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16.3 COMPUTABILITY
Most of the material presented here is presented in far more detail in the texts of

Rogers [R], Odifreddi [O], and Soare [S].
In this section N denotes the set of natural numbers. All functions discussed will

be from N to N . If other domains are used then we assume they are coded into N in
some computable way.

16.3.1 RECURSIVE FUNCTIONS AND THE CHURCH-TURING THESIS

Definition: A partial function is a function which is allowed to be undefined on
some points of its domain. If f is such a function then we denote that f(x) is undefined
by f(x) ↑, and that f(x) is defined by f(x) ↓. A partial function is total if it is defined
on all points of its domain.

Definition:

1. A Turing Machine is a 5-tuple 〈Q,Σ, δ, s, h〉 such that Q is a finite set of states,
Σ is a finite alphabet, s ∈ Q is the start state, h ∈ Q is the halt state and
δ : Q − {h} × Σ → Q × Σ × {R,L, S}. A Turing machine is interpreted as a program
that computes a partial function. In this context δ(q, a) = (p, b, R) would mean that if
the machine is in state q and the alphabets symbols scanned is a then go to state p,
overwrite the a with a b, and move right. L stands for left and S for stationary. (Alan
Turing defined these machines.)
2. The class of primitive recursive functions is the smallest class of functions P
such that the following hold.

a) For all i, n the function f(x1, . . . , xn) = xi is in P.
b) For all n the function f(x1, . . . , xn) = 0 is in P.
c) For all i, n the function f(x1, . . . , xn) = xi + 1 is in P.
d) If f(x1, . . . , xn), g1(x1, . . . , xm), . . . , gn(x1, . . . , xm) are in P then

h(x1, . . . , xm) = f(g1(x1, . . . , xm), g2(x1, . . . , xm), . . . , gn(x1, . . . , xm)) is in P.

e) If f(x1, . . . , xn+2), g(x1, . . . , xn) ∈ P then the following function is in P.

h(x1, . . . , xn+1) =
{

g(x1, . . . , xn) if xn+1 = 0
f(x1, . . . , xn+1, h(x1, . . . , xn, xn+1 − 1)) otherwise.

3. The class of general recursive functions is the smallest class of partial functions
such that the following hold.

a) If f is primitive recursive then f ∈ G.
b) If f(x1, . . . , xn+1) is in G then the following function is in G.

g(x1, . . . , xn+1) =
{

the least y such that f(x1, . . . , xn, y) = 0 if it exists
undefined otherwise.

4. (Terminology) A function is partial recursive if it if general recursive. A function
that is partial recursive and also total is simply called recursive.
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5. (Informal) An acceptable programming system ϕ1, ϕ2, . . . is a listing of the
partial recursive functions such that the indices can be treated like code. For example,
given e, x one can determine ϕe(x). We will assume that a statement like “Run ϕe(x)
for t steps” makes sense. (It certainly does if our underlying model is a Turing machine)

Facts:
1. If f is partial recursive then there is a computer program that computes it.
2. A partial function f is computed by a Turing machine iff f is general recursive.
3. There are several other models of computation that are equivalent to general recursive
functions.
4. Virtually all functions encountered in ordinary mathematics are primitive recursive.
Addition, multiplication, and exponentiation are primitive recursive using the following
facts: x+(y +1) = (x+ y)+1, x(y +1) = xy + y, xy+1 = xyx. Other functions such as
“f(x) =the xth prime” are also primitive recursive, but this takes some work to prove.
5. As of 1994 all partial functions that are known to be computable on some real world
device are general recursive.

Definition: The Church-Turing Thesis states that every intuitively computable
partial function is partial recursive. By using it one can proof theorems about the partial
recursive functions without dealing with the details of the model of computation.

Examples of Partial Recursive Functions:
1. All primitive recursive functions are partial recursive.
2. Ackerman’s function is defined as follows

A(1, j) = 2j

A(i, 1) = A(i− 1, 2) (for i ≥ 2),
A(i, j) = A(i− 1, A(i, j − 1)) (for i, j ≥ 2).

Ackerman’s function is recursive but not primitive recursive.
3. The following function is recursive

f(e, x, t) =
{

ϕe(x) if ϕe(x) ↓;
0 otherwise.

4. The following function is partial recursive

g(e, x) =
{

ϕe(x) if ϕe(x) ↓;
↑ otherwise.

16.3.2 UNSOLVABLE PROBLEMS

Definition:
1. A set A is solvable if there exists a total recursive function f such that x ∈ A ⇒
f(x) = 1 and x /∈ A ⇒ f(x) = 0. Such sets are also called decidable or recursive
2. A set A is unsolvable if it is not solvable. Such sets are also called undecidable
or nonrecursive

Examples: Let ϕ0, ϕ1, . . . be an acceptable programming system.
1. The following problems are unsolvable.

HALT = {e | ϕe(e) ↓} = {e | (∃t)[ϕe(e) halts in ≤ t steps ]}.
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TOT = {e | ϕe is total} = {e | (∀x)(∃t)[ϕe(x) halts in t steps ]}.
COF = {e | ϕ halts on all but a finite number of values}

= {e | (∃x)(∀y ≥ x)(∃t)[ϕe(y)halts in t steps]}.
2. A set A is an index set if, for all x, y, if ϕx and ϕy compute the exact same partial
function then either x, y ∈ A or x, y /∈ A. Hence the question of whether or not x ∈ A
depends only on the behavior of ϕx. Rice‘s Theorem states that if A is an index set,
A 6= ∅, and A 6= N then A is unsolvable.
3. Hilbert’s 10th problem (in modern terminology) was to devise an algorithm to de-
termine, given a polynomial p(x1, . . . , xn) with integer coefficients, if it has a solution
in the integers. It is known that no such algorithm exists. This can be phrased as
saying that the set of polynomials with integer coefficients that have an integer solution
is unsolvable. This is commonly stated as “Hilberts 10th problem is unsolvable.” This
is considered a natural example of an unsolvable problem since the concepts used to
define it are not from computability theory (as opposed to HALT , INF and COF ).
There is a book on Hilbert’s Tenth problem by Matijasevic [M] for non-logicians.

16.3.3 Recursively Enumerable Sets

Definition: The following four definitions are equivalent. Let A ⊆ N . We abbreviate
recursively enumerable by r.e.
1. A is r.e. if A is the range of a partial recursive function.
2. A is r.e. if A = ∅ or A is the range of a recursive function.
3. A is r.e. if A is the domain of a partial recursive function.
4. A is r.e. if there exists a solvable set B ⊆ N ×N such that A = {x | (∃y)[〈x, y〉 ∈ B]}

Facts:

1. If A and A are both r.e. then A is solvable.
2. If A is r.e. and not recursive then A is not r.e.
3. If A is r.e. and is the range of a non-decreasing function then A is recursive.

Examples of r.e. sets:

1. HALT

2. {e | ϕe halts on some prime } = {e | (∃x, t)[x is prime ∧ ϕe(x) halts in t steps ]}.
3. {e | ϕe halts on at least 100 numbers }

Examples of non-r.e. sets:

1. HALT .
2. {e | ϕe halts on all primes }.
3. {e | ϕe halts on at most 100 numbers }.

16.3.4 Reductions

Definition:

1. A ≤m B if there exists a recursive function f such that x ∈ A iff f(x) ∈ B. This
is pronounced ‘A is m-reducible to B.’ The m indicates that the function f may be
many-to-one.
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2. A ≤T B if A can be solved given a ‘black box’ for B. This is pronounced ‘A is
Turing-reducible to B.’
3. A <m B if A ≤m B but B 6≤m A. A <T B if A ≤T B but B 6≤T A.
4. A ≡m B if A ≤m B and B ≤m A. This is an equivalence relation. The equivalence
classes are m-degrees. A ≡T B if A ≤T B and B ≤T A. This is an equivalence
relation. The equivalence classes are Turing degrees.

Facts:
1. If A ≤m B then A ≤T B. The converse does not hold.
2. If A ≤T B and B is solvable then A is solvable.
3. If A ≤m B and B is r.e. then A is r.e.
4. If A is r.e. then A ≤m K.
5. If A is a nonempty index set, and the index for the null function (everywhere
diverging) is not in A, then K ≤m A.
6. There exists an r.e. set A such that ∅ <T A <T K. Such sets are not natural. They
are usually constructed by a priority argument.

16.3.5 The Arithmetic Hierarchy

Definitions: Let A be a set.
1. A ∈ Σn if there exists a solvable set B ⊆ N n+1 such that

A = {x | (∃y1)(∀y2)(∃y3) · · · (Qyn)[〈x, y1, . . . , yn〉 ∈ B]}.

(Q is ∃ if n is odd, and is ∀ if n is even.)
2. A ∈ Πn if A ∈ Σn.
3. A ∈ ∆n if A ∈ Σn ∩Πn.
4. A is in the arithmetic hierarchy if there exists n such that A ∈ Σn.
5. A is Σn-complete if A ∈ Σn and (∀B ∈ Σn)[B ≤m A]. The notion of Πn-complete
is defined similarly.

Facts:
1. Σ1 ⊂ Σ2 ⊂ Σ3 · · ·.
2. Π1 ⊂ Π2 ⊂ Π3 · · ·.
3. Π0 = Σ0 and this is the class of all solvable sets. For all n ≥ 1 Πn 6= Σn.
4. If A ∈ Σ1 ∩Π1 = ∆1 then A is recursive.
5. If A ∈ Σ2 ∩Π2 = ∆2 then A ≤T K.
6. If A ∈ Σn ∩Πn = ∆n then for all Σn−1-complete set B, A ≤T B.
7. If A is Σn-complete and B ≤m A then B ∈ Σn. Hence A /∈ Πn ∪ Σn−1.
8. HALT is Σ1-complete. TOT is Π2-complete. COF is Σ3-complete.

16.3.6 Gödel’s Incompleteness Theorem

Defintion: An axiom system is a set of statements in a mathematical language.
We are interested in axiom systems for first order number theory. Hence the basic
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language will contain + and × as well as the usual logical symbols. Quantifiers range
over N . A consistent axiom system is a set of axioms such that it is impossible to
derive a contradiction from it. A recursive axiom system is a set of axioms that
forms a solvable set.

Example: The following set of axioms is a recursive axiom system.
1. (∀x, y)[x + (y + 1) = (x + y) + 1].
2. (∀x, y)[x(y + 1) = xy + x].
3. For all formulas P (x) include the axiom

[P (0) ∧ (∀x)[P (x) ⇒ P (x + 1)]] ⇒ (∀x)[P (x)].

Gödel’s Incompleteness Theorem: If AX is a consistent recursive axiom system
then there exists a statement S such that S is true of the natural numbers but is not
provable from AX. Any standard text in mathematical logic will have a proof or pointers
to a proof.

Facts:

Let TRUE be the set of first order statements that are true of the natural numbers.
TRUE is not in the arithmetic hierarchy.
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