Selection Problems via m-ary Queries

Katia Guimaraes William Gasarch
University of Maryland University of Maryland

Jim Purtilo
University of Maryland

June 11, 1997

1 Introduction

It is easy to show that to find the maximum of n elements (from an infinite
totally ordered set) n — 1 comparisons are necessary and sufficient. More
generally, to find the k-th largest of n elements, n + (k — 1)logn 4+ (1)
comparisons are necessary and sufficient (originally due to [PY73], but see
[FGT79] for an elegant proof, and [Joh88] for more precise bounds).

Several natural questions arise: What 1s it about comparisons that is
being used? Can these upper and lower bounds be extended to other types
of queries? The lower bound cannot be extended to general boolean queries
since the maximum of n elements can be found with [log(n+1)] such queries.

The key turns out to be the arity of the queries.

DEFINITION. An m-ary boolean query is an arbitrary statement involv-
ing m elements from the input. The answer is YES if the given statement is
true, and NO otherwise. An m-ary sort query is a set of m elements. The

answer is those m elements in order. If « is a type of query (e.g. m-ary

boolean) then an « decision tree is a decision tree where every internal node
is labeled with a query of type «, and every possible answer to the query
corresponds to a child of the node.

Moran, Snir and Manber [MSMS85] studied m-ary decision trees. Al-
though they did not mention selection problems, the following theorem is

easily derivable from Theorem 3.5 in their paper.

Theorem 1 [f there exists a 2-ary boolean decision tree of height h that finds
the k-th largest of n elements, then there exists a comparison decision tree of
height h that finds the k-th largest of n elements.

Corollary 2 All known upper and lower bounds on the number of compar-

isons needed to solve a selection problem also hold for 2-ary boolean queries.

Stated more succinctly, arbitrary 2-ary boolean queries are no better than

comparions for selection problems. A generalization to m-ary queries, stated

below, also follows from [MSM85].

DEFINITION. A query Q(z1,...,%,)is order invariant if it can be written

as a boolean combination of predicates of the form z; < z; and z; = z;.

Theorem 3 If there exists an m-ary « decision tree of height h that finds the
k-th largest of n elements then there exists an m-ary order invariant decision
tree that finds the k-th largest of the n elements.

In this paper we derive upper and lower bounds for the problem of de-
termining the k-th largest of n elements using m-ary queries. By the above
theorem, we need only consider m-ary order invariant queries. We consider

boolean queries and sort queries.

NOTATION.

1. Vk[m](n) is the number of m-ary boolean queries necessary to select the

k-th largest element of an input set with n elements.

2. Vk(m)(n) is the number of m-ary sort queries necessary to select the k-th

largest element of an input set with n elements.

3. W,EW](n) is the number of m-ary boolean queries necessary to select the
k largest elements of an input set with n elements, and outputs them

in increasing order.

4. Wk(m)(n) is the number of m-ary sort queries necessary to select the k
largest elements of an input set with n elements, and output them in

increasing order.

In Section 2 we study upper and lower bounds on the number of m-ary
boolean queries necessary to select the k-th largest element of an input set.
For the case of finding the maximum with m = 3 and m = 4 we have
matching upper and lower bounds.

In Section 3 we derive exact bounds for Vl(S)(n) and VQ(B)(n), and provide
reasonable bounds for Vk(S)(n) and WéB)(n). Since some of the proofs are

somewhat detailed they are omitted; however they appear in [Guion].

2 Selection Problems Using Boolean Queries

In this Section we study boolean queries. Algorithms are represented by de-
cision trees where each node represents a boolean query. A left branch from
a node means that the answer to the query represented by that node is YES,

whereas a right branch means a NO answer.

We first give an upper bound on the number of m-ary boolean queries
necessary to select the k-th largest element of an input set. Then we present
precise bounds on finding the maximum element with 3-ary and 4-ary boolean
queries. For the case of 5-ary queries, we have a conjecture and some exper-
imental evidence to support it. Throughout Section 2, whenever we use the

term query we mean boolean query.

2.1 Upper Bounds

Lemma 4 Let k and m be any natural numbers such that k < m. The k-th

largest of m numbers can be found with [logm]| m-ary queries.

Proof: The question “Is the k-th largest element of {zq,...,2,} in the set
{z1,...,2p2}?” is an m-ary query that cuts the number of elements that
could be the maximum in half. Using this type of query and binary search,

the k-th largest element can be located in [log m| m-ary queries. X

Theorem 5

% + [logm] — 1 for m even
V[m](n) < % + [logm] —2 for m even and m divides 2n
' =) 225 + [logm] =1 for m odd.
mel + [logm] —2 for m odd and m divides 2n
Proof: Assume m is even. Partition the input (z1,...,z,) into blocks By, ...,

BL%J’ B[%JH’ where for 1 <7 < l%J, |Bi| = (m/2), and 0 < |BL%J+1| <
(m/2). Set up a tournament (see tournament sort in [Knu73]) where the
blocks are the players, and the winner of a match between B; and B; is the
answer to the m-ary query “Which of B; or B; contains the maximal element
of B; U B;7” This tournament will determine the block B (|B| < m/2) that

contains max(x1,...,x,) and will use [%J m-ary queries. By Lemma 4 we

can find the maximal element of B using at most [log(%)w m-ary queries.

Hence,
[m] () < [Z_nJ [m -‘ < 2n —
Viri(n) — + |log(5) — + [logm] — 1.

If m divides 2n then only |[2n/m| blocks are needed, so Vl[m](n) <y
llog(2)] =1 = 2 4 [logm] — 2.

The proof for m odd is similar, but uses blocks of size (m —1)/2. X

We will later show that for m = 2,3, and 4 the upper bound cannot be

improved. For bounds on Vl[m](n) we roughly have:

m 2 3 4 D 6 7
Vi) [n—1]n=1]n/2|n/2|n/3|n/3

We conjecture that this table can be continued. In particular, we conjec-

ture that arity 2k 4+ 1 is no better than arity 2.

Theorem 6 Let m be any number. If m is even then Vk[m](n) is bounded

above by
2 (k1) log(|)+ (k1) log? (k) +log(m) — (2k — 1) log (k) ~ 3k +O(1).

If m is odd then Vk[m](n) is bounded above by
2n

m —

(k1) log([2—"J V4 (k—1)log?(k)+log(m)—(2k—1) log (k) —3k+0(1).

m

Proof: Assume m is even. Assume both [%J and k are powers of 2. This
case will differ from the general case by at most an additive constant.

Let (z1,...,2,) be the input. Throughout the algorithm we eliminate
elements that cannot possibly be the kth largest element. The elements left
are referred to as candidates .

Partition the input (zi,...,z,) into blocks or size < m/2, and build a

2n

tournament, as in the previous theorem. This uses “* — 1 m-ary queries.

5

m

Using (k — 1)log {Z”J additional queries, and the existing tournament, find
the k “largest” blocks. The candidates are now the km/2 elements in those
k blocks.

Repeat the above process on the km/2 candidates, using blocks of size
m /2% and m/2-ary queries. Note that there are 2k blocks. The number of

queries needed for this is
number of blocks +(k—1)log(number of blocks)—1 = 2k+(k—1)log(2k)—1;

the number of candidates left after this is km/22. If the process is repeated
again, with blocks of size m/2® and m/4-ary queries, then the number of
blocks is (again) 2k, so the number of queries is (again) 2k+(k—1) log(2k)—1.

After : < logk — 1 iterations of this process the total number of queries
asked is

2n 2n :
[EJ + (k= 1)log(lEJ) Fi(2k 4+ (k — 1) log(2k) — 1) — 1,

and the number of candidates is (km/2'*1). Let i = logk — 1. Now there
are m candidates. By Lemma 4 the kth largest element can be found with
log m m-ary queries. The total number of queries asked is
2n 2n

B +(k—1)1og([ﬂ)+(1ogk—1)[2k+(k—1)1og(2k) =1 +logm

which simplifies to

2 2
- —I—(k—l)log(lEnJ)—I—(k—l)logz(k)—l—log(m)—(Qk—l)10g(k)—3k—|—0(1).
For m odd assume both mel and k are powers of two. For the initial
block size use m2f1, and the proof is similar. X

2.2 Lower Bounds

We now precisely define the number of operations necessary to identify the

maximum element of a set, using 3-ary and 4-ary queries.

6

NOTATION. An m-ary boolean query is represented by an ordered pair
(Y, N) where Y is the set of all orderings of the m elements involved which
make the query true, and N is the set of all other orderings.

Theorem 7 VI[B](n) =n—1.

Proof: The proof of Theorem 5 reveals that Vl[g](n) <n-1.
We prove Vl[g](n) > n — 1 by showing

(Vn > 2V +1) <n—1= V(n) <n -2

and using induction with base case ‘/1[3](2) =1.
Assume Vl[g](n + 1) < n —1 via decision tree T'. We construct a decision
tree T that shows VI[B](n) < n — 2. There are three cases.

Case 1: The root of T is a 3-ary query (Y, N) where Y (N) contains the
two orderings r < y < z and x < z < y. Let 7" be the tree formed by taking
the left (right) subtree of 7' and removing x from any query by assuming x
is the minimal element in the input tuple. Formally:

a) Eliminate any query of the form # < p (p < x) by assuming the answer is
YES (NO).

b) Eliminate any 3-ary query (Y, N) where < p < g and x < ¢ < p are both
in Y (N) by assuming the answer is YES (NO).

¢) Let @ = (Y, N) be a query where neither a) nor b) happens. Therefore
Y contains the ordering * < p < ¢, and N contains the ordering = < ¢ < p.
Replace) with p < g.

d) If z appears as the output of some leaf then it will appear in a part of the
tree that gets eliminated by one of a), b) or ¢).

Case 2: The root of T' is the query = < y. Similar to Case 1.

Case 3: The root of T'is a 3-ary query (Y, N) such that Y (N) contains
both z <y < z and z < x < y. Let T' be the tree formed by taking the left

(right) subtree of T" and removing x from any query by assuming that = < y
and no element is between the two. Formally,

a) Modify any query that contains but not y by replacing all occurrences
of x with y.

b) Eliminate any 3-ary query (Y, N) where x < y < pand p < & < y are
both in Y (N) by assuming the answer is YES (NO).

¢) Let @ = (Y, N) be a comparison where neither a nor b happens. Therefore
Y (N) contains the ordering < y < p, and N (V) contains the ordering
p < x < y. Replace @ with y < p (p < y). (Recall that by convention, a
YES answer means go down the YES side of the tree.)

d) If x appears as the output of some leaf then it will appear in a part of the

tree that gets eliminated by one of a or b.

It is easy to see that in all cases, T" is of height < n — 2 and can be used to
find the maximum of n elements.

We show that there are no more cases by attempting to construct a tuple
that would not fit into any of the cases. Let) be the query asked at the
root. () is not a single comparison, else Case 2 applies, so let @ = (Y, N),
a 3-ary query. Assume, without loss of generality, that = <y < 2z € L. To
avoid case 3, both z < z <y and y < z < x are in N. But having both of
these in NV is the case 3 with NV instead of Y. X

Theorem 8 V1[4](n) = [21

2

Proof: The proof of Theorem 5 reveals that V1[4](n) < [%w We prove
V1[4](n) > [%w by showing
n

(v 2)V +2) < [= ¥ < [5] -1

and using induction with base case ‘/1[4](2) =1.
Assume V1[4](n—|—2) < [%w — 1 via decision tree T'. We construct a decision

tree T that shows V1[4](n) < [%w — 2. There are four cases.

8

Case 1: The root of T'is a 4-ary query (Y, N) where Y (N) contains = <
y<z<wandz<y<w<z Let T' be the tree formed by taking the left
right subtree of T" and removing = and y from any query by assuming that

x < y and that they are the bottom two elements.

Case 2: The root of T is either a 3-ary query or a comparison. Use the
techniques of Theorem 7. The resulting tree finds the maximum of n + 1

elements.

Case 3: The root of T' is a 4-ary query (Y, N) such that Y (N) contains
both z <y < z <wand w < z <y < z. Let T' be the tree formed by
taking the left (right) subtree of 7" and removing z and y from any query by
assuming that * < y < z and no element is between = and y, or between y

and z.

Case 4: The root of T is a 4-ary query (Y, N) such that Y (N) contains
both <y < z <wand y < * < w < z. Let T" be the tree formed by
taking the left (right) subtree of 7" and removing x and y from any query by

assuming that = and y are the bottom two elements, and = < y iff 2 < w.

It is easy to see that in all cases, T” is of height < [%w — 1 and can be used
to find the maximum of n elements.
To show there are no more cases can be done easily by a case by case

analysis, similar to that in Theorem 7. Details can be found in [Guion].

X

The case of 5-ary queries is open. However, we have a conjecture and

some evidence to support it.
Conjecture 9 Vl[S](n) = [%1

Fvidence: The proof of Theorem 5 reveals that Vl[S](n) < [%w We give

evidence for VI[S](n) > [%w by trying to show
(v 2 2V +2) < 5] 5 1Py < 5] -1

and using induction with base case V*(2) = 1.

Assume ‘/1[5](n—|—2) < [%w — 1 via decision tree T'. We construct a decision

tree T" that shows VI[S](n) < [%w — 2. There are four cases.

Case 1: The root of T is a 5-ary query (Y, N) where Y (N) contains all
orderings that have = < y as the bottom two elements. Let 7" be the tree
formed by taking the left (right) subtree of T' and removing x and y from

any query by assuming that x < y and they are the bottom two elements.

Case 2: The root of T'is either a 4-ary query, a 3-ary query, or a comparison,

then use the techniques of Theorem 8.

Case 3: The root of T is a 5-ary query (Y, N) such that ¥ (N) contains all
orderings that have © < y < z and nothing in between. Let T’ be the tree
formed by taking the left (right) subtree of T' and removing x and y from

any query by assuming that * < y < z and no element is between the two.

Case 4: The root of T'is a 5-ary query (Y, N) such that Y (N) contains
all orderings where both < w (and nothing is between them), and y < u
(and nothing is between them). Let 7" be the tree formed by taking the left
(right) subtree of T" and removing x and y from any query by assuming that

r < w, y < u, and in both cases there is nothing in between the two.

It is easy to see that in all cases, T” is of height < [%w — 2 and can be used

to find the maximum of n — 1 elements.

We now examine our conjecture that all decision trees fall into one of
the four cases enumerated above. To date, a direct method to demonstrate
this conjecture has eluded us, and we have therefore focused on mechanical

checks to suggest evidence. Consider all queries involving {z,y, z,v,w}, and

10

label these strings S = s1,...,8120. A partition (Y, N) is any subset L of
S, with its compliment R. Let TEST refer to our mechanical check that a
given (Y, N) meets one of the cases enumerated in our conjecture.

To mechanically generate all partitions on five-ary queries would be tax-
ing, amounting to some 1.3 x 103" cases. This can be reduced (slightly) due
to symmetry in the cases: one only need examine partitions of size sixty,
since any partition (Y, N) with L of size larger than sixty can be relabelled
to reverse the roles of L and R. Still this is an unwieldy number of cases to
check exhaustively.

In order to gain insight on the conjecture, we therefore considered parti-
tions (Y, N) where each was much smaller than sixty. If we were to discover
that even the smaller query sets still fell within the necessary seven cases of
the conjecture, then certainly the supersets all having size sixty would also
satisfy the conjecture.

A collection of test programs were generated by the Minion system [Pur89].
Some of these programs were in C and some were in Macsyma, a computer
algebra system. The Polylith software interconnection system [PJar] allowed
interoperation between these programs, and also allowed different test cases
to be smoothly distributed across the available computing resources. Gener-
ation of partitions having size 8 or less proved unfruitful — most partitions
required additional strings in order to satisfy one of the TEST criteria. Next,
partitions having size 10 appeared to be a tractible objective. Unfortunately,
while most query sets satisfied TEST, several cases still arose where the set
required additional strings in order to satisfy the TEST. In all cases checked
manually we were able to show how any extension to the partition needed
to bring it up to the correct size would also satisty TEST; nonetheless, the
manual check prohibited our evaluating all such cases.

Finally, we considered generation of partitions having size 15 and greater.
It is computationally infeasible for us to apply TEST to all such partitions,

so we instead elected to TEST a selected subset of all cases to see if we could

11

quickly discover anomalous cases. Our experiences with previous cases re-
vealed that the regular methods for generating partitions resulted in ‘runs’
where the presence of one key subset would always result in the same TEST
case being satisfied. We therefore generated partitions based on a permu-
tation set that could be randomized, so the cases we could afford to check
would not all necessarily fall to the same TEST. All partitions of size 15 that
we checked in this manner satisfied TEST without requiring manual adapta-
tion or checks. While we still are short of having exhausted all cases, these

experiences are suggestive of our conjecture’s validity.

3 Selection Problems Using 3-sort Queries

We now study bounds on selection problems using 3-sort queries. Throughout
section 3, whenever we use the term query we mean 3-sort query. We assume
that the input contains n distinct elements, and we represent a selection
algorithm which uses 3-sort queries by a 3-sort tree.

(3)

In this section we precisely determine Vl(g)(n) and V;7(n), and we derive

upper and lower bounds for Vk(S)(n) and W,SS)(n).

3.1 Finding the Maximum of n Elements

The bounds for selecting the maximum element can be derived easily.
Theorem 10 V" (n) = [(n — 1)/2].

Proof: To show the upper bound, we present the following algorithm:
Algorithm 1.

1. If n =1, then return the one element; if n = 2, then compute 3-sort(ay,
ay, ay), and return the maximum;if n = 3, then compute 3-sort(as, az,

as), and return the maximum;

12

2. If n >3, then let : =n (mod 3):

(a) Partition the input into subsets of 3 elements, leaving ¢ elements

out;

(b) Apply 3-sort queries to the subsets of the input;

(¢) Recursively apply the algorithm to the set of maximum elements

of subsets and the ¢ elements left out in step 2.a.

End of Algorithm 1.

This algorithm clearly identifies the maximum element of a set, and the

number of 3-sort queries that it requires is given by the following recursive

equation:
n/3+T(n/3), if n mod3 =0
T(n){(nl)/S—l—T((nl)/S—l—l), ifnmod3 =1;
(n—2)/34T(n—2)/3+2), ifnmod3=2.

It can be easily shown by induction that: 7'(n) = [(n — 1)/2]. Since the
algorithm finds the maximum element in 7'(n) = [(n—1)/2] queries, we have
shown that Vl(S)(n) < [(n—-1)/2].

As for the lower bound, recall that in each operation at most two elements

are discarded as potential maximum element. Since n — 1 elements must be
discarded, we have that VI(S)(n) > [(n—1)/2].

Thus, V' (n) = [(n — 1)/2]. XI

NOTE. Let S(n) be the number of 3-sort stages to find maximum of n
elements using Algorithm 1. S(n) < [logs(n)]| + 1.

13

3.2 Finding the Second Largest of n Elements

DEFINITION. An element a is said to be defeated by another element b
if (a <b<e),or(a<ec<hb),or(c<a<b)isthe outcome of some query.
Reciprocally, an element is said to be undefeated if it was the largest in any

query in which it was involved so far.

Theorem 11 V¥ (n) < [(n + [logs(n)])/2].

Proof: We use Algorithm 2, which is an extension of Algorithm 1, from The-

orem 10.

Algorithm 2: Apply Algorithm 1 to select the maximum, but in the pro-
cess keep track of which elements were second to each of the undefeated ele-
ments. After selecting the maximum element, m, find the maximum among

the elements which were defeated only by m.

Since the number of stages that Algorithm 1 uses is < [logs(n)]+1, there
are at most [logs(n)]+1 candidates for second largest left after the maximum

has been identified. Applying the upper bound for VI(B)(n), we have:

n/2 4+ [logs(n)]/2, if n even and [logs(n)] even;

V(S)(n) < n/2 4 ([logs(n)] +1)/2, if n even and [logs(n)] odd;
2 (n—1)/2 4 [logs(n)]/2, if n odd and [logs(n)] even;
(n—1)/24 ([logs(n)] +1)/2, if n odd and [logs(n)] odd.

Studying each case, it can be verified that VQ(B)(n) < [(n+ [logs(n)])/2].
X

We now prove a very close lower bound. Our techniques are similar to

those of Pratt and Yao [PYT73].

14

DEFINITIONS. Let m be the maximum and s be the second largest
element in the set. Let @)1, @2, ..., ¢, be a sequence of 3-sort queries such
that if asked in that order one can determine s at the end.
A 3-sort query @); is said to be critical for an element z if:

i) Qi involves z and y, where z < y < s, or s =y < & = m; and

it) ; is the first such query in the sequence.
A 3-sort query Q is said to be partly useless if:

i) some element y is involved twice in Q, e.g. (y,y,), or

it) some element y which was defeated previously by an element z < s,

is defeated again in the outcome of QQ by an element 2z’ < s.

The partial order defined by the outcomes of the queries until a given
point of execution is called the Current Partial Order (CPO) .

If x 1s an element of the input set,
wetght(x) = [{y: (y < x) is in the CPO}|.

Or in words, weight(z) is the number of elements of the input known to
be < z. Notice that weight(z) > 1, since # < x. We use the idea of weight
to establish the lower bound in this subsection, and to refine both upper and

lower bounds in the next subsection.

Lemma 12 For all x # s, there must be a query that is critical for x in the

sequence (1, Qz, ..., Q4 .

Proof: 1t 1s easy to see that in the resulting partial order each element = of
the set has to be comparable with s. Otherwise, total orders having = > s
or x < s are consistent with the outcome of the algorithm, and one cannot

guarantee that s is the second largest element in the set. X

15

Corollary 13 A 3-sort tree which determines the second largest element also

identifies the maximum.

Proof: Follows trivially from the fact that there is a query which is critical

for m in the sequence. X

Lemma 14 A 3-sort query cannot be critical for more than two elements.
If a 3-sort query involves m but not s, then it can be critical for at most one
element. If a 3-sort query involves both m and s then it can be critical for
two elements; however, any later query involving m and s is critical for at

most one element.

Proof: Let (a < b < ¢) be the outcome of a 3-sort query. If Q); does not
involve m, then a < b < ¢ < s, and by definition (); can only be critical for
a or b, but not ¢. If Q); involves m but not s, then ¢ < b < s < ¢ = m, and
again by definition, ¢); can only be critical for a. Finally, if ¢); involves both
m and s, then a < b = s < ¢ = m. In that case, (); may be critical for a or
¢, but only on the first time that m and s are involved in the same query.
After that, once again by definition, a query involving m and s can only be

critical for a. X

An Adversary Strategy.
We now introduce an adversary strategy to decide the outcome of a 3-sort
query. This strategy is a modification of the Basic Strategy used in [PY73].
We also call it the Basic Strategy .

Basic Strategy: Given a 3-sort query Q = (z,y, z), assume without
loss of generality that weight(z) < weight(y) < weight(z). Let the outcome
of Qbex <y <z

16

Notice that the outcome cannot lead to a contradiction because once an
ordering has been established between two elements, the weight of the larger

will always subsume the weight of the smaller element.

Lemma 15 [f the Basic Strategy is used, then there is a path from the root
to a leaf of a 3-sort tree to determine the second largest element, with at least

[logs(n)] queries involving the maximum element.

Proof: Let S be a 3-sort tree to determine second largest. ;From Corollary
13, S also determines the maximum element, m. Using induction on k, one
can show that, following the Basic Strategy, after an element x is involved
in k 3-sort queries, weight(x) < 3*. Hence, if weight(m) = n, then m must

have been involved in [logs(n)]| queries. X

Theorem 16 V,?(n) > [(n + [logs(n)])/2] — 1.

Proof: By Lemma 15, any algorithm to determine the second largest element
will have at least [logs(n)] 3-sort queries involving the maximum element. By
Lemma 14, those queries can be critical for at most [logs(n)] + 1 elements.
By Lemma remaining n — [logs(n)] — 2 elements. Again by Lemma 14,
[(n — [logs(n)] — 2)/2] other queries are necessary. Thus, VQ(S)(n) > [(n+
[logs(n)] —2)/2] = [(n + [logs(n)])/2] — 1. X
Theorem 17 [(n + [logy(n)])/2] = 1 < V;"(n) < [(n + [logs(n)])/2].

Proof: Follows from Theorems 11 and 16. X

Theorem 17 can be improved to obtain matching upper and lower bounds.

We omit the somewhat detailed proof; however it is in [Guion].

Theorem 18

V(B)(n) _J [(n+ [logs(n)] —1)/2], if n is even and n > 2 x 3Mog:(M1-1.
2 [(n 4 [logs(n)] —2)/2], if nis odd orn <2 x 3Mesa(1-1,

17

3.3 Bounds for Wk@(n) and Vk(?’)(n)

We can extend Algorithm 2 in the same fashion in which it was extended
from Algorithm 1 to obtain an algorithm that selects the third largest element
using O(log, log, n) more queries than the lower bound.

As k gets larger, this scheme of algorithm becomes less and less efficient
with respect to the lower bound.

For the following two theorems, techniques similar to tree selection [Knu73]
can be used to obtain algorithms that establish upper bounds; and the lower

bound is proven in a manner similar to Theorem 16, details can be found in

[Guion].
Theorem 19
W(n) > [(n—k+ [logs(n x (n=1) x - x (n = k +2))])/2]

and
W (n) < [(n=1)/2] + (k= 1) x [loggn].
Less precisely, there exvists a constant 3,1 < 8 < 2, such that
n—1 k—1 1
5+ (T loggn) = B(k) < W (n) < =5+ ((k — 1) logs n).
Theorem 20

[(n—k+(k—1)x [logg(n—k+2)])/2] < V¥ (n) < [(n—k)/2]+(k—1)x [logs(n—k+2)]

n —

3.4 Conclusion

We conjecture that for boolean queries, the pattern stated after Theorem 5
persists beyond the n = 4 case.

We believe that the bounds that we presented for Wk(g)(n) and for Vk(B)(n)
can be improved. Future work in this area includes finding lower bounds for

Vk[m](n) and ngm](n), and better bounds for W,C(S)(n) and for Vk(g)(n).

18

References

[FGT9]

[Guion]

[Johss]

[Knu73]

[MSMS85]

[PJar]

[Pur89]

[PYT73]

Fussenegger and Gabow. A counting approach to lower bounds for

selection problems. JACM, 26(2):227-238, April 1979.

Katia Guimaraes. Topics in Concrete Complexity Theory. PhD
thesis, Dept. of Computer Science - U. of Maryland at College

Park, in preparation.

John W. John. A new lower bound for the set-partitioning problem.
SIAM J. Computing, 17(4):640-647, Aug 1988.

Donald E. Knuth. The Art of Computer Programming, volume 3
- Sorting and Searching. Addison Wesley, 1973.

S. Moran, M. Snir, and U. Manber. Applications of Ramsey’s
theorem to decision tree complexity. JACM, 32:938-949, 1985.

Jim Purtilo and Pankaj Jalote. An enviroment for prototyping

distributed applications. Computer Languages, To appear.

Jim Purtilo. An envirorment to organize mathematical problem
solving. In Proc. of the 1989 International Symposium on Symbolic
and Algebraic Computation, pages 147154, 1989.

Vaughan Pratt and Foong Frances Yao. On lower bounds for com-
puting the :-th largest element. In Proc. of the 14th IEEE Symp.
on Switching and Automata Theory, pages 70-81, 1973.

19

