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We classify functions in recursive graph theory in terms of how many queries to k¥ (or ¢ or
#") are required to compute them. We show that (1) binary search is optimal (in terms of the
number of queries to K) for finding the chromatic number of a recursive graph and that no set

of Turing degree less than 0’ will suffice, (2) the problem of determining if a recursive graph has a

finite chromatic number is Z,-complete, and (3) binary search is optimal (in terms of the number
of queries to #") for finding the recursive chromatic number of a recursive graph and that no set
of Turing degree less than 0™ will suffice. We also explore how much help queries to a weaker

set may provide. Some of our results have analogues in terms of asking p questions at

a time,

but some do not. In particular, (p +1)-ary search is not always optimal for finding the

1. Introduction

We examine the complexity of several graph coloring problems in recursive
graph theory. All the problems we deal with are unsolvable, but are recursive in
either K (the halting set), #" (the jump of the halting set, see [29] or [34]) or g~
(the jump of the jump of the halting set). We measure the complexity of these

‘graph’ means ‘recursive or highly recursive graph,’ terms we define in Section 2.

We will be concerned with finding the chromatic number of a graph when that
number is @ priori bounded above by a constant. Unbounded versions of
problems in this paper are studied in [11]. In Section 2 we rigorously define the
class of functions that can be computed with bounded access to an oracle for set
A. We state a theorem about how many queries the function

m.no«: X)) = C«;A\fy ey Xa(xe)),

(X4 is the characteristic function of the set A) may require to be computed. This
theorem is used to establish lower bounds. In Section 3 we show that finding the

0168-0072/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-
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chromatic number of a graph requires an oracle of degree at least 0" and that a
binary search algorithm uses the minimal number of queries. This result is tight in
two ways: the lower bound on the number of queries holds even is a different
(e.g., more powerful) oracle is used, and no matter how many queries are used,
the oracle must be of degree at least 0'. In Section 4 we show that determining
whether the chromatic number of a graph is finite is X,-complete, and hence
requires a §” oracle. In Section 5 -we look at the harder question of determining
the recursive chromatic number of a graph, i.e. the minimum number of colors
required to achieve a recursive coloring. We show that finding the recursive
chromatic number of a graph requires an oracle of degree at least 0” and that a
binary search algorithm uses the minimal number of queries. This result is tight in
the same ways the result in Section 3 was tight. In Section 6 we show that
determining if a recursive graph has a finite recursive chromatic number is
25-complete, but determining if a highly recursive graph has a finite recursive
chromatic number is X,-complete. In Section 7 we examine how much the
number of queries can be reduced if an auxiliary (but weaker) oracle is allowed to
be used free of charge. In Section 8 we examine parallel versions of the questions
raised in Sections 3 and 5. We examine how hard it is to find the chromatic
number (recursive chromatic number) of a graph in terms of the number of
queries to F; (F;") that are required. Some of the results obtained in Sections 3
and 5 have analogs in this new setting. In particular, when using X, (p + D-ary
search (25, 33] is optimal for finding the chromatic number of a graph. If other
oracles can be used, then (p + 1)-ary search is not optimal. In Section 9 we
examine using parallel queries and an auxiliary (weaker) oracle. Section 10
contains a summary of our results and some open questions.

Other work on bounded queries in a recursion—theoretic context has been done
by Beigel, Gasarch, Gill, Hay and Owings [7, 10, 12, 13, 14, 28]. In a polynomial
framework, work on bounded queries has been done by Amir, Beigel, and
Gasarch [1,2,5,7,8,9,17], Goldsmith, Joseph, and Young [19], Kadin [20],
Krentel [24], Rosier and Yen [30], and Wagner and Wechsung [36, 37]. Other
work on recursive graph theory has been done by Bean [3, 4], Burr [15], Carstens
and Pappinghaus [16], Gasarch and Lockwood [18], Kierstead [21,22,23],
Manaster and Rosenstein [26, 27] Schmerl [31, 32} and Tverberg [35].

2. Notation, conventions and useful known results

All logarithms in this paper are base two, and all graphs are undirected.
Throughout this paper {0}, {1}©, .. . is a list of all oracle Turing machines. A
subscript s on any of these computations means that the computation only runs
for s steps. Let {e} denote {e}”. Let W, denote the domain of {e}, hence the set
{W, | e eNj} is the set of all recursively enumerable sets. Let W, ; be W, after s
stages, i.e. {0,1,2,...,s}N{x | {e},(x) l}. K represents the halting set, K,

The complexity of finding the chromatic number 3

denotes {x | x € W, ,}. FIN represents the set of indices of functions that are only
defined finitely often, i.e. {e | W, is finite}. TOT represents the set of indices of
functions that are always defined, i.e. {e|W,=N}. COF represents the set of
indices of cofinite sets, i.e. {e|N—W, is finite}. K is IT,-complete, FIN is
25-complete, TOT is IT,-complete, and COF is X;-complete [34, p. 65-66].

Let A be any set of natural numbers. The function Xa, called the characteristic
function of A, is defined by

!ﬁ ifxeA,
=g itrea.

We identify a set with its characteristic function. A’ denotes A X A X - - - X A @
times), the set of all i-tuples of elements of A. The set of unordered pairs of
elements of A is denoted [A]. A[w] denotes AN {0,1,2, ..., w}.

Let N denote the set of natural numbers. We denote a fixed recursive pairing
(tripling, etc.) bijection from N x N onto N (N x N x N onto N, etc.) by (-, -)
({-,-,-), etc). We denote a fixed recursive bijection from the set [NT? onto N by
‘[, =T, so the symbol ‘[x, y]’ is a natural number which represents the unordered

pair {x,y}. Since these functions are recursive and onto they have recursive
inverses.

If A and B are sets, then A @D B is the set
{2x[xeA}U{2x+1]xeB).

An oracle machine using oracle A® B can essentially ask either A or B

questions. If an even number is queried, we say that a query to A has been made,

and when an odd number is queried, we say that a query to B has been made.
If A is a finite set, then |A| denotes the cardinality of 4.

Definition. A graph G = (V, E) is recursive if every node of G has a finite number
of neighbors and both V ¢ N and E ¢ [N}? are recursive.

Definition. A graph G =(V, E) is highly recursive if G is recursive and the
function that produces all the neighbors of a given node is recursive.

Note. Most of the theorems in this paper will be stated and proven for recursive
graphs, but are also true for highly recursive graphs unless otherwise noted.

If G is a graph, then x(G) (the chromatic number of G) is the minimal number
of colors required to color the vertices of G such that no two adjacent vertices
have the same color (called a ‘proper coloring’). By convention the empty graph
(9, ¥) has chromatic number 0.

We need a representation for recursive graphs. We will represent graphs by the
Turing machines that determine their vertex and edge sets. An index for a graph
will be an ordered pair, the first component of which is an index for a Turing
machine which decides the vertex set, the second the edge set.
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Definition. If {e:} and {e2} are total, the
recursive graph G- = (V, E), where
V={x|{ex)=1},
E={{x,y}|x,yeV and tea}([x, y]) =1).

If {e,} or {e,} is not total, th
in G stands for ‘recursive’).

n the number ¢ = {e,, e,) determines the

en e does not determine a Tecursive graph. (The ‘¢’

Definition. A number (e1, €,) determines a highly recursive graph if {e,} and
{e,} are total, and when {e;} isi

of N, if {e,}(x) = Y then for alyeY, xe {e2}(y)

adjacent to). If ¢ determines a highly recursive
graph determined by e s G =(V, E) where

V={x|{e(x)=1),
E={{x,y) _k € {e}(»)}.

If {e;} or {e,} is not total, then e does not determine a highly recursive graph.
(The ‘hr’ in G™" stands for ‘highly recursive’.)
Note. Another valid representation would be to only insist that {e2}([x, y]) |

when {e }{x) = {e:}(¥) =1, instead of demanding that {e2} be total. All of our
results would also hold using that representation.

In this paper we will Classify, in the arithmetic hierarchy, many sets of indices
of recursive graphs (henceforth called just ‘indices’). Our concern is mot with
determining if a number js an index of a recursive
classify 0-1 valued partial recursi
indices. Determining if e determi
equivalent to TOT, so it is ﬁu-ooiv_aa.

Definition. A 0-1 valyed partial function f is in 2,

. . if there exists a partial
recursive function g such that

flx)= ﬁ w QY)Y (- y) g1,y . . »¥n> X) | =1 and x € Domain(f),
0 if (Vy)@3y,) (.- V) 8V, Yas -, Y, x) l=0andxe Domain(f).

A 0-1 valued partial function f is in IT,
g such that

(1 i My)@y,) - (- “Yn) 831, ya, .
f) ? @)V (- y) g, ys, .

if there exists a partial recursive function
~sYmX)|=1landxe Domain(f),
Y X) ] =0andx e Domain(f).

Note. The function 8y, ...y, x) in the above definition need not be defined
when x ¢ Domain( f), though it can be.

R s SRR
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Definition. A 0-1 valued partial function f is 2,-complete if fe3, and fis
Z.-hard, ie. if Xis a 2, set, then there exists a recursive function g such that

xeX iff f(g(x))=1.

A 0-1 valued partial function fis IT,-complete if f € I1, and fis IT,-hard, i.e. if X
is a IT, set, then there exists a recursive function g such that

xeX iff f(g(x))=1.

Let I'= {e | e is the index of a recursive graph}. Then for A < 1, we think of A
as being the 0-1 valued partial function which is 1 on A, 0 on [/ —A, and
undefined otherwise. Most of the functions that we are concerned with are only
defined on I or some subset of 1. If the value of a function at a point is not stated,
then it is assumed to be undefined there. We will use the term ‘function’ even if
Wwe mean a partial function defined on / or a subset of 1.

We need to approximate infinite graphs by how they look after some finite
time, so we make the following definition:

Definition. Let e = (e;, ¢,) be a number that determines a recursive graph. We
define the approximation to G: by stage s (G',) to be the subgraph of G* formed
by taking all nodes in the set {1,2,3,...,s} that are in the graph and connecting
them as they are connected in the graph. Formally, G:, = (V, E) where

V={1,2, 3,0 {x ] {e))(x) =1},
E=[VPN {{u, v} | {ex}([u, v]) = 1}.

We will often exhibit many finite graphs and take their union, in a way so that
all vertices are distinct. We formalize this:

Definition. If G, = (V;, E,), G,=(V,, E,), . . . are graphs, then the disjoint union
of Gy, G,, . .. is the union of the G;’s with all vertices relabeled to be distinct.
Formally it is the graph (V, E) where

v=U{iyxv,

i=1

E= Q (G u), (1, v)} |u, veV, and {u, v} e E}.

i=}

We formally define the class of functions which can be computed by an oracle
Turing machine, with a bound on the number of queries it can make.

Definition. Let g be a total function and n = 0 be a number. A partial function f
is in FQ(n, g) if f<;g via an oracle Turing machine which uses oracle g, and
never makes more than n queries. If 8 is the characteristic function of a set A,
then we use the notation FQ(n, A). (This will usually be the case in this paper.)
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Definition. Let 4 and B be sets, and
FQ®(n, A) if f<1A® B via an oracle Turing machine

The following function will be useful to us.

Definition. Let A be any set and k =

I 1 be a number. The function F{ is defined
y

%JMA\«T c X)) = C?CDY e Xa()),

where y, is the characteristic function of 4.

The following lemmas are proven in [12].

Lemma 1. If A and X are sets, A is nonrecursive, and n is any number, then
F4 ¢ FQ(n, X).

Lemma 2. For any numbers x,,

<o Xn, given the value of |[KN{x s ooy Xn ),
the value of FX(x,, o !

-+ X,) can be computed.

Proof. Let m = IKN{x,,... s Xp}.

{x1,...,x,)} until exactly m of them
are in K, and the rest are not. [J

Run all the machines {e}(e) for eec
halt. Output the information that those m

3. Chromatic number of recursive graphs

Lemma 3. Let k=0 pe ¢ fixed natural number. Let Ay

. be the partial recursive
Junction defined by

1 if G exists and x(G) <k,
Ale)=40 if G} exists and x(GD) >k,
undefined if G* does not exist.
Ay is IT-complete.

-

The complexity of finding the chromatic number 7

—-32..minawm_.mvrmm»-no_o_.uv_mmmm: :mmzzomcvmnmm&mwna k-colorable,
x(G?) <k iff for all s, x(G: ) < k. Therefore .

1 if (Vs) x(Gt,) <k,
Ai(e)=50 if (3s) x(GL) >k,
undefined otherwise.

The function that, for given e and s, checks whether x(G.,) <k, is partial
recursive and is defined when G* exists. Hence Ay is in IT, (using the definition of
a 0-1 valued partial function being in IT, given in Section 2).

We show that A, is IT,-hard by showing that K =mAy. Given a number x, let
G; be a clique of size k+1, if x e W, and (@, 8) otherwise; and let G be the
disjoint union of G,, G,, . . . . For the G SO constructed

G is k-colorable iff G contains no clique of size k +1 iff (Vs)xe¢ W, iff
x¢K 0O

Note. if k=3, then the graphs reduced to in the above lemma can be made
connected.

Lemma 3 shows that determining the chromatic number of a graph requires an
oracle of degree at least 0’. Theorem 4 gives an exact bound on how many
queries to K are required to actually find x(G?).

Theorem 4. Letc =1 by any number. Let g be the function

x(GY) if (G =c,
¢ fx(G)=c.

The function g is in FQ( [log(c + 1)], K). If X is any set, then
g ¢ FQ([log(c + 1)] -1, X).

gle)= ﬁ

Proof. Using the previous lemma and a binary search on [0, c] for the proper
number of colors, one obtains that g is in FQ([log(c + 1)], K). First ask if the
graph is |c/2|-colorable, and keep cutting the current interval of possible
chromatic numbers in half until it only has one element in it.

Let X be any set. To establish that g is not in FQ([log(c + 1)] — 1, X) we show
that if it is then FX e FQ(n, X) (where n = [log(c + 1)} — 1), which contradicts
Lemma 1.

We describe an algorithm to determine F %Q: ..., Xp») that will use one call
to the function g; hence if g is in FQ(n, X) then the function F%isin FQ(n, X).

Fors=1,2,...,2" let

the empty graph KN {x;, ..., x0}<s,

.-

the complete graph on s vertices otherwise.
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Let G% be the disjoint union of G, G, G;,. . ., Gy,
{x1, ..., X}, which is <2"<c. By Lemma 2, FX
IKN{xy,..., X2} = x(G%). Note that an index for

(uniformly) from {x,, . . . » X}. Hence FX
tog. O

Then x(GI)=|Kn
can be computed from

G. can be computed
can be computed from a single query

Lemma 3 and Theorem 4 show that the binary search algorithm for g, which

gives g € FQ([log(c + D], K) is optimal in terms of both Turing degre
number of queries. Even if an oracle

of queries must be at Jeast flog(c + 1)
set of Turing degree at least ¢’

e and
of larger Turing degree is used, the number
1; and even if more queries were allowed, a
is required. There is no tradeoff between the
egree which would aliow a reduction in either

4. Finiteness of chromatic number

In this section we show that d

. etermining if a graph has a finite chromatic
number is X,-complete.

Theorem 5. The partial function

1 if G exists and x(G?) <o,
Ae)=40 if G exists and x(GY) = o,
undefined  if G* does not exist
is 35-complete.

Proof. The partial recursive function A4 is

1 if G} exists and Fk)(vs) x(GLy) <k,
A(e)=40 if G} exists and (Vk)(3s) x(GLy) >k,
undefined if G. does not exist.

The function that, given e and s, determines whether if x(GL) <k, is partial
recursive and is defined when G? exists. Hence A is in 2, (using the definition of
a 0-1 valued partial function being in 3, given in Section 2).

We show that A4 is 25-hard by showing FIN<_A. For a given x, let G,
(se{1,2,3, .. -}) be a clique of size [W..l; and let G* be the disjoint union OM
G,G,.... If x € FIN, then W, is finite, so x(G:

<% and eeA. If x ¢ FIN,

then W, is infinite, so G; will contain arbitrarily large cliques, ande¢ 4. [

S. Recursive chromatic number

In Section 3 we considered the problem of finding the minimal number of

oo_oa. :.ooaoa to color a graph. In this section we consider the problem of finding
the minimal number of colors needed to recursively color a graph.

The complexity of finding the chromatic number 9

Definition. Let k be a nonnegative integer. If G=(V, E) is any graph such that
V c N then G is recursively k-colorable if there exists a Turing machine {m} such
that for all x, {m}(x)| € {1, 2, ... »k}; and if x and y are two nodes in V such

that {x,y} e E, then {m}(x)+# {m}(y). The empty graph is recursively 0-
colorable by convention.

Definition. If G is a graph, then the recursive chromatic number of G (denoted
2'(G)) is the least number of colors required to recursively color G.

Note. the definition of a recursive k-coloring can be changed to only requiring

that for x a vertex, {m}(x)|e{1,2,3,..., k} without effecting any of our
results.

It is known [3] that there are recursive graphs that are 3-colorable but not
recursively k-colorable for any k. Highly recursive graphs are better behaved in
that every k-colorable highly recursive graph is recursively 2k — 1-colorable
(16, 32], although there exist k-colorable highly recursive graphs that cannot be
recursively 2k — 2 colored [32].

We show that finding the recursive chromatic number of a graph is harder (in
terms of Turing degree) than finding the chromatic number. The problem of
determining if G is k-colorable is II,-complete; however, we show that
determining if G is recursively k-colorable is 25-complete.

The next lemma gives us a way to show that the problem of determining
whether or not a graph is recursively k-colorable is X,-hard. It gives us more
information than we need at present, however, we will need its full strength in
Section 7. We state it for highly recursive graphs because a stronger form of it is
true for recursive graphs (see the next section).

Definition. Two r.e. sets X and Y are recursively separable if there is a recursive
set that contains X and is disjoint from Y. If two I.e. sets are not recursively
separable, they are called recursively inseparable. Define SEP to be the set

SEP={(y, z) | W, and W, are recursively separable}.

Note. SEP is ;-complete [34].

Lemma 6. For any k=2 and any m such that k<m <2k —1, there exists a
recursive function f; ,,, such that for all x, RAQMV.EV =k and

x € COF 0 R..AQ\—”:.?QV = \ﬂv
x ¢ COF > x"(G} ) =m.

A similar function for recursive graphs also exists.
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Proof. Assume m is odd, m =24 — 1. Schmerl [32] (or alternatively Appendix A
of this paper) showed how to construct a highly recursive graph G such that
x(G)=a and X(G)=2a—1. Schmerl’s construction uses two r.e. sets X and Y
that are recursively inseparable. If the sets X and Y are not recursively
inseparable, then the graph constructed has recursive chromatic number a. Hence
the construction can be modified to include a parameter x such that if x ¢ SEP,
then the graph has recursive chromatic number a, and if x ¢ SEP, th

place of SEP. Let G(x) denote the graph constructed with paramet
x(G(x))=a and

x € COF 3 x(G(x)) =a,
x ¢ COF 3 x'(G(x)) =m.
(Alternatively, one can modify the version of Schmer!’s construction
A using the techniques of Theorem 9.)
Let K, denote the complete graph on k vertices. Let fi ,.(x) be such that
QM_.‘SANV = QANV U wk.
Note that x(G}* ,,) = k. Hence

x€COF = y'(G(x))=a > X(G ) =k,
*¢COF 3 " (G(x)=m > X(GE ) =m.

Assume m is even, m=2q — 2 (a=3). By the modification of Schmerl’s
construction in Appendix A, there is a highly recursive graph G such that
x(G)=a and X(G)=2a~2=m. This construction can be modified (using the
techniques of Theorem 9 of this paper) to include a parameter x such that if G(x)
denotes the graph constructed, then

x € COF => x(G(x))=aq,
*¢ COF > " (G(x))=m.

The rest of the proof is analogous to the case where m is odd.

It is easy to pass from an index of a highly recursive graph G to an index of G

as a recursive graph. Hence the functions f, ,, exist for recursive graphs as
well. O

in Appendix

Theorem 7. Let k=2 pe o fixed natural number. et Ae=A{e | x(GH) < k}. The
set A, is 23-complete.

Proof. To determine the membership of ¢ =
there exists a Turing machine {m} such that
(1) For all x, {m}(x)| e {1,2,3,..., k). :
(2) The function computed by {m} restricted to the nodes of G% (i.e. the
numbers x such that {e}x)=1)isa proper coloring of G”,

{e1, ;) in A, we need to know if

The complexity of finding the chromatic number 11

This can be phrased as a 25 set:

Ax={{es, €2) | Im Vx,y 3s [[{e,},(x)|] A Hed s A [eads(ix, yDI]
Allmy )l e{1,2,.. ., k)] A [{m},(y)| € (L2, k)]
Alea)s([x, yD) =12 {m),(x) # {m},(y)]1}.
Hence A, is in X,.

If k=2, we show that A is Z3-hard. Let fek+1 be the function defined in
Lemma 6, for recursive graphs. By the properties of Jerer

x€COF > Y(G, ) =k > form(x) €A,
x¢COF > x(Gf,. ) =k+1 > Jersr(x) ¢ Ay
This shows that COF =mAr. Hence A, is 25-complete. [

Note. Theorem 7 did not need to use the conventions associated with 0-1 valued
partial recursive functions; it states that a set is X;-complete.

Theorem 7 shows that determining the recursive chromatic number of a graph
requires an oracle of degree at least 0. Theorem 8 gives an exact bound on how
many queries to @ are required to actually find x*(G?).

Theorem 8. Letc=1 be any number. Let h be the function

x(G) if x(G)=<c,

¢ if 1'(GY=c.

The function h is in FQ([log(c +1)], #"). If X is any set, then
h ¢ FQ([log(c + 1)] ~ 1, X).

Emvum

Proof. We determine x"(G?) by performing binary search on the interval [0, ¢].
Since #” is X3-complete and Theorem 7 shows that A, € 35, we can determine if
X (G) <k by making a single query to ¢ Binary search requires only
[log(c + 1)] queries. If x"(G?) > c, then binary search will give the answer c.

To obtain the lower bound, note that in the proof of Theorem 4 ali the graphs
G constructed were such that X(G) = x*(G). Therefore, that proof establishes
that if X is any set, then h ¢ FQ( [logc +1)] -1, X). O

6. Finiteness of recursive chromatic number

In this section we show that determining if a recursive graph has a finite
recursive chromatic number is 23-complete; and that the same problem for highly -
recursive graphs is 2,-complete. These results are surprising for two reasons: €]
all problems encountered so far in this paper have been equally difficult for -
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recursive and highly recursive graphs; and (2) by Theorem 7, the problem of
determining if the recursive chromatic number of a highly recursive graph is <k
(fixed k) is 2';-complete, hence one would naively conjecture that adding a ‘3%’
to the predicate would keep the problem 2'3-complete.

Theorem 9. The set A = {e | X'(Gh) <o} is Z5-complete.

Proof. Note that A = {e _ (3k) x'(GH) <
a ;3 predicate, hence A is in 3.

To show that A is 25-hard, we show COF<
recursive graph G(x) = G such that

k}. By Theorem 7 this can be written as

mA. Given x, we construct a

1(G)<w iff W, is cofinite.

We use a modification of Bean’s construction of a recursive graph which is
3-colorable but not recursively colorable [3]. In our modification the recursive
graph is 2-colorable (but not connected) and we weave the set W, into the
construction in such a way that if W, is cofinite, then the construction fails and
X (G)=2; and if W, is not cofinite, then the construction succeeds and, because
the graph is not recursively colorable, X"(G) does not exist.

We ‘try’ to satisfy the following requirements:

Ri:y: {e}isnot an i-coloring of G.

The following claim is implicit in Bean [3]. It will henceforth be referred to as
‘Bean’s Claim’. It is proven in Appendix B.

Bean’s Claim. Ler [, be the graph consisting of 2" isolated vertices, and let {e} be
a Turing machine. There exists a finite sequence of finite graphs I, L,..., L,
such that the following hold.

(a) For every i, I<is<r, L, is an extension of L,_,, ie. Memm_ cl,c
L

cevg

(b) For every i 1<i <r, L, can be obtained recursively from L,_, and the
values of {e}(x) for every xe L, ,. If there is a vertex in L;_, on which {e}
diverges, then MT_ = U.

(c) The function {e} is not an i-coloring of I.,.

(d) L, is 2-colorable.

We assign to each R(c.1y an infinite set of graphs, each consisting of 2’ isolated
vertices. At any single stage the construction tries to satisfy R, ,, by working on a
particular graph (in the manner specified by Bean’s Claim) with which we
associate a marker. The marker may change as W, grows. Our intention is the

following: if W, is cofinite, then almost all the markers will go to infinity, so

almost all requirements will not be able to work with any particular graph long

enough to be satisfied, which will make the graph recursively colorable; and if W,

e

The complexity of finding the chromatic number 13

is not cofinite, then all the markers will approach limits, so eventually all
requirements will have a graph to work with permanently, and will be satisfied.

Recursively partition the set of natural numbers into an infinite set of infinite
sets. We index the parts of the partition by the numbers —1,0,1,2,.... Let the
partition be denoted by

{Xeiy | (e, i) eNx N}u{Xx_,}.

For each (e, i) eN recursively partition X (e.iy iNto an infinite number of sets of
size 2'. Let this partition be denoted by

{Lie.y() |i= (e, i)}

The construction proceeds in stages. G* is the graph at the end of stage 5. G is
the graph (__, G°. In the construction we will, for each (e, i), connect up the
elements of L, ,,(j) into a graph, and then add auxiliary vertices and edges to
that graph as indicated in Bean’s Claim, to force {e} not to be an i-coloring.
L%c.»y(j) denotes L, ;,(j) together with all vertices and edges added to it by stage s.

For a fixed requirement R(.:), and a fixed stage s, we will have a unique j such
that we work only on L. :y(j) during stage s. We use a marker mi. ;y to denote
the value of j. As a function of s, my, iy is nondecreasing.

Construction

Stage 0. For all (e, i,j) e NxXNxN let L{..5(j) be a graph that has isolated
vertices L, ;,(j + (e, i}); and let the markers be defined by m?, ., = (e, i). Let

G°= ......;Cuc P.A.s..vC.v.

Stage s + 1. For each (e, i) <s such that

(a) R(.,, is not satisfied, and

(b) for all vertices z in L%..iy(m?. ;y) the computation {e};(z) halts,
take whatever action is necessary to help satisfy R, using L = L% i(m3, ;). In
particular, in terms of Bean’s Claim, if L is L, then add vertices and edges to L
to form M»i. Formally let RMWXSMSL be M»i. All extra vertices added are the
last unused vertices in X —1-

For each (e, i) <s adjust the markers as follows: my}}, is the maximum
element in the set

Av\ _ ASM&L‘V« \BMAL,V + H~ Smn.mv + N. R !w < ew\x.u+.v U ASMN.CV.

For all (e, i) and j such that no action is taken on LY, ,\(j) let Lh() =

x

G*l= U LEL(G).

e, j=0

End of Construction

We show that W, is cofinite iff G has a finite recursive chromatic number.
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Assume W, is not cofinite. for each (e, i) we claim that

lim m3, ;, < oo,
s—eo

If (e,i) ¢ W,, then the marker never moves so im,_,.mi, = (e, i). It (e,i) e

W,, then let b be the largest element such that {(e, i), (e, i) +1, ... , bW,

(note that b +1 is not in W.). Such a b exists since i ite.

nature of how the markers move im, .. mj, ,=b.
Since lim,_,,, mi. ;s <o, for s large all attempts to satisfy R(..y use the same

graph. By Bean’s Claim these efforts Succeed, hence all requirements are

satisfied, and G is not recursively colorable.
Assume W, is cofinite. Then for almost all (e, i)

fim s.Mw..,v = 00,

S—»0

This fact can be used to recursively 2-color G. Let § = {{e, i) | lim,_,, mi, ;<
®}. §is a finite set. If (e, i) €S, then only a finite number of vertices and edges

are ever added to any L. »(j). This finite information is hardwired into the
following algorithm.

Algorithm to 2-color G

(a) Input(z).

(b) Run the construction of G until z appears as a vertex. Let e, ;, J and s be
such that z € L%, ;y(j) and s is the least such number.

(¢) If (e, i) €S, then the graph L =lim,_,_ (e.iy(j) is hardwired. Let ¢ be the
least (in some ordering) 2-coloring of L. Output c(z2).

(d) If (e, i) ¢S, then lim,_..m%,,, = ®. Run the construction to the least stage
£= 50 such that m{, ,, > j. Note that L. »(j) =lim,_,, {e.i’y(J)- Let ¢ be the least
(in some ordering) 2-coloring of L%, ;»(j). Output c(z). End of Algorithm [

rsive graph theory can be shown to be
Zy-complete using the techniques of the above theorem. In particular, determin-

The following theorem can be proved using the techniques of the last theorem,
hence we only sketch the proof. It is stated for recursive graphs, and does not
hold for highly recursive graphs if k = 4. It will be of use in Section 7.

Lemma 10. For every k=3 there exists q
x, 2(Gm) =2 and

xe€ COF > X(Ghe) =2,

recursive function f, such that for all
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Proof. Note that in the construction in the proof of Theorem 9, all the graphs G
constructed had (G) =2.

Given x, take the construction in the proof of Theorem 9 but modify it to try to
satisfy only the requirements that make the graph not recursively (k ~1)-
colorable. Call the resulting graph G. If x ¢ COF, then y(G)=2 (i.e. the
construction will fail); if x ¢ COF, then x"(G)=k —1 (i.e. the construction will
succeed). In the second case we need to show that x"(G) =«.

The graph G is the disjoint union of graphs L that are produced in the manner
of the last theorem. Each L is the last element of a sequence of graphs

LocL;c---cL,

where L, is the graph with 2’ isolated vertices. Since we only try to satisfy the
requirements that make the graph not recursively (k — 1)-colorable, when a

vertex becomes part of the graph k — 1 of its neighbors are known, and at most 1
more will eventually be discovered.

The following algorithm recursively k-colors G.

Algorithm

(a) Input(x).

(b) Run the construction until x appears in the graph. If it appears in some L,
then color it 1, and halt.

(c) If x appears in Lj,,—L;, then (recursively) color the L; graph with the
colors {1,2,...,k}. Now color x with a color that was not used by any of its
neighbors in L, This is possible since x has at most k—1 neighbors in
L, End of Algorithm [

Note. The graphs constructed above are not connected. If we insist they be

connected, we get a slightly weaker result, namely that for every k=4 there
exists a function f, such that

x€COF > y'(Gj,) =3,
x ¢ COF > x(Giey) = k.

Theorem 11. The partial recursive function

1 if G™ exists and y*(G™) < o,
B(e)=40 if G™ exists and X (G =,
undefined if G™ does not exist

is X5-complete.

Proof. Since x(G) <y (G™) < 2x(G2) — 1 (see [16] or [32]),
X(G <o & 4G <,
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Hence

1 if GI* exists and 2(GM) < oo,
B(e)=140 if G2* exists and x(G*r) =
undefined otherwise

»

which is Z,-complete by Theorem 5. [

7. Mixed queries

We have seen that [log(c + 1)] queries to K (8") are required 1o compute
x2(G?) (x*(G%)) when this quantity is bounded by c. If we allow queries to a set Y
such that K ¢, v (@ £:Y) ‘for free’, then perhaps the number of queries to K
(#") can be reduced. In this section we will see that for finding x(G?) or x(G')
queries to such a Y do not help; however for finding y*(G") or X (G they do.
We also exhibit lower bounds on how much help queries to Y can provide.
Lemma 1 relativizes to yield the following.

Lemma 12. IfA Xand Y are sets, A is nonrecursive, Ay
number, then

F ¢ FQ¥(n, X).

Y, and n is any

Theorem 4 realtivizes, with the help of Lemma 12, to yield the following.

Theorem 13. Ler Y be any set such thar

K¥1Y. The function & in Theorem 4 is
not in

FQ”([log(c + D] -1, X).

Theorem 14. Let c =2 pe any number. Let h be the function

h(e) = ?AQU 2 (G)=c,
c fx(G)=c

The function h is in FQ*(flog(c + 1], 8.

Proof. Note that if 2(G2)€{0, 1}, then x(G%

. . 2 =x"(GY). Given e, determine
(recursively in K) whether 2(G?2) €{0, 1}; if it is then find its value (recursively in

K) and output it. If not, then a binary search on [2, ¢}, using [log(c + 1)] queries
to #”, will locate h(e). 0

Note. If the graphs being considered are connected, then x(GT)e {,2}>

x(G2) = x(G%). This can be used to obtain an FQX([log(c ~2)], @) algorithm
for h.

The complexity of finding the chromatic number Y]

We show that Theorem 14 is optimal in that if c =3, X is any set, and Y is such
that #"” . Y, then & is not in FQY( [log(c — 1)] — 1, X).
Definition. Let A be any set and n be any number. The function #4 is defined by
#.MA.H: et .R:v = _AT L X; mxﬁv_

Note. Owings [28] has studied the function #; and has shown that if there exists
an X such that #7. € FQ(n, X) then A <, K.

Lemma 15. Let X and Y be any sets. Let n and i be any numbers. If
#2' € FQ¥(n, X), then §0 <, v.
Proof. >wm=ao.u% € FQ”(n, X). Since for all j<i, 8 <_ #9 we have
(Vj <i)[#% e FQ¥(n, X)].
By a relativized version of Lemma 2 we have that
(Y)[F%’ e FQ™ (1, #5)].

We show (inductively) that for all j<i, 9<.Y. For J =0 this is trivial. Assume
that 8UV<_ Y. Hence

¥ e FQ™ (1, #8") c FQ'(1, #%)) cFQ¥(n, X).

By Lemma 12, 8 <, Y. Therefore we have, in the j=icase 8¥=<,Y. O
The second part of the following lemma is false for highly recursive graphs.

Lemma 16. Let b= 1. Let h, be the function

2 if x(GE) <2 and y(G%) =2,
hi(e) =4 x"(G)) if 2<x(GL)<b +2and 2(G7) =2,
b+2  ify(G)=b+2and y(GI)=2.

The function h, is in FQ([log(b + 1)], #"). Let Y be any set such that " $1Y. Ler
X be any set. Then

ki ¢ FQ"([log(b + 1)] — 1, X).

Proof. The function 4, is in FQ(| log(b +1)], #") by a binary search algorithm.
We show h, ¢ FQ¥([log(b + )] -1, X ). Assume, by way of contradiction, that
h: € FQ"([log(b + 1)] — 1, X). We show that #7 €FQ(1,h,) and hence that
#7 e FQY([log(b +1)] -1, X )- By Lemma 15 this implies that ¢ <r Y, contrary
to the hypothesis.
To simplify notation, in the following algorithm if x, is a number then ‘run x;” or
‘x; halts’ refers to the computation of {x:}7 ().
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Algorithm to compute #?" in FQ(1, h,)

(1) Input(x,, ..., xp). Each x; is an oracle Turing machine with oracle @

2) OSN._S #-oracle Turing machines Yi» for 1<i<b, such that ¥: halts iff at
least b—i+1 of X1, ..., %5 halt. (Note that if J=9"0{x,, ..., Xy} then

Yoo, Yoo, ¢ @ and Yo—j+1, - - ., yp €8”. In all future comments j wi
, ) s J will always be
9" N {x,, ..., xp}H.) %

(3) Using the fact that COFis X,
z€COF iff y,eg"

-complete, compute z,, for 1 <; < b such that

(Note that Z1,--.,2,_;¢ COF and Zo-j+1> - - -, 2, € COF.)
@) Letfy, f,, ..., fs+2 be the functions defined in Lemma 10. For 1 <
€ =fi+2(z;). By the nature of the £, x(G:)=2 and
z;¢ COF > X(G)=i+2,
z;,€e COF > x(Gy)=2.

(Note that X(GL)=i+2 for I<i<b-j, and x(G:)=2 forb—j+1<i<p )

v .Qv Let e be the index for the recursive graph F_B_oa by taking the &m_.o.::
union of the graphs Gl forl<i<p, (Note that x(G?) is the maximum of x'(G%)
as 1<i<b, which is X(G2)=b—j+2. Also note that 2< y"(G))<b +2 m:«a

2(G) =2, 50 hy(e) = (Gry ) n

(6) Compute the quantity j=hp+2—p
this construction j = #%(x,,

End of Algorithm [

i<ph, let

1(e). By the commentary throughout
- -+, Xp). Output this value.

Note. The condition that x(G

. :)=2 for e in the domain of 4, is not used in this
paper, but is used in [11].

.:.g.-.u:- 17. Let Y be any set such that 8" £ Y. Let X be any set, and ¢ =3, The
function h (from Theorem 14) is not in FQY(Jlog(c ~ D] -1, x).

-.ncc.n. Assume h € FQY([log(c — 1] ~1, X). Let i,
16 with b =¢ — 2. Since hy € FQ(1, h), we obtain

hi € FQ¥([log(c — 1)] ~ 1, X) =FQ"([log(b +1)] -1, X).
This contradicts Lemma 16. O

be the function in Lemma

Note. If 4 is restricted to opcerate on connected recursive graphs, then he
FQ*([log(c - 2)], #") (by the note after Theorem 14). Let A be just like A
except that its upper and lower bounds are 3 and b + 3, and it ,
connected graphs. By using the note following Lemma 10 to mo.
Lemma 16, one can obtain that for all = 1, all Y such that Y
h1 ¢ FQ"([log(b + 1)] =1 X). This can be used to show th
connected graphs is not in FQ*([log(c —~2)] -1, g~

dify the proof of
18", and all X,
at h restricted to
)- Thus we have matching
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upper and lower bounds for the case when # is restricted to connected recursive
graphs.

For highly recursive graphs we can obtain a greater saving of queries to @#".
This is because if G is highly recursive, then {16, 32]

2(G)=x(G)=2x(G) - 1.
We use this to obtain an algorithm that asks one less #" query than the algorithm
in Theorem 8; however this algorithm will ask many K queries.

The statement of the following theorem is false for recursive graphs.

Theorem 18. Let ¢ = 1 be any number. Let h be the function
x(G) if x (G =,
c if (G =c.

If ¢ is odd, then h is in FQ¥({log(c +1)] —1, #"). If c is even, then h is in
FQX([logc] — 1, 8").

h(e) u*

Proof. Given e, first determine 2(G¥) by the binary search algorithm in
Theorem 4. This only requires queries to K. We now use the fact that

(G =<x(GI)=<2x(G¥ - 1.

Since we only care about ¥*(G™) if it is <c, we do a binary search for x*(G") on
the interval [x(G), min{2 x(G") — 1, c}] using queries to @". The length of this
interval is

(ren if22(G) - 1=,
c—x(G"+1 ifc =2 x(G¥™ —1.

It can be shown that if ¢ is odd, then the length of the interval is at most
(c +1)/2; and if ¢ is even, then the length of the interval is at most ¢/2. Hence
the binary search on this interval takes at most [log(c +1)] -1 queries to @
when c is even; and at most ([logc] — 1) queries to #” when c is odd. a

We show that if Y is any set such that 8" £, Y, X is any set, and ¢ =2, then if ¢
is odd, h is not in FQY([log(c + D] -2, X); and if c is even, h is not in
FQ"([logc] - 2, X). This is easily seen to be true for ¢ = 2, 3.

Lemma 19. Let b = 1. Let h, be the function

b if X'(G™)y<b and y(G™) = b,
ho(e) =1 x'(G&) if b=<x(GE)<2b—1and y(G™) =b,
26—1 if x"(G*)=2b—1and y(G™) =b.
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number of queries to F; that are needed to find the chromatic number of a
b FA(GIY<b and y(G™y =,

recursive graph.
hiy(e) = X(G ifp <X(G¥)<2b-2and X(G =p, :

-2 4 X(G™=2b-2 ana 2(G') =p, ' Lemma 21. If A is a nonrecursive set and X is an r.e. set, then
The function h, (hs) is in FQ([log 61, #") (FQ([10g(b — D], #). Let ¥ be any : F{, 11y ¢ FQ(n, FY).
set such that ¢ Y. Let X be any set. The function hy (hs) is not in d , .
FQ¥([logb] -1, X) (FQ"([log(b — D] ~1, x)). Proof. Since X is r.e., FQ(n, F¥) < FQ(n, FX). Beigel [7] has shown that

Proof. The upper bound for both h; and h, are obtained by binary search. The : FQ(n, F) cFQ(1, F G+1y-1)-
lower bound for h, (h3) is obtained by showing that #Y, €FQ(1, h,) #Y e

; X
FQ(1, ,)) in a manner similar to the proof of Lemma 16, except that we use the i If Fpray € FQ(n, F7) then "
. . : K n_1).
functions fooes fopaz, . .. s fo.6-1(fo 11, Jobrzs ... »f526-2). Lemma 15 is then , F(y 1y € FQ(n, F)) c FQ(n, Fp) eFQQ, Fipuap-1)
used to derive a contradiction. []

. . . tif
This violates the separation theorem of Beigel (in [7] and HM_V iw_mr w”wa“ :Mw M
i i i set, and a=1, ph
X2(G2) =b for e in the domain of 4, is not used in this ;A is a nonrecursive set, B is an arbitrary

. FQ(LFP) O

Note. The condition that
paper, but is used in [11].

W . : h in terms of queries to
Theorem 20. Ler v pe any set such that 8" 4. Y, X pe any set, and ¢ = 4. If ¢ js A We now look at finding the chromatic number of a grap

0dd, then h (from Theorem 18) is not in FQY( [log(c + 1)] =2, X); if c is even, , F¥.
then h is not in FQY( flogc] -2, X).

Lemma 22. Let g be the function
Proof. Assume, by wa

y of contradiction, that Y, b and an algorithm exists as :

: 0 if x(G) <k,
specified above. » k,))=1i ”“MAM X(G)<kiyy (1=i<p),
Ifcisodd, c=2b -1, then using the FQ¥([log(c + D] -2, X) algorithm for A, ‘ gle, (ky, ..., k, : w. <x(GY)
the function A, (with parameter b) can be computed in : P if kp=<x(Go). K cFO(L, g)
; 1, FY) and F¥eFQQ1,g).
FQ*([log(c + 1)] - 2, X)=FQ"([log 2b] - 2, X)=FQ"([logb] -1, X). Then g is complete for FQ(1, mmv .smoﬂ M vm FQ(1, F7) k
ion in FQ(1, FX) is in »8)-
This contradicts Lemma 19 : Hence every function in FQ(1, F,
Ifciseven, c =2b -2, then using the FQ¥([log ¢] — 2, X) algorithm for h, the K ; ki, ..., k,)), to compute g
function , (with parameter b) can be computed in ! e Proof. imrwwoi :.w“.w:mm mMMMMwAV»Ww MM:M_H MQ\JA. .V: :.owow questions can be
: just pose the p questio ef = e . d as one
FQ¥(Jlogc] -2, X) =FQ¥([log 26 — 2]-2,x)= FQ"(log(b ~ D] -1, x). “V _.BHM as questions to K (by Lemma 3), 50 asking Mroa BM wov phrase
This contradicts Lemma 19. 3 query to FX, From the answers we can obtain gle, (ky, ..., P ?mm: methods
. We show FYeFQ(1,g). On input (z,..., z,), create e mOoE ute
similar to Theorem 4) such that KGO =IKN (2, ... mLoer 2 Mo.:
8. Parallel queries (e,¢1,2,3,...,p)), and from this noEvM:o 2(GJ). By m ,
- A— WAQu-‘vM_kDAN—n.... !v_iﬂ can Ooamv—.—ﬂﬂ m.EAN_....n \v. O

1
by considering queries to the Theorem 23. Let c =1 be any number. Let g be the function

function FY (where is some oracle). Binary search can be replaced by

: be | 1GY if x(Gh =<c,
(p + 1)-ary search [25,33] in many of our theorems, but this IS not always mAmvuﬁn if (G =ec. ;

optimal. The constant p is fixed throughout this section.
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Then
log(c +1)
i )
g log(p +1) | Fy
If X=0', or any other recursively enumerable set, then
log(c +1)
o] )
g¢ log(p +1) LE;).

Proof. Using Lemma 22 and a
of colors, one obtaing that

eerof [l 7).

(p + 1)-ary search on [0, ¢] for the proper number

.Ean ask ‘evenly spaced questions’ to get the graphs’s chromati
interval of length (c + 1)/(p + 1), then (c + 1)/(p + 1)?, etc.
Let X be an r.e. set. To establish

eero( [ D] 1)

C number in an

we show that

itg €FQ(n, ) then FE, . FQ(n, F¥) (where 1 = * S Cha 1)
log(p +1)
which contradicts Lemma 21.

Assume g € FQ(n, F ). To compute FX (x1,

> (p+1)"
technique of Theorem 4) a recursive graph Gt

IKN{x,, ..., X(p+1y}. Compute g(e). Note that

“+ < X(p+1y) Create (using the
whose chromatic number is
NAQMV < Aﬁ + Hva = Aﬁ + Hv_._omAn+C\_OmAE+C_I~.

the quantity (p + 1)leatc+1yog(p+1)1-1 Is (p+ 1)+ Diogtprnyre ¢ some € <1
Hence .

(p+ C:ow?+c\_om€+:_|_ = (p + 1)'olc+Dlog(p+1)+e
S(e+D/(p+1) <41
Since ¥(G?) is an integer we have x(G%) < c. Hence
gle)= x(G)) = KN {x,,... » X(pr1yr}].

By Lemma 2 we can compute F§, .. from this quantity. Since g ¢ FQ(n, FY), we
obtain

log(c + 1)
log(p +1)

FE . e 82 ._ -1, mwv. o
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The above theorem shows that if F s (or FXfor anyr.e. X ) is used as an oracle,
then (p + 1)-ary search is optimal. The question arises: “Are there sets A such
that by using F4 the number of queries needed can be reduced?” The answer is
nu<omuu.

Theorem 24. Let g be as in the last theorem. There exists a set A =1 K such that
1 +1
g mmo: G v_. wnv.
p
For all sets X, the function

log(c +1)
p

mmmoﬁ _ur mwv.

Proof. Let o be the algorithm in Theorem 4 that computes g with [log(c + 1)]
queries to K. Note that it always halts, even if the input is not the index of a
recursive graph. Let

A={(e, i) | when o/ is run on e, the ith query to K is answered “Yes”}.

Since o is recursive in K, A =<t K. Since from A we can compute the chromatic
number of a graph (if it is <c), by Lemma 3, K< A. Hence A =1 K.
The value of g(e) can be deduced from the [(log(c + 1))/p] questions

NAJMAAN. “_.v. AN. Nv‘ AN‘ wv. T AN- ﬁvv.
Fp({e,p+1),(e,p+2), (e,p+3),.... (e, 2p)),

%AA«. Qaﬁ” j - HY + Hv, o An.. A—_oﬁw+ :_vnvv.

The answers to these questions provide the correct query answers that are needed
for running </ on e. Once obtained, run & on e with the correct query answers,
and g(e) can be found.

If X is any set and if geFQ( [(og(c +1))/p] —1, FY) then g is in
FQ([log(c + 1)] — 1, X), which contradicts Theorem 4. O

We now look at finding recursive chromatic numbers.

Theorem 25. Let h be the function
0 ifx"(G)<k,,
hie, (ky, ... k,))=14i fhk<x(G)<k,,(1 <i<p),
P ifk,<x'(G).

Then h is in FQ(1, F¥).
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Proof. This result is obtained by combining the technique of Lemma 22

((p + 1)-ary search) with the result of Theorem 7 (determining if X' (G)<ccanbe
done with a @ oracle). [

Theorem 26. Letc =1 pe any number. Let h be the function
R R
c if x"(G)=c.
Then h is in
log(c + 1)
Q log(p +1) Fy
The function h as presented (applying to recursive graphs) is not in
log(c - 1)
oo -1 #%)
Q log(p +1) LFY).
If c is odd then h, when modified to apply to highly recursive graphs, is not in
log(c +1) -1
Fo(| |- );
log(p +1) LET);
if ¢ is even, then h is not in

Fo(| WMMVMH: ~1FF)

Proof. The upper bound is obtained by (p + 1)-ary search. The 1

ower bounds are
the Y =@ cases of Theorems 33 and 36, O

Improving the lower bounds in Theorem 26 remains an open question.
If an oracle other than @ is used, then the number of queries can be reduced,

Theorem 27. There exists a set A =0 such tha

h mmoﬁ_omﬂ+ :_. mnv.

For all X,

log(c +1)
p

h ¢ FQ( -1, F¥).
(e

Proof. Let A = {(e, i)| Gk exists, xy'(G*) <c, and the ith bit of y*(G*
in binary, is 1}.

Since determining if G exists is recursive in ¢ and determining if X (G =cis
recursive in #”, 4 <;#". Since from 4 we can find y'(G?), #" <, A. The rest of
this proof is analogous to Theorem 24. 0

), expressed

e TRy
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9. Parallel and mixed queries

In this section we explore the questions raised in Section 7 in a parallel setting.
Most of the proofs use a combination of techniques from the last two sections and
hence will be omitted.

Lemma28. IfA, X, and Y are sets, A is nonrecursive, X is ree.,and A$.Y, then

F{, 1y ¢ FQY(n, FY).
Proof. Relativize the proof of Lemma 21. O

Theorem 29. Ler Y be any set such that K Y. The function g in Theorem 4
(and 23) is not in

ror[BReb]y

Proof. The proof of Theorem 23 relativizes, with the help of Lemma 28. []

Theorem 30. Let h be the function in Theorem 14 (and 26). The function h is in

Fo [l 7).

Proof. Combine the techniques of Theorems 14 and 23. (O

To prove analogs of Lemmas 16 and 19, and Theorems 17 and 20, we use the
following lemma.

Lemma 31. Let b, P=1. Let Y be any set. Then

moA—__MMM H w_ -1, &sv cFQY(1, F¥").

Proof. Let

_Jlog(b+1)
"= —~om€ +1)

Beigel [7] has shown that for all » and p
FQ(n, Ff) < FQ(1, FK,, _)).

This result relativizes (in two ways) to show that for any Y and A,

—1=log,,, (b +1)] ~ 1.

FQ¥(n, F¥) cFQY(1, Fiiyoy).
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In particular,
FQ¥(n, F)c FQ'(1, ﬁﬁtﬁiv.
Since
(P+1)" ~1=(p + 1)flerai+ni-1 _; _ b
it follows that
FQ'(1, FE,,.p_y) c FQY(1, Fi_).
Combining the last two inclusions yields the desired result. [

The statement of the following lemma is not known to be true for highly
recursive graphs.

Lemma 32, Let Y be any set such that 8" 4. ¢ @Y. Let hy be the function in
Lemma 16. Then

log(b +1)
log(p +1)

h, mmOA* “~ m.n..v but h, mﬁOwA—_om@ +1) -1, m.nav

log(p +1)
Proof. The function h,is in
log(b + 1)
S (Frrsity
Q log(p +1) Fp
by (p + 1)-ary search. Assume

log(b + 1)
log(p +1)

Smmoé T L FY)

By Lemma 31,
h e FQY(1, F¥" ).
By the proof of Lemma 16,
Fy e FQ*(1, h,).
Hence
Fy e FQP®Y(q, FE ).

Since @40 DY, this violates the relativized version of the Separation
Theorem proven in [6], which states that ifbeN, and 4 and B are sets such that
A+$: B, then F ¢FQ°(1, F{_). O

Note. The condition ¢ ¥19"® Y does not imply @ 4. Y since by a relativized

form of the Friedberg Jump Theorem [29] there exist sets Y such that
B £:0"DY but ¢ %Y.
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Theorem 33. Let & be the function in Theorem 14 (and 26). Let Y be any set such
that " 4.0 D Y. If c=4, then h is not in

(|1 5] -1 #%).

Theorem 34. Let h be the Junction in Theorem 18. If cis odd, then h is in

_om?+5| J :v
NA wﬂ@ .

FQ : log(p+1) |72 )
if c is even, then h is in

o[ )

Lemma 35, L¢r h, and h; be the Sunctions in Lemmq 19. Let Y be such that
"4 DY. The function h, (k) is in

82 log b _&v AmoQ_omenc_‘Qavv

log(p +1) log(p + 1)
but not in
“iirrnl 7)o b) )

Theorem 36. Let h pe the function in Theorem 18. Let Y be such that
" {8 ®Y. If c is odd, then h is not in

_om?+ClH

mu M\Aﬁ ~ | H- :vw
O\ ogpany |19

is c is even, then h is not in

ro ([ )

If we do not insist that #” be the oracle we use, then we can reduce the number
of queries substantially.

Theorem 37. Let h be the function in Theorem 14 (and 26). There exists a set
A =1 K such that

he moA — _ommn c_. &_v.

For all Y such that ¢ 10 DY, and for all sets X,
he wOwA_w_omAn -1)

. TH.&V.
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Theorem 38. Let h be the function in Theorem 18. If ¢ is odd, then there exists a
set A =10" such that

h mmoéam@ M D= H_‘ mnv“

if ¢ is even, then there exists g set A =1@" such that
1 -1
h e FQX( * o(c) _ F?)
p
For all Y such thar ¢ %Y, and for all sets X, if ¢ is even, then

b mmov\i_om?wc l ~._ IH. ﬁ«v“

if cis odd, then

\" ﬂmoA—_omﬁv | J -1, mwv.

H..ecn.‘;n:vvoaco::aoo—:am ?oEnoEEE:mH:o techniques of Theorem 18
and Theorem 27. The lower bound comes directly from Theorem 20. _u

10. Summary and open problems

We summarize our results in the following table. Let ¢, p =1 be fixed natural
numbers. The function X returns the chromatic number of a graph if it is =<c,
The function y* returns the recursive chromatic number of a graph if it is <c.
Unless otherwise specified, a result holds for both recursive and highly recursive
graphs. If X is used in a statement of a result then that result holds when X is
replaced by any set. If Y is used in a statement about chromatic number, then the
intention is that the statement holds for any Y such that K ¥rY. I Yisusedin a
statement about recursive chromatic number, then the intention is that the
statement holds for any Y such that 6" £, Y; unless it s a statement about
parallel queries to @” in which case the intention is that the statement holds for al]
Y such that 8" 4, 8"® Y. If A is used in a
then we are saying that a set A, A=1K, exists; i
recursive chromatic number, then we are saying that a set 4, A4 =@, exists.

In some cases our lower bounds do not (numerically) match our upper bounds.
These lower bounds are marked with *%. We conjecture that the lower bounds
can be improved to match the upper bound. In some cases we have the condition
#" $1Y @ instead of ¢ ¥1Y. These cases are marked with * . We conjecture
that the lower bound with the condition #” £ Y can be obtained. The following

conjecture would imply that ¢ ¥+ Y would suffice: “If #7 € FQY(1, F”")), then
&\\\ M\N/ %- »

b e B
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L Serial queries without help
x € FQ([log(c + 1)], k)
x ¢ FQ([log(c +1)] -1, X)
1" € FQ([log(c + 1)], ¢
x" ¢ FQ([log(c +1)] - 1, X)
IL. Serial queries with help
(a) Recursive graphs
z € FQ([log(c + 1)], K)
x ¢ FQ"([log(c + 1)] -1, X)
x" e FQ*([log(c - 1)], #7)
x ¢ FQ"([log(c - 1)] -1, X)
(b) Highly recursive graphs
x € FQ([log(c + 1)], K)
x ¢ FQ"([log(c + 1)] — 1, X)
x € FQ¥([log(c +1)] ~1,8") ¢ odd
x" ¢ FQ"([log(c +1)] -2, X) ¢ odd
X' € FQ¥(Jlogc] — 1,#") c even
X" ¢FQ"([logc] =2, X) c even

HI. Parallel queries without help
(a) Using queries to F ~ (F?') to compute x (x9)

ero([ e 1] 1y

log(p +1)
log(c + 1) av
— -1, F
xmmoi~om€+ 1) P
. [ log(c + H; @év
x € ﬂOA log(p+1){ " *
[log(c —1) v .
g ————=| — 1, F¥)} »+ for recursive graphs
x¢ ﬁOA log(p +1) il
"¢ ﬂOA log(c + 1) = H._ -1, ﬁm,v =+ for highly recursive graphs and ¢ odd
X log(p + 1)
T¢ m.,OA log(c) ~ 1 ~1, F¥ V *+  for highly recursive graphs and ¢ even
x log(p +1)
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(b) Using queries to F}, any 4, to compute y and y"
I
xe moQ oﬁw+ :_. F})

1 +1
OWAM vl_ -1, Nﬂ«..x.v

x.mmo%oﬁw c_. wnv

log(c + 1)
p

x¢Fo[

coro([HC2],

IV. Parallel queries with help
(a) Using queries to F X (FF) to compute y (x*), but allowing unlimited queries
to aset Y where K ¢, Y @ %+Yorg” ¥1r Y ® @ when noted)
(i) Recursive graphs

xerol [ )

vero([C - )

log(c - 1)

r TJ NA* _ szv
*N e P
log(c — 1)
log(p +1)
(i) Highly recursive graphs

xmmoﬁ_wwﬁwﬂw_“ muv

N::qu * ~ -1, mwv * @ 4P DY)

log(c + 1) X
log(p + HL -L mwv

. v(floglc +1)—1
¥ €FQ Q log(p +1) _Vmw;v ¢ odd

. v([log(c +1)-1 _ ., "
v erQ([ s T _ LFE)s #4:0/® ¥ and.c odd

xerQ"(|

log(c) — 1

o
_om@+5.‘,ﬁav c even

(
A * log(c) — 1

log(p +1)

N.. € muoa
Y

x" ¢ FQ ._IHL.;WV* #"£18 @Y and ¢ even
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(b) Using queries to F{, any A, to compute y and y*

(i) Recursive graphs

xe moA — _omAMJr D ~ ﬁv

xeFQY( — _omw+ :_ -1.5})

Xe moA ﬁ _omw| 2 _ mnv

P moAﬁomﬁn j ~1 mwv

(ii) Highly recursive graphs

xmmo%omﬁ+ j. &.v

x¢ moA—_omﬁ+ c_ -1, wwv
log(c +1) -1
p

R.mmOA ﬁv m,nv ¢ odd

p 14

x.ﬂmo.\g_om? *h-1 - L‘ hkv ¢ odd

proof we will indicate how to accomplish this.

Notation. If G and G’ are graphs, then G =G’ means that G is isomorphic to
G'.
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Definition. I et n=3 Let G" = v, E) where

V={Gn|1<ij<n),

E={{G ), (r, 5)) [i#r and j #5s}.
If 1<i<n, then the set of vertjces {G ) 1= J=n} is called the ith column of
G". The jth row of G" is defined similarly. The basic row coloring of G" assigns

color i to €very vertex in the ith row. The basic column coloring of G* assigns
color i to every vertex in the jth column. Note that both are valid vertex colorings

of G" using only n colors,

Definition. Let , >3, Let Grn-i< (V, E) where
V={G@)H|1<i<n, Isjsn-~1),
E={{(,)), (r. 5)} li#r andj#s),

Rows (columns) of G™"1, and the basic oW (column) coloring of G™n-1
defined in a manner similar to those of G”.
needs n — 1 colors.

are
Note that the basic row coloring only

Definition. If Xis a coloring of G” or G™"~1 then X induces q colorful column
(row) if y assigns to each vertex in a particular column (row) a different color. If
the coloring being referred to is obvious, we may say “G has a colorfy] column
(row)” to mean that the coloring induces a colorful colump (row).

Lemma 39. jr Xisa2n—2 2, - 3) coloring of G" (G™™Y), then X either induces
a colorful row or induces q colorful column, but not both.

Definition. Let G, = Vi, E)) and G, = V2, E,) be two graphs such that ejther
Gi=G= G", or G =G,= G™" 1 or G,=G" and G,=Grn-1

denoted CH(G,, G,):

V=Viuy,

E=F, UE,UE,,,

Ex={{(1L,i)), 2, r,5)} |i+#s and r#j}.
The edges in E 12 are said to link together G, and Gy. Let G,, . .. ,» G; be graphs of
denoted

type G or Go-1 The s-element chain  of G,...,G,

it bt st e e e

e ettt i b

The complexity of finding the chromatic number 33

CH(G,, . . ., G;), can be defined by linking G, to G, Gy t0 G, . .. » Gy_i to G,
In CH(G,, G) the rth row of G, acts like the rth column of G, in terms of
which vertices of G, it is connected to. This intuition underlies the next lemma.

Lemma 40. 7¢; X bea2n-3 partial coloring of CH(G,, G,) that induces q
colorful row (column) of the G, part. Any extension of xto a2n- 3-coloring of
CH(G,, G,) must induce a colorful column (row) in the G, part.

Proof. We only consider the case where G,=(C" and G=G"""1 The other
cases are similar.

Let ¥ and i be such that y is a 21 —3 partial coloring of CH(G,, G,) that
induces the ith column of G, to be colorful, Assume, by way of contradiction,
that there exists X' and j such that x'isa2n— 3-coloring of CH(G,, G,) that is an
extension of y which does not induce a colorful row of G,. By Lemma 39, x’
induces a colorful column of G,, which we call the rth column of G;. For
I<jsnlet 2'((L i) = Gandfor 1ss<p—1 et X2, rs5)=d,.

We show Hew .. ose,, dy, ..., d, 1 }>2n—3. We know all the ¢’s are
distinct and all the d,’s are distinct. Let J be such that 1 < J<nandj+#r;and let s
be such that 1 <s < n—1ands#i By the definition of CH(G,, G,) the vertices
(1,4, j) and (2,1, 5) are connected by an edge, hence ¢; #d,. The only possible
equality of a ¢;and a d, is =d,. Hence Hew ..o, Cnyd,y, ..., di i} =2n-1>
2n — 3 which contradicts y’ being a 25 — 3-coloring.

In the analogous proof for G, =G,=G""~! the last step is |{c,, ... ) Cace,
dy, ..., do 1} =2n—-2>2, — 3. This is the only case that needs X' to be a
2n — 3-coloring. [J

Lemma 41. ¢ xbea2n-3 partial coloring of CH(G,, ..., G;) that induces q
colorful row (column) of the Gy part. If s is even, then any extension X of xtoa
2n — 3-coloring of CH(G,, ..., G;) must induce q colorful column (row) of the G,
part; if s is odd, then X' must induce q colorful row (column).

Proof. This follows from the previous lemma and induction. O

Theorem 42. Let > 3. There exists q highly recursive 8raph G such that
¥G)=n and X'(G)=2n-2,

(@) x(G)=n,

(b) {e}is not a 2n — 3-coloring of G,

© x(G)<s2n-— 2.

The graph G is formed by taking the disjoint union over ¢ of all the graphs G
as described above.
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We construct G in stages. To avoid confusion we do not use ‘G,’,

we merely
speak of ‘G at stage s.’

Construction

Stage 0. At this stage G consists of two graphs G, and G, such that G, =G,=¢G"
Stage s +1. (At the end of stage s, G consists of CH(G,, G,, ..., Gy41) and
CH(G,, G, . .., G,,,), where each G; is isomorphic to G".) Run {e}, on all the
vertices of G, and G,. There are several cases.

Case 1. There exists a vertex in G, or G, where {e}, does not converge. Let
G5 and Gy, be graphs isomorphic to G”" that use the least numbers not
already in G for vertices. Extend the s + 1-chains to s + 2-chains using G, for
the odd chain, and G, .4 for the even chain.

Case 2: {e}, converges on all the vertices of G, and G,, and either uses more
than 2n — 3 colors, or is not a coloring. Proceed as in Case 1.

Case 3: {e}, converges on all the vertices in G, and G,, uses <2n — 3 colors, is
a coloring, and both G, and G, have colorful rows (columns). By the previous
lemma any extension of {e}; to a coloring of G will induce Gy and G, ,, to
either both have a colorful column or both have a colorful row. If we linked G, ,
and G, ,,, then the coloring could not be extended (as two adjacent G” graphs
would have the same type of file induced) but G might not be recursively 2n — 2
colorable. Instead we do the following: if s is odd, then extend both chains with
graphs isomorphic to G™"~', and then link the two new G™"~! graphs; if s is
even, then first extend both chains by a G” graph before extending with a G™"~!
graph and linking. In either case there are an odd number of G” graphs before
the G™"~! graph and the two G""~! graphs are linked. Stop the construction.

Case 4: {e}, converges on all the vertices in G, and G,, uses <25 — 3 colors, is
a coloring, and G, has a colorful row (column) while G, has a colorful column
(row). Link both G,,,, and Ga42 to a graph isomorphic to G™"~1, The coloring
{e}, cannot be extended to a 2, — 3-coloring of G since in such a coloring the

G™"~! graph would have to have both a colorful row and a colorful
column, End of Construction

By comments made during the construction {e}; is not a 2n — 3-coloring of G.
We show that y(G)=n and x(G)y=2n-2.

No matter which case happens, G is a union of a chain of graphs of type G” or
G™"~'. The chromatic number of G is n since a chain can be n-colored by
coloring (say) G, with a basic row coloring, G; with a basic column coloring, etc.

To recursively 2n —2 color G, we will try to follow the strategy of coloring
each G” graph with a basic row or column coloring, in an alternating fashion,
starting off by giving G, and G, a basic column coloring. If case 3 or 4 never
occurs, then this will result in a recursive n coloring of G. If case 4 occurs, then
note that the two graphs linked to the G™"-1 graph are either both basic column
colored, or are both basic row colored. In either case, giving the G™"~1 graph a
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basic coloring of the opposite type will suffice and only 7 colors are used to color
G. If case 3 occurs (the hard case), then we will proceed as follows. Note that the
G" graphs linked to the two G™"~! graphs will both be basic column colored
since G; and G, are basic column colored, and there are an odd number of G”
graphs in the chain (we made sure of this in the construction). Color one of the
G™"~! graphs with a basic row coloring. This will only need n — 1 colors, say
{,2,...,n—~ 1}. The other G™»"~! graph can be basic row colored with colors
{n,n+1,.. ., 2n- 2}, making sure that the row colored with n is the one row
that the link with the G* graph will allow to be colored n (the first row). Even

though both G™"~* graphs are basic row colored they use disjoint sets of colors,
hence the coloring is valid. O

Note. If in the above construction G” is used instead of G™"~! then with
recursive chromatic number 2n — 1 is obtained. The upper bound in this case is

easier since every highly recursive graph with chromatic number 7 has recursive
chromatic number at most 2n — 1 [16, 32].

Appendix B

To establish Bean’s Claim as stated in Section 6 we actually prove something

stronger. The techniques we use appear in Bean’s paper [3], but in a different
form.

Definition. If {¢) is a Turing machine and W is a set on which {e} is defined,
then

{e}(W)={{e}(w) [we W}

Theorem 43, Let L, be the graph consisting of 2° isolated vertices, and let {e} be a
Turing machine. There exists a finite sequence of finite graphs Ly, L,, ..., L, such
that the following conditions hold.
(a) For every i, 1=<is<r, L,is an extension of L,_,, i.e., LycLicL,c- - -c
L,=(V, E).
(b) For every i, 1<i<y, L; can be obtained recursively from L,_, and the
values of {e}(x) for every x € L; 1. If there is a vertex in L;_, on which {e}
diverges, then L,_, =
(c) There exists a set W c V of outerplanar vertices such that either
(1) {e} is not total on W, or
(2) there exists ve V, w e W such that {v, w} € E and {e}(v) = {e}(w), or
(3) IW|=i+1and {e} maps every element of W to a different value.

(d) L, is planar.

(e) There is a 2-coloring of L, in which W is 1-colored.

e
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.,:.o set W witnesses the fact that {e} is not an i-coloring of L,. We call W a
witness of type 1, 2, or 3 depending on which subcase of (c) it falls under. If jt

falls under more then one, then we take the least such subcase.

Proof. We prove this by induction on i, We consider the i = 0 case. Let
Li=({1},9), w={).

If ?.XC? then W is a witness of type 1. If {e}(1)|, then W is a witness of type
e) are easily seen to be satisfied.

th : for i. We show it is true for i +1. Let Ly be a
graph consisting of 2*! jsolated vertices. Let Ly, be the first 2 vertices of L, and

Ly, be the second 2 vertices of L,,. By the induction hypothesis there exists

graphs
Ly L,c Lyc--- [ h‘__ = A—\T va‘
LpcLy,c Lyc---c L.,=(V,, E,);

and sets W, c V;, W, V2 such that W, is a witness set for L

set for L, ,. Assume n<r,. We define graphs L,, L., L,,
theorem (r' will either be rorrn+1). For 0<j<r, let

n1> and W, is a witness
-+, L, that satisfy the

N\\ = Nx\a U NQN.
Forn+l<jsr, let
Li=L,, UL,

If W, (je{0,1}) is a witness of type 1 or 2, then L
W =W, The 2-coloring of the final graph with the wi
obtained by combining such colorings from L
sequence of graphs and the witness set W all satisfy requirements (a)—-(e).

If both W, and W, are witnesses of type 3 then there are two cases:

Case 1: If {e}(W) # {e}(W,), then either there is some element w e W, such
that {e}(w) ¢ {e}(W,); or there is some element w e W, such that {e}(w) ¢
{e}(W,). We examine the latter case, the former is similar. Our final graphis L,
and we let W = W, u {w}. By the induction hypothesis and the fact that W is om
P2 5, IWAl = [{e}(w)] =i + 1. Since w ¢ W, and (e}(w) ¢ {e)(W,), (W, U {(w)l =
He}(W, U {w})|=i+2. Hence W is a witness of type 3. The 2-coloring of the
final graph with the witnesses L-colored can be obtained by combining such
colorings from L,, and L,,;. Therefore the sequence of graphs and the witness set
W satisfy requirements (a)-(e).

Case 2: If {e}(W,
L, Let

» is our final graph and
tnesses 1-colored can be
raand L. It is €asy to see that the

)={e}(W,), then let w be a new vertex that is not in L,,or

L= L, U {{u, w} |uew), W=W,U {w).

If {e}(w)1, then W is a witness of type 1. If {e}(w)| € {e}(W,), then since w is
connected to all vertices in Wi, W is a witness of type 2. If {e}(w)] ¢ {e} (W)
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(and hence {e}(w) ¢ {e}(W,)), then {e}(W) = {e}(W, U {w}) = {e}(W) U {e}(w)
which has cardinality i + 2; hence W is a witness of type 3. Hence W is a witness
set. A 2-coloring of L,,., with W 1-colored can easily be obtained from the

2-coloring of Ly, (that 1-colors W) and the 2-coloring of L, (that 1-colors
W). O

Acknowledgements

We would like to thank Gary Benson, Mark Berman, Susan Flynn, Valentina
Harizanov, Larry Herman, Mike Lockwood, Dave Mount, and Jim Owings for
proofreading and commentary; and Clyde Kruskal for suggesting that we look at
parallel versions of some of the problems here. We would also like to thank
Steven Lempp for useful discussions of 23 complete sets which helped us to
obtain Theorem 7; and Hal Kierstead for discussion of recursive chromatic
numbers which helped us to obtain the results in Appendix A. The first author
thanks NSF grant CCR-8808949, and second author thanks NSF-DCR84-05079,
for financial support, Lastly, the second author wishes to thank Carolyn Woolf,

whose suggestion that he work on more practical matters inspired much of this
work.

References

(1] A. Amir and W. I. Gasarch, Polynomial terse sets, Information and Computation 77 (1988)
37-56.

[2] A. Amir, W. 1. Gasarch and R. J. Beigel, Cheatable, P-terse, and P-superterse sets, University
of Maryland, Dept. of Computer Science, Tech. Rep. 2090.

[3] D. R. Bean, Effective coloration, J. Symbolic Logic 41 (1976) 469-480.

[4] D. R. Bean, Recursive Euler and Hamiltonian paths, Proc. Amer. Math. Soc. 55 (March 1976)
385-394.

[5] R. J. Beigel, SAT* is terse with probability 1, Tech. Rep. 4, The Johns Hopkins University,
Dept. of Computer Science (1987).

[6] R. 1. Beigel, Functionally supportive sets, Tech. Rep. 10, The Johns Hopkins University, Dept.
of Computer Science (1987).

{71 R. J. Beigel, Query limited reducibilities. Ph.D thesis, Stanford University. Also The Johns
Hopkins University Tech. Rep. 5, Dept. of Computer Science (1987).

[8] R. J. Beigel, A structural theorem that depends quantitatively on the complexity of SAT,
Theoret. Comput. Sci., to appear.

[9] R. J. Beigel, Bounded queries to SAT and the boolean hierarchy, Tech. Rep. 7, The Johns
Hopkins University, Dept. of Computer Science.

[10] R. 1. Beigel and W. I. Gasarch, Supportive and parallel supportive sets. University of Maryland
at College Park, Dept. of Computer Science, Tech. Rep. 1805.

[11] R. J. Beigel and W. I. Gasarch, On the complexity of finding the chromatic number of a
recursive graph II: the unbounded case, Ann. Pure Appl. Logic, to appear.

{12] R. J. Beigel, W. 1. Gasarch, J. T. Gill and J. Owings, Terse, superterse, and verbose sets,
University of Maryland at College Park, Dept. of Computer Science, Tech. Rep. 1806 (1987).

[13] R. J. Beigel, W. I. Gasarch and L. Hay, Bounded queries classes and the difference hierarchy,
Arch. Math. Logik.




38 R. Beigel, W.1. Gasarch

[14] R. J. Beigel, W. I. Gasarch and J. Owings, Nondeterministic bo
Pure Appl. Logic 41 (1989) 107-118.

[15] S. A. Burr, Some undecidable problems involving the edge
graphs, Discrete Math. 50 (1984) 171-177.

[16] H. G. Carstens and P. Pappinghaus, Recursive coloration of countable graphs, Ann. Pure Appl.
Logic 25 (1983) 19-45.

[17] W. 1. Gasarch, The complexity of
Computer Science, Tech. Rep. 1652.
(18] W. I. Gasarch and M. Lockwood, The existence of matchings for recursive and highly recursive

bipartite graphs, University of Maryland at College Park, Dept. of Computer Science, Tech.
Rep. 2029.

[19] J. Goldsmith, D. Joseph and P. Young, Self-reducible, P-selective, near-testable, and P-
cheatable sets: the effect of internal structure on the complexity of a set. Proc. 2nd Annual Conf.
on Structure in Complexity Theory (1987) 50-59.

[20] J. Kadin, PNPltegn) ;14 sparse Turing-complete sets for NP. Proc. 2nd Annual Structure in
Complexity Theory Conference (1987) 33-40.

[21] H. A. Kierstead, An effective version of Dilworth’s theorem, Trans. Amer. Math. Soc. 268
(1981) 63-77.

[22] H. A. Kierstead, Recursive colo

unded query reducibilities, Ann.

-coloring and vertex coloring of

optimization functions, University of Maryland, Dept. of

rings of highly recursive graphs, Canad. J. Math. 33 (1981)

1279-1290.

[23] H. A. Kierstead, An effective version of Hall’s theorem, Proc. Amer. Math. Soc. 88 (1983)
124-128.

[24] M. W. Krentel, The complexity of optimization problems. J. Comput. Systems Sci., 36 (1988)
490-509.

[25] C. P. Kruskal, Searching, merging,
32 (October 1983) 942-946.

B&?Z»Eﬁn..m:a._. WOmn:mSm?mmnozﬁ matchmaking, Proc. London Math. Soc. 25 (1972)
615-654.

[27] A. Manaster and J. Rosenstein, Effective matchmaking and &
Math. Soc. 39 (1973) 371-378.

[28] J. Owings, A cardinality version of Beigel’s nonspeedup theorem, J. Symbolic Logic (1989).

[29] H. Rogers Ir., Theory of Recursive Functions and Effective Computability (McGraw-Hill, New

and sorting in parailel computation, IEEE Trans. Comput.

-chromatic graphs, Proc. Amer.

[30] L. E. Rosier and H. Yen, Logspace hierarchies, polynomial time, and the complexity of fairness
problems concerning w-machines, SIAM J. Comput. 16 (1987) 779-807.

[31] J. H. Schmerl, The effective version of Brooks theorem, Canad. J. Math. 34 (1982) 1036-1046.

[32] J. M. Schmerl, Recursive colorings of graphs, Canad. J. Math. 32 (1980) 821-830.

[33] M. Snir, On parallel searching, SIAM J. Comput. 14 (August 1985) 688-708.

[34] R. L. Soare, Recursively Enumerable Sets and Degrees, Omega Series (Springer, Berlin, 1987).

[35] H. Tverberg, On Schmerl’s effective version of Brooks’ theorem, J. Combinatorial Theory
(Series B) 37 (1984) 27-30.

[36] K. Wagner, More complicated questions about maxima and minima and some closures of NP,
Proc. 13th ICALP, Lecture Notes in Computer Science 226 (Springer, Berlin, 1986) 434-443,

[37] G. Wechsung, On the boolean closure of NP, Proc. 1985 FCT, Lecture Notes in Computer

Science 199 (Springer, Berlin, 1986) 485-493. This Paper was actually co-authored by K.
Wagner.

Annals of Pure and Applied Logic 45 (1989) 39-101 39
North-Holland

SOME PRINCIPLES RELATED TO CHANG’S
CONJECTURE

Hans-Dieter DONDER

Institut fiir Mathematik 11, Freie Universitiit Berlin, Arnimallee 3, 1000 Berlin, 33, West
Germany

Jean-Pierre LEVINSKI
Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA

Communicated by T. Jech
Received 10 March 1988; revised 1 August 1988

We determine the consistency strength of the negation of the transversal hypothesis. We also
study other variants of Chang’s conjecture.

0. Introduction

The transversal hypothesis TH is the statement that there exist w, many almost
disjoint functions from w, to . This seems to be a basic principle because it
implies the negation of Chang’s conjecture, that no @,-complete uniform filter on
@, is w,-saturated and that every uniform ultrafilter on w, is regular. The main
aim of this paper is to determine the consistency strength of the negation of TH.
This will be done in Section 7 where we show that ZFC +—TH is equiconsistent
to ZFC + “there exists a (<w,, <w,)-Erdos cardinal”. Since the definition of this
type of partition cardinal is quite complicated we do not give it here.

Good lower and upper bounds for the strength of "TH have been known for
some time because of the implication

CC—-TH— wCC.

Here CC denotes the well-known Chang conjecture and wCC is the weak Chang
conjecture which says that there is no family (f, | v< e, +1) of functions from
@; t0 w; which is strictly increasing with respect to the club filter on ,. The
strength of the principles above was determined in [7} and [8]. Our results in
Section 7 especially show that the two implications above are strict in the sense of
consistency strength.

A key to our main result is a model-theoretic equivalent of 7"TH which is given
in Section 2 (see Theorem 2.14). This shows that =TH is really a variant of CC,
We show that =TH is rather close to CC whereas there is a large gap between
wCC and —TH. This gap can be filled with a family of game principles which we
introduce in Section 2. We think that these principles are very natural. So we
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