to A. In recursion theory (no time bounds) this notion is called terseness
[6]. In a polynomial framework we call it pterseness.

DEFINITION.  Let i=2. A set A is i-pterse if F;' cannot be computed in
polynomial time by an M machine that makes fewer than i queries on
every input. A set is pterse if it is i-pterse for all i.

All machines mentioned are assumed to work in polynomial time. An
oracle machine where the oracle has not been specified is denoted M. The
phrase “run M‘)(x) along every possible path” means to run M on x until
a query arises, and then run the machine on both paths—the path taken if
the answer is YES, and the path taken if the answer is NO. If 4 is a set and
we know that M asks at most i questions (i an constant) on any input
then we do not necessarily know that every path asks only i questions.
However, when we run M‘' we can ignore all paths that ask more than i
questions. In this manner note that running all paths takes polynomial
time.

We will use the notion of polynomial closeness [24, 30].

DEFINITION. A set 4 is p-close if there exists a set Be P such that
(A—B)u (B— A) is sparse.
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40 AMIR AND GASARCH

3. NON-PTERSE SETS

In recursion theory one can show [6] that 2™ queries to A cannot be
answered by m queries to A4, for any nonrecursive 4. Here we show that if
Fi.€ FQ(m, A) then any number of queries to 4 can be answered by m
queries to A. This does not lead 'to a contradiction, and in fact we show
that there are arbitrarily compiex sets A such that, for all &k, Fi!e FQ(1, A).

THEOREM 1. Let B be a set, and m be a natural number. If
F5.€ FQ(m, B), then for every natural number k, Ff e FQ(m, B).

Proof. We prove this theorem by induction on k. If kK <2™ then it is
given. Assume that FPe FQ(m, B) via machine M to show that
FE_ e FQ(m, B).

Let <oty . 0y, € (Z*)*T'. We determine FZ, (xy, ..., o, ) with only
m queries to B. Simulate M(a,, .., 2,) without oracle calls, for all
possibilities. Since M queries B at most m times, and after each reply
follows one of two paths, there are no more than 2” — 1 queries that can be
asked of B. This set of queries can be found in polynomial time.

Let the set of queries be {f,,.., fm_}. By the hypothesis of the
theorem the value of F2.(f,, .., fan_ 1, %, ) can be deduced in m queries
to B. The first 2” — 1 elements of this tuple can be used to simulate the
Mo, .., o) calculations to yield FZ(«x,, .., 2;), and the last element is
%8(% 4 1). This is all the information needed to compute FE(oty, oy dp i)

We exhibit arbitrary complex sets A that are not 2-pterse. By the above
theorem, for any k, Ffe FQ(l, A). The sets we use are super sparse;
Ambos-Spies [1] used super sparse sets in a similar way in studying the
relation between polynomial truth-table degrees and polynomial m-1
degrees.

THEOREM 2. For any time constructible function T’ there exists a set
A ¢ DTIME(T (n)) that is not 2-pterse (i.e., F3 € FQ(1, A)).

Proof. Let T be a time constructible function such that T(x)>= T"(x),
and T(x)> x. Let g be the function

g(0)=0
g(n+1)=T(g(n)).
Let A’ be the set

A'={x]3,x=08"},

Membership in A’ is decidable in polynomial time. By a modification of the

POLYNOMIAL 1

time hierarchy theorem [14] there exist:
DTIME(T(n)?) but not in time DTIMI
function in DTIME(T(n)log T(n)) that
this is not important for our purposes.)
see that 4 ¢ DTIME(T(n)). We show t
both x and y are in A’ (else memberst
then the length of x is small compared
determined easily since A4 is in DTIM
following algorithm:

ALGORITHM (To determine F

(1) Input(x, y).

(2) If x= y then query x e A4, output

(3) Determine if xe 4" and if ye 4". 1

(4) If e=f =0 then output (0, 0) and
x€ A, output (y,(x),0), and halt
(0, x.4(¥)), and halt.

(5) If both xe A" and ye A’ then,
x<y. (From step2 we know th
DTIME(T(n)?) algorithm for A

(xa(x), x4(¥))

The algorithm obviously computes F
operates in polynomial time. The only |
when we run the DTIME(T?(n)) algori
there exists a k such |y| = g(k)=T%*
Therefore the part of the algorithm in

(T(1x1))* < (T(g(k —1)))* = (T(

which is polynomial in the length of th

Note. If A is as constructed in t
polynomial set then 4 U B, A — B, and
obtain the answers to 2 queries for 1 (:
All these sets are p-close.

ConvENTION. The phrase “the sets
refer to all sets of the form AU B, A
constructed in Theorem 2 and B is any

COROLLARY 3. For any time constr
A ¢ DTIME(T(n)) such that for all k, 1
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time hierarchy theorem [14] there exists a function f: 4’ — {0, 1} that is in
DTIME(T(n)?) but not in time DTIME(T(n)). (One can actually obtain a

Prlot be function in DTIME(T(n) log T(n)) that is not in DTIME(T(#n)), although
i that if this is not important for our purposes.) Let A = {x| f(x)=1}. It is easy to
i by m see that 4 ¢ DTIME(T(n)). We show that A is not 2-pterse. Intuitively, if
e show both x and y are in A’ (clse membership in 4 is trivially NO) and x< y
21, A). then the length of x is small compared to the length of y that y ,(x) can be
f determined easily since 4 is in DTIME (7(n)?). Formally, we have the
ber. If following algorithm:

ALGORITHM (To determine Fi(x, y) with one query to A)

en it is
v that (1) Input(x, y).
‘ (2) If x=y then query xe 4, output (y(x), x4(x)), and halt.
th only (3) Determine if xe A" and if ye A". Let y,(x)=e, 3 (y)=f
for alll (4) If e=f=0 then output (0,0) and halt. If e=1 and f =0 then query B
1 reply x€ A, output (y,(x),0), and halt. If e=0 then query ye A4, output ;
can be &
! (0, x.4(¥)), and halt.
%of the (5) If both xeA" and ye A’ then, without loss of generality, assume
iqueries x<y. (From step2 we know that x# y.) Query ye 4. Using the
.‘[fate the DTIME(T(n)?) algorithm for 4 on x, determine if xe A. Output
“nent 1s (XA(X)’ XA(.V))
Fie) The algorithm obviously computes F4(x, y). We need only check that it
 above operates in polynomial time. The only part for which this is not obvious is
sparse; when we run the DTIME(T?(n)) algorithm on x. If we get to step five then
ing the there exists a k such |y|=g(k)=T"(0) and |x| < g(k—1)=T*"1(0).
al m-1 Therefore the part of the algorithm in question takes time
(T(1x1))* <(T(gtk —1)))* = (T(T*~"(0)))* = (T®)? = | y|?,
s a e which is polynomial in the length of the original input. |
s T (x) Note. If A4 is as constructed in the above theorem, and B is any

polynomial set then 4 U B, A — B, and B — 4 ae also set for which you can
obtain the answers to 2 queries for 1 (and by Theorem 1, k queries for 1).
All these sets are p-close.

CoNVENTION. The phrase “the sets 4 constructed in Theorem 2" will
refer to all sets of the form A UB, 4— B, and B— A4 where 4 is a set
constructed in Theorem 2 and B is any set in P.

COROLLARY 3. For any time constructible function T there exists a set
a of the A¢ DTIME(T(n)) such that for all k, Fle FQ(1, A).
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42 AMIR AND GASARCH

Proof. If A is the A in Theorem 2 then by Theorem 1, for all k,
FleFQ(1,4). 1

4. 2-PTERSE AND k-PTERSE SETS

In Section 3 we showed that there are sets A that are arbitrarily complex,
yet quite far from being pterse. Hence there is no obious connection
between complexity and pterseness. The sets A are p-close, so perhaps there
is a connection between p-closeness and non-pterseness. We conjecture the
following:

Conjecture. 1f A is such that F'e FQ(1, A) then A4 is p-close. As a first
step towards this conjecture we show that every polynomial bi-immune set
is 2-pterse. (Beigel [4] was the first person to show this, although we
exhibit a simpler proof) Geske, Huynh, and Selman [127] have shown that
there exist arbitrarily hard polynomial bi-immune sets (they actually prove
a much stronger result), which when combined with our resuls shows that
there exist arbitrarily hard sets which are 2-pterse.

DEFINITION. A set A4 is polynomial immune if it contains no infinite
polynomial subset. A set A is polynomial bi-immune if both A and 4 are
polynomial immune. If 4 is a tally set, a subset of 1*, then by 4 we mean
1*— A.

We show that tally \sets that are polynomial bi-immune are 2-pterse.
From this it will easily follow that all polynomial bi-immune sets are
2-pterse.

THEOREM 4. If A is a tally set that is polynomial bi-immune then A is
2-pterse.

Proof. Let A be a-tally set that is polynomial bi-immune, and assume
F#e FQ(1, A). Thus there is a polynomial oracle Turing machine M* that
computes F(x, y), using only one query to A. If we simulate M* then we
can, at the A-query, follow both paths. Both paths finish in time
polynomial in |x| and |y|, and at least one path outputs a correct reply to
F{; the other path may output an incorrect answer.

There are three cases.

Case 1. There are an infinite number of £ such that the two paths of
MO(1%, 17 ") agree on the first component. We show that either 4 or 4
has a polynomial subset. Assume that for infinitely many k the two paths of
MO(1% 1*=") both outputl in the first component. The following
polynomial time algorithm recognizes an infinite subset of 4: On input 1%

POLYNOMIAL

run both paths of MO(1% 1% 1y: if
component then output 1, else output
both paths of M (1%, 1* ') output 0 t
of these two subcases must occur.

Case 2. There are an infinite numl
MO(1%, 15~ ') agree on the second ¢
polynomial subset of either 4 or 4 by

Case 3. There are only a finite nu
agree on either the first or the second

X = {1¥|the two paths of MV (1%,
component }
v {1¥| the two paths of MO(1*,
component} U {1}.

By assumption X is a finite set. We
hardwired into it y ,(x) for every xe X

ALGORITE

(1) Input(1%)

(2) If 1¥e X then determine if 1€ X
answer that is stored, and halt.

(3) Run both paths of MO(1%, 1¥-1
both slots. Hence we can assum
1—5,0) for some be{0,1}. V
XA(lle)z 1.

(4) Recursively call the algorithm on
with the information obtaine in

15,
It is easy to see that this algorithm rus
In the proof we never use the fact the
Hence we actually show

THEOREM 5. If A is a polynomial |
then Fi ¢ FQ(1, B).

COROLLARY 6. If A is polynomi
Moreover, if B is any set, then F§ ¢ FC

Proof. 1f A is not 2-pterse then F;
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run both paths of MU(1% 1%~ "); if they both output 1 on the first
component then output 1, else output 0. A similar argument yields that if
both paths of M"'(1*, 1*~!) output 0 then 4 has a polynomial subset. One
of these two subcases must occur.

Case 2. There are an infinite number of k& such that the two paths of
MO(1%, 15~ ") agree on the second component. This yields an infinite
polynomial subset of either 4 or A4 by reasoning similar to that in Case 1.

Case 3. There are only-a finite number of k such that MO(1% 1% 1)
agree on either the first or the second component. We show A e P. Let

X = {1%|the two paths of M(1*, 1* ') agree on the first
component }
U {1¥| the two paths of M)(1%, 1¥~ ') agree on the second
component } U {1}.

By assumption X is a finite set. We can assume that the algorithm has
hardwired into it y ,(x) for every xe X.

ALGORITHM for A4
(1) Input(1*)
(2) If 1* € X then determine if 1* € X by table lookup. Output the correct
answer that is stored, and halt. )

(3) Run both paths of M"(1% 1¥~'). Since 1¥¢ X the answers differ in
both slots. Hence we can assume that the answers are (b, 1) and
1—5,0) for some be{0,1}. We now know that y,(1¥)=b iff
XA(lkfl):L

(4) Recursively call the algorithm on input(1* ~'). This answer, together
with the information obtaine in step 3, yields the correct value for

1a(15).
It is easy to see that this algorithm runs in polynomial time. ||
In the proof we never use the fact that the oracle being queried is A itseif.

Hence we actually show

THEOREM 5. If A is a polynomial bi-immune tally set and B is any set
then F3 ¢ FQ(1, B).

COROLLARY 6. If A is polynomial bi-immune then A is 2-pterse.
Moreover, if B is any set, then F3¢ FQ(1, B).

Proof. If A is not 2-pterse then Fi e FQ(1, A); hence both F5#~'" and

i
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44 AMIR AND GASARCH

F{~'" are in FQ(1, A). At least one of A n1* and 4~ 1* is polynomial
bi-immune (within 1*), which contradicts the above corollary. |

Beigel has shown that there are polynomial bi-immune sets A for which
F{eFQ(2, A), and hence (by Theorem 1) that F4,e FQ(n, A) for any n>2.
Therefore we cannot replace 2-pterse with any other pterseness-type
condition. '

We use the above corollary to exhibit a variety of different types of
2-pterse sets. We need the following proposition of Geske, Huynh, and
Selman [12].

PROPOSITION 7. If T, and T, are any time constructible functions such
that lim, , . T\(n)log T (n)/T,(n)=0 then there exists a language that is in
DTIME(T,(n)) that is DTIME(T (n))-bi-immune.

This proposition yields polynomial bi-immune sets of subexponential,
and arbitrarily high complexities. Hence, combining the proposition with
Corollary 6 yields the following three corollaries.

COROLLARY 8. There are 2-pterse sets that are subexponential.
COROLLARY 9. There exists a 2-pterse set A€ EXPTIME — P.

COROLLARY 10. There exist arbitrarily complex 2-pterse sets.

In a recursion-theorstic setting all 1-generic sets (see [16]) are terse [6].
Ambos-Spies, Fleischhack, and Huwig have defined a notion of p-generic
[2] set that is similar. The definition is somewhat complicated so we omit
it, but one easy consequence of the definition is that p-generic sets are
polynomially bi-immune. Thus we have the following corollary.

COROLLARY 11. If A is p-generic then A is 2-pterse.

In [3] we prove, using methods of p-genericity, that strongly p-generic
sets are k-pterse for all k.

The sets 4 in Theorem 2 are constructed by diagonalization, which raises
the possibility of a connection between “naturalness” and pterseness.
We prove a theorem along these lines by showing that (if P # NP) every
NP-complete set is 2-pterse.

THEOREM 12, [f P# NP then for all k>0, FXFC¢ FQ(k, NPC). (In
particular P # NP iff every NP-complete set is 2-pterse.)

Proof. Assume that 4 is an NP-complete set for which F& e FQ(k, A).
By Theorem 1 for all m, FieFQ(k, A). If feFQ(k+1, A) then by

POLYNOMIAL

simulating the computation of f(x) th
that may arise we see that fe FQ(1, F
we have FQ(k+1, A). Since A is NF
and FQ(k+1,A)=FQ(k+1,SAT); t
Krentel [19] showed that if P#N
FQ(k + 1, SAT). Hence if P # NP then
all k, F5 ¢ FQ(k, NPC). |

There is not much known about -
exist and can show this three different

THEOREM 13.  Every nonrecursive T
that for all k, A is k-pterse.

Proof. In [6] it is shown that
contains a superterse set. This set will

The last theorem exhibited nonrecurs
recursive ones exist.

THEOREM 14. For all k, there exists

Proof. Following [21] we define B
(in polynomial time) that maps strin
variables, where each variable is of t
evaluates to true. They show how
DTIME(2")) set 4 such that {B|B<,
not k-pterse then F{<,_, _, A4 an
reducible to 4 is < _,,_, reducible t

The next theorem is proven in [3].

THEOREM 15. If A is strongly p-gen

5. PoLyNOMIAL S

If a set is not 2-pterse then it is, in
Even if the set is (as in Theorem 2)
complexity, there is something about it
sets. Polynomially selective sets have
explore similarities between these two
from [25] though it resembles Jockusc

A set A is polynomial selective (hen
polynomial time computable function
An{x, y} # then f(x, y)e 4.




polynomial

1
|
id for which
|

irany n>=2.
‘seness-type

§nt types of
}Iuynh, and

ictions such
e that is in

xponential,
sition with

terse [6].
f p-generic
0 we omit
'C sets are

p-generic

hich raises
hterseness.
NP) every

H
i

WPC). (In

!
{

FQ(k, A).
then by

POLYNOMIAL TERSE SETS 45

simulating the computation of f(x) through all 2*' — | possible queries
that may arise we see that fe FQ(1, Fi.i ). Since F.. e FQ(k, A), so
we have FQ(k+1, A). Since A is NP-complete, FQ(k, A)= FQ(k, SAT)
and FQ(k+1, A)=FQ(k + 1, SAT): thus FQ(k, SAT) = FQ(k + 1, SAT).
Krentel [19] showed that if P#NP then for all k, FQ(k, SAT)#
FQ(k+ 1, SAT). Hence if P % NP then for all NP-complete sets 4 and for
all k, Fic¢ FQ(k, NPC). |

There is not much known about k-pterse sets. We do know that they
exist and can show this three different ways.

THEOREM 13.  Every nonrecursive Turing degree contains a set A such
that for all k, A is k-pterse.

Proof. In [6] it is shown that every nonrecursive Turing degree
contains a superterse set. This set will also be k-pterse for every k.

The last theorem exhibited nonrecursive k-pterse sets. We now show that
recursive ones exist.

THEOREM 14.  For all k, there exists a recursive set A that is k-pterse.

Proof. Following [21] we define B<, _, A if there exists a function f
(in polynomial time) that maps strings to propositional formulas of k
variables, where each variable is of the form Xx,€B, and xe 4 iff f(x)
evaluates to true. They show how to construct a recursive (in fact

DTIME(2")) set A4 such that {BIB< 1) A} #{BIB<,_, A} 1f Ais
not k-pterse then F!<, , _,A and thus every set which is <, ,
reducible to 4 is <, , reducible to 4. That is a contradiction. |

The next theorem is proven in [3]

THEOREM 15. [f A is strongly p-generic then for all k, 4 is k-pterse.

5. POLYNOMIAL SELECTIVE SETS

If a set is not 2-pterse then it is, in some sense, computationally easy.
Even if the set is (as in Theorem 2) arbitrarily hard in terms of time
complexity, there is something about it that makes it easier than other such
sets. Polynomially selective sets have the same kind of property. We
explore similarities between these two notions. The following definition is
from [25] though it resembles Jockusch’s semicursive sets.

A set A4 is polynomial selective (henceforth p-selective) if there exists a
polynomial time computable function f such that S(x, y)e{x, y} and if
An{x, y}# & then f(x, y)e A.
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The properties of being non-2-pterse and being p-selective seem similar.
They both make the set easier computationally, in an indirect way. The sets
constructed in Theorem 2 are p-selective, thus yielding the following
theorem.

THEOREM 16. For any time constructible function T there exists a set
A ¢ DTIME(T(n)) such that A is p-selective.

Proof. Let A and A’ be as in Theorem 2. The set 4 is in DTIME(T(n)?)
but not in DTIME(T(n)). We show that it is p-selective.

; ALGORITHM
) Input(x, y).
) If x=y then output x and halt.
3) If x¢ A’ then output y and halt.
4) 1If y¢ A’ then output x and halt.

(5) (both x, ye A" and x# y) Assume x < y. For the DTIME(T(n)?)
algorithm for A4 on x, determine if x € 4; output x if it is, y otherwise.

(1
(2
(
(

For reasons analogous to those in the proof of Theorem 2, the algorithm
runs in polynomial time.

These selective sets appear contrived and (as in the case of non-2-pterse
sets) make us ponder if such sets are unnatural. Grollman and Selman
[13] hae shown a theorem analogous to our Theorem 12 along these lines.

THEOREM 17. If P # NP then SAT (and any other NP-complete set) is
not p-selective.

The two above theorems indicate that p-selective sets and non-2-pterse
sets have a similar flavor. It would be of interest to push the analogy
further and prove (say) that every polynomial bi-immune set is not p-selec-
tive. As of now this is an open question. We have shown, in [3], that
p-selectiveness and non-2-pterseness are not equivalent.

6. kSAT AND BOUNDED QUERIES TO SAT

kSAT is the set of all Boolean formulas that have exactly k satisfying
assignments. This set is not known to be in NP, although it is easily seen to
be in P*T. We use bounded query classes to clarify the complexity of
kSAT. We show that it is “closer” to NP then to P3AT in terms of the num-
ber of questions needed. In particular, we show that kSAT e Q(1, F$AT)
and SAT € Q(1, kSAT). As a corollary we obtain that £SAT is co-NP-hard.

POLYNOMIAL T

Valiant and Vazirani [27] have studi
exactly one satisfying assignment) and
D, (differences of NP sets) using r
Gurevich [8] show that there are or:
(properly defined) is complete for D%, a
(using deterministic reductions). They
USAT there) is co-NP-hard. Our pro
theirs.

CoNVENTION. If « is a Boolean for
TRUE iff e B, and NOT B(a) means |

The following two theorems were obt

THEOREM 18. kSAT e Q(1, F3AT).

Proof. For a any constant, let B, be
or more satisfying assignments. Since
formula in B, can be determined by on

The following algorithm solves kSAT

ALGORT

) Input(a) (a Boolean formula).
(2) Using FSAT find out B,(«) and B,
) If B.(a) is TRUE and B, ., is FA
NO. |

Note. Alternatively, one can obtain
theorem (due to [18] and also to [4]):
is in D, it is in Q(1, F53AT).

The next two results appear, for the
modifications of theirs.

THEOREM 19. SAT e Q(1, kSAT).

Proof. The following algorithm so
kSAT.

ALGORI

(1) Input(a(xy, .., x,)) (a Boolean for

(2) If 2"<k then try all 2" possit
appropriate value, and halt.
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gm similar. { Valiant and Vazirani [27] have studied USAT (the set of formulas with
Y. The sets ! exactly one satisfying assignment) and have shown that it is complete for
| following D, (differences of NP sets) using randomized reductions. Blass and

, Gurevich [8] show that there are oracles 4 and B such that USATA
: ; (properly defined) is complete for D4, and USAT? is not complete for D
Xists a set ‘ (using deterministic reductions). They also obtain that 1-SAT (called
: USAT there) is co-NP-hard. Our proof is essentially a modification of

CoNVENTION. If o is a Boolean formula and B is a set then B(a) 1s
TRUE iff ae B, and NOT B(«) means that o ¢ B.

The following two theorems were obtained in collaboration with Beigel.

:k THEOREM 18. kSAT e Q(1, F3AT),

Proof. For a any constant, let B, be the set of all formulas that have a
or more satisfying” assignments. Since B, is in NP the membership of a
formula in B, can be determined by one query to SAT.

The following algorithm solves kSAT and makes one call to F3AT,

ALGORITHM

;-2S-plterse (1) Input(a) (a Boolean formula).
mes:ﬁ:: (2) Using F$*T find out B,(a) and B, , (x).
(3) 1If Bi(«) is TRUE and B, ,, is FALSE then output YES, else output
ite set) is NO. |
Note. Alternatively, one can obtain this result by using the following
-2-pterse theorem (due to [18] and also to [4]): D, u D, < Q(1, F3$AT). Since kSAT
analogy is in D,, it is in Q(1, F$AT),
t p-selec- The next two results appear, for the k=1 case, in [8]. Our proofs are
31, that modifications of theirs.
THEOREM 19. SATe Q(1, kSAT).
Proof. The following algorithm solves SAT and makes one call to
kSAT.
atisfying
/ seen to ALGORITHM
lexity of
he num- (1) Input(x(x, .., x,)) (a Boolean formula)
11, F3AT) (2) If 2"<k then try all 2" possible truth assignments, output the
[P-hard. appropriate value, and halt.
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(3) Construct a formula p(x,,.. x,) that has exactly k satisfying
assignments (this is possible since k <2"). If one of those assignments
satisfies a then output(YES) and halt.

(4) If NOT kSAT(x v B) then output YES, else output NO.

The above algorithm works because:

(a) Ifais satisfiable then either (1) « is satisfied by one of the k truth
assignments that satisfy f in which case step 3 of the algorithm outputs
YES, or (2) there is an assignment that satisfies « but not B, hence (a v B)
has at least k + 1 satisfying assignments so NOT kSAT(x v f) is true, and
step 4 outputs YES.

(b) If o is not satisfiable then «v B has exactly k satisfying
assignment, NOT kSAT(a v B) is FALSE, so step 4 outputs NO. |

COROLLARY 20. kSAT is co-NP-hard.

Proof. 1f the above reduction is modified to output some y ¢ kSAT
instead of YES in step3 and « v f8 in step 4 then we have a polynomial
m-reduction of the complement of SAT to kSAT. |

7. RELATION TO THE DIFFERENCE HIERARCHY OF NP SETS

We compare bounded query classes to other classes that are “in the
vicinity of PSAT.” In particular, we show that the kth level of the Boolean
hierarchy (defined by Cai and Hemachandra [107) is contained in
Q(l'log(k + 1)1, NPC). The proof is essentially a binary search. We then
prove an analogous theorem in the setting where one can ask p questions
simultaneously, which uses a technique similar to ( p+ 1)-ary search, ie.,
binary search with p processors [20, 26].

Our definition of the Boolean hierarchy looks different from the original
one, but they are equivalent. See [9] for a proof of that.

DEfFINITION.  The Boolean hierarchy is the following sequence of classes
of sets:

D,.,={X|X=Y—Z YeNP,ZeD,).

If A isin D, then there exist NP sets L,, ..., L, such that

A=L—(Ly—(Ly— - (L, 2= (L,_ —L,))---))

POLYNOMIAL *

Note. The Boolean hierarchy has m
it is shown that the statement 4 € BH is

(1) A is a finite union of D, sets
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L,

!

Note. To determine if an element >
such that x ¢ L;, and then note that x

CONVENTION. D, is the class of all -
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Note. The Boolean hierarchy has many equivalent formulations. In [9]
it is shown that the statement 4 € BH is equivalent to each of the following:

(1) A4 is a finite union of D, sets,

(2) A is a finite intersection of co-D,-sets,
(3) A is in the Boolean closure of NP,
(4) A<,_,SAT for some k.

(5) Ly—(L,—(Ly— --- —(L,_>—(L,_;—L,))---)), where L, s
L.

i

Note. To determine if an element x is in A itsuffices to find the least i
such that x ¢ L,, and then note that xe A iff i is even.

CONVENTION. D, is the class of all sets whose complements are D, i.e.,

Papadimitriou and Yannakakis [23], and Papadimitriou and Wolfe
[22], have shown that many problems, including TSP facets, are D,-
complete. Cai and Hemachandra [ 10] (originally) defined the Boolean
hierarchy. They exhibit problems related to colorability that are complete
for each level of the hierarchy. They also discussed oracle results and which
levels have sparse sets. Wagner and Wechsung [28,29] have defined
similar notions.

In a recursion-theoretic setting there is a nice interleaving between the
O(i, K) classes (K is the halting set) and the difference hierarchy of r.e. sets
[7]. A similar interleaving holds in a complexity theory framework. This
section, together with results of Beigel, will establish the following diagram:

D, =Q(l,K)sD,= D, = Q(2, K)yeD,=D;=Dsc D,
€03, K)sDgc --. EDy 1 SQk K)YSDy<SDy,, < ---.

We are unable to obtain any proper containments. A theorem contingent
on P# NP may be possible.

TueoREM 21, D, u D, < Q(Tlog(k + 1)7, NPC).
Proof. Let k and m be such that 27~ '<k+1<2™ Let 4 be a D, set,
and let (L, .., L, > be NP sets such that
A=L1“(L2‘(L3— "'(Lk~2_(Lk—l_Lk))"'))'

By convention let L, = ¥ for k+ 1 <k'<2™ We present a Q(m, NPC)
algorithm that, given x, determines the least i such that x¢ L,, and hence
the question of membership of x in 4. The algorithm is essentially a binary
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search: each question to NPC cuts in half the interval where i can be found.
This is why there is a logarithm.

ALGORITHM

(1) Input(x).
(2) a<0,b« 2" (i will always be in [a+ 1, b]).
(3) Ask NPC

a+ (b—a)2

xe () L?

Jj=a+1

If YES then a < a+ (b—a)/2 else b« a+ (b—a)/2. (We will see later
that b —a is always even.)

4) If a+(b—a)2>a+1 (ie, if b—a>2) then go to step3. If
a+ (b—a)2=2 (ie., if b—a=2) then ask NPC, xe L, ,? If YES
then i—a+2 else i—a+ 1. (We will see later that b—a will even-
tually be 2.)

(5) Ifiis even then output(YES), else output(NO).

By induction one can show that after step3 is executed ¢ times,
b—a=2""4 and we know that the least i such that x ¢ L, is in the interval
[a+1,b]. After m steps we have b—a=2 and the algorithm terminates
with the correct answer. The number of queries is m which is
<[log(k+1)7. Hence D, < Q(k, NPC). Since Q(k, NPC) is closed under
complementation, D, < Q(k, NPC), so D, v D, < Q(k, NPC). 1

THEOREM 22. If A is in Q(k, NPC) then there exist D, sets By, ..., By
such that A=\)?", B,. This implies that Q(k, SAT)€ D1

Proof. Let M be a polynomial oracle Turing machine that recognizes
A and makes at most k queries to SAT. By convention, M) makes at most
k queries on any path that it takes. Let w, .., wyu be all 2* elements of
{0, 1}*. We will define, for every i (1<i<2), sets C,, and C, such that
C;, is NP, C,, is co-NP; and if xe A and the correct computation that
accepts x follows the query answers proided by w;, then x is in both C;
and C,.

For each x one can run M* using the jth bit of w, to answer the jth
query. In this manner we can easily determine what queries would be asked
and what the final answer would be if w; were used for the answers.

POLYNOMIAL -

Let

C, = {x| M"(x) using w, accepts .
v, w,[j1=1=>the jth query ¢

C,= {x| M"(x) uses w, then
¥, w,[j]1=0=the jth query

Checking membership in C,; is e
formulas are in SAT, hence, C,; is in
essentially seeing if k£ (a constant) forn
in co-NP.

If xe C,; n C;, then path w; is correc
the computation M54T(x) followed sor

2k 2k

4= U CynCp= U
i=1 i=

where B,=C; —Cy, a D, set.

In [9] it is shown that 4 e D, iff
sets in D,. Combining this with
QO(k, SAT) S Dyi+1.

For the sake of completeness we ir
mentioned in the last paragraph. If 4

A=L,—(L,—(L;— - = (L

where for each i, L, is an NP set and [
as AI(LI‘Lz)U(LB—L4)U et U(
desired form.

For the reverse direction we give ¢
idea. Let A=(L,—L,)u(L;—L,), W
as a set in D,. Let

Al = Ll U L2
A2 El L2 ) L4
As=(L,nLy)u (L
A,=(LinL3nLy)

A can be expressed as

A=(4,—(4,— 1

Note. Beigel [4] has improved
O(k, NPC)<= Q(1, Dk _ ) S D .
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Let . |

C; = {x| M"(x) using w, accepts and
V; w,[j]=1=>the jth query encountered has answer YES}

Cyn={x|M"(x) uses w, then
V; w;[j]1=0= the jth query encountered has answer NO}.

Checking membership in C, is essentially seeing if kX (a constant)
formulas are in SAT, hence, C,; is in NP. Checking membership in C, is
essentially seeing if k (a constant) formulas are NOT in SAT; hence, C,, is
in co-NP.
If xe C;; n Cy, then path w, is correct and accepts, so x € 4; if xe A then
the computation M5*T(x) followed some path w,, so xe C,, n C,,. Hence
r 2k 2k 2k ¢
AzUCilmCQ:UCil"éQ:UBi’ !

i=1 i=1 i=1

1f i
ES where B,=C,,— C,, a D, set. E
- In [9] it is shown that 4 e D,, iff A can be written as the union of k ‘
/ sets in D,. Combining this with what we have shown we obtain “
Q(k, SAT) < Dy 1.
For the sake of completeness we include a sketch of the result of [9] ’
mentioned in the last paragraph. If 4 € D,, then 4 can be written as ’
l A=L,—(Ly—(Ly— - —(Ly 2= (Lok—1— L)) --+)), .
: where for each /, L, is an NP set and L,, , < L,. The set A can be rewritten :
4 as A=(L, —L,)U(L;—Ly)u -+ U(Ly_;— Ly). This is clearly in the

desired form.

For the reverse direction we give an example that expresses the main
idea. Let A =(L, —L,)u (L;—L,), where each L, is in NP. We express 4
B as a set in D,. Let

A, =L, UL,
fs A2=L2UL4
st As=(L,nLy)U(L,nLy)

-

A4=(L10L3(\L4)U(L1 ULZUL}).

B B O
~ o~

A can be expressed as

Y

A=(A,— (4, — (45— A4))). 1

W
(==

Note. Beigel [4] has improved the above result by showing that
Q(k, NPC)= O(1, Dy _ ;) = D.
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We now look at what happens if we can ask p questions at a time. In
particular, we see how D, relates to Q(—, F4) where p is a fixed constant.
We use a technique similar to (p + 1)-ary search, i.e., binary search with p
processors [20, 26], in a manner similar to our use of binary search in
Theorem 20. The constant p is arbitrary but fixed.

We show that the classes Q(k, F ~PC) bear a relationship to the difference
hierarchy.

THEOREM 23. D, u D, < Q([log(k + 1)/log(p +1)7, FFC),

Proof. Let k and m be such that (p+1)""'<k+1<(p+1)™ Let 4
be a D, set, and let (L, .., L,) be NP sets such that

A=L —(Ly—(Ls— --- Ly 2= (Le_y—Ly))---))

By convention let L, =@ for k+1<k'<(p+1)". We present a
Q(m, FY?C) algorithm which, given x, determines the least i such that
x¢ L;, and hence the question of membership of x in 4. The algorithm is
essentially a (p + 1)-ary search; each question to F NPC reduces the length of
the interval in which i can be found by a factor of p + 1.

ALGORITHM
(1) Input(x).
(2) a«<0, b (p+1)" (i will always be in [a+1,5]).
(3) Ask F)PC simultaneously

a+(b—a)(p+1)

xe N Ly

Jj=a+1
a+2b—a)(p+1)

xe N Ly

J=a+1
a+3(b—a)(p+1)
xe N L?
Jj=a+1

a+pb—a)(p+1)
xe N L?
j=a+1

(We will see later that b —a is always divisible by p + 1.)
(4) Let k, be the largest k such that

a+ko(b—a)/(p+1)

X€ L,

Jj=a+1

POLYNOMIAL

Set

a<—a+

be—a+

(Note: the a and b on the right
and b.)

(5) Ifa+l<a+(b—a)/(p+1) (ie,
at+l=a+b—-a)(p+1) (e,
simultaneously xe L, ,, xeL,,
number in {a+1,a+2,..,a+p
that b —a will eventually be p -
happen.)

(6) If iis even then output(YES), els

By induction one can show that
b—a=(p+1)" ¢ and we know that
interval [a+1, b]

The rest of this proof is analogous t

THEOREM 24. If A is in Q(k, FNPC
such that A=\)%*, B,. This implies th

i=1

Proof. This is proven in a mann
except that the w, are sequences of eler
formulas on each path to be concernec
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The sets A constructed (in Theor
p-close. This leads us to believe that
question now arises, Are there some
some savings, though perhaps not quite
a savings on queries is possible for s
p-close.

The following theorem is based o1
presented in [15], put into a polynom
used in recursion-theoretic terseness by
[6]. We construct verbose sets that
cannot prove this.
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Set
a—a+ O(b‘a)
p+1
he gy Kot Db—a)
p+1 '

(Note: the a and b on the right hand side are the old values of a
and b.)

(5) Ifat+l<a+(b—a)(p+1) (ie., b—a>p+1) then go to step 3. If
atl=a+(b—a)(p+1) (e, b—a=p+1) then ask FPC
simultaneously xe L, |, xeL,,,, .., x€ L, ,. Setito be the least
number in {a+1,a+2, .., a+ p} such that x¢ L,. (We will see later
that b—a will eventually be p+ 1; hence no other possibility can
happen.)

(6) 1If i is even then output(YES), else output(NO).

By induction one can show that after step 3 is executed ¢ times,
b—a=(p+1)""9 and we know that the least / such that x¢ L, is in the
interval [a+ 1, b]

The rest of this proof is analogous to that for Theorem 20. I

THEOREM 24, UA is in Q(k, F)XPC) then there exist D, sets B, ..., B
such that A=\J2* 'B,. This implies that Q(k, FNPCYe Dy .

Proof. This is proven in a manner similar to that for Theorem 21,
except that the w, are sequences of elements from {0, 1}7, and there are pk
formulas on each path to be concerned with. ]

8. NONSPARSE VERBOSE SETS AND SUPERTERSE SETS

The sets A4 constructed (in Theorem 2) such that Ffe FQ(1, A) are
p-close. This leads us to believe that all such sets must be p-close. The
question now arises, Are there some non-p-close sets where you can get
some savings, though perhaps not quite as drastic as & for 1? We show that
a savings on queries is possible for some sets that do not appear to be
p-close.

The following theorem is based on ideas of McLauglin and Martin
presented in [15], put into a polynomial framework by Selman [25], and
used in recursion-theoretic terseness by Beigel, Gasarch, Gill, and Owings

[6]. We construct verbose sets that do not seem to be p-close but we
cannot prove this.
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THEOREM 25. If A is a tally set then there exists a nonsparse set B,
B =7 A, such that for all n, F5, € FQ(n, B).

Proof. Let a;=y 4(1°). Let a be the infinite string a,a,a,.... Let

B = {w]w is lexicographically less than a}.

It is easy to see that 4 =7/, B and that B is not sparse. Fa (X, ., Xon_y)
can be found by a binary search which determines the largest element that
is NOT in B; all larger elements are in B, all smaller ones are not. This
only needs n queries. ||

Note that the set B can be looked at as the left cut of a real [17], where
that real is in the same polynomial 1-1 degree as 4. The set B in the above
theorem does not appear to be p-close, but we are currently unable to
prove this.

9. OPEN PROBLEMS AND FURTHER WORK

We would like to know more about which sets are and are not pterse.
We informally conjecture that all sets 4 such that Ffe FQ(1, A) are
“unnatural.” Along these lines, in a forthcoming article [3] we show that
the hard cores of the non-2-pterse sets (informally) have large “gaps.”

The notions of 2-pterseness and p-separability seem linked. For NP-com-
plete sets the notions are similar: non-2-pterseness of 4 is equivalent to
Ax A and A x A being p-separable. However, in a forthcoming article [3]
we will show that these notions are not equivalent.

It is open if P# NP implies Q(k, SAT)# Q(k + 1, SAT). Krentel [19]
has shown that there exists an oracle 4 such that makes Q(1, SAT)" =
Q(2,SAT)? and P*#NP“ Since the proof of “P#NP implies
FQ(k, SAT) # FQ(k + 1, SAT)” relatives, the techniques used in that proof
will not suffice to show that P # NP implies Q(k, SAT) # Q(k + 1, SAT).

The class Q(1, F{!) appears to be weaker than Q(k, 4), but this seems
hard to prove. Obtaining various values of 4 that make these two classes
equal or unequal would be of interest.
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Methods for constructing binary exhaust
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ment that a code be anagrammatic and the -
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[. PRELIMI

If E is a set of symbols then let E', i =
bol strings of length i over E. The set of
often denoted E*. By an encoding over
ping of S into E*, and the mapping m
E* elements and the association wit
E={0, 1} an encoding of {s,, s, 53, ...,
110011}, where s, is represented by 1, .

Elements of W are called code words
are messages. A message from the exam
not uniquely deécipherable (ud), since f
decoded validly in more than one wa
“code” for the ud case.

If a string ee E* may be expressed
empty strings a, f, e =af, then o is a pr
well known if an encoding W has the pr
prefix of another word, the encoding is

A proper prefix of W is a non-null pi

A convenient representation of a pref
tree, which may be drawn as an orientec
code words are described by the sequ
recognized root to all terminal (degree
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