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1 Introduction

Since 1965, the idea that the next generation of computer technology would
always be twice as small pushed innovation to its limits. Now, however, it
seems that the era of Moore’s law is coming to a close. Microchip manufacture
is beginning to stumble over the limits of physics, and even Moore himself has
declared that his law will be dead by 2025. The industry must seek new horizons
of development if it is to maintain its momentum.

It has long been known that electronics aren’t the only form of computer
hardware. In the past, we’ve used electronics simply because we were able to
make them faster, cheaper, and better than anything else, and so we used them
even for tasks they were otherwise unsuited for. Without the buoy of Moore’s
law to support the explosive growth of these devices, however, there is a perfect
opportunity for other paradigms of computation to take the stage.

This paper is a review of these various challengers to the throne of the
computing industry. We give brief overviews of their nature, assessments of their
advantages and disadvantages, notes on the current state of their research and
manufacture, and a set of metrics that may be used to evaluate their usefulness.

2 Neuromorphic

2.1 Overview

Neural networks are a type of data structure used in machine learning, and are
designed to mimic (in software) the human brain. Layers of ‘neurons’ repre-
sented by vectors carry data forward across ‘synapses’ represented by matrices,
and parameters are adjusted to minimize error. They have shown remarkable
success in their capacity to learn from limited data sets, and are used widely
for a range of tasks otherwise intractable for standard algorithms, including
image processing, speech recognition, data search algorithms, and more. Unfor-
tunately, modern computer architectures are not well optimized for the matrix
computations used for neural network computing.

Enter neuromorphic computing: a paradigm of purpose-built computer hard-
ware designed explicitly to perform neural network computations efficiently. By
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making use of organization similar to that of the human brain, neuromorphic
chips gain significant computing advantages for machine learning. As very spe-
cialized machines, they are often designed for more specific types of neural
network, such as spiking or convolutional neural networks [24]. Neuromorphic
computers also take advantage of electrical components that act like biological
neurons, such as memristors.

A memristor is a theoretical electrical component that varies its resistance
depending on how much current has flowed through it previously. These com-
ponents open up new possibilities for computer engineering, and are especially
good for neuromorphic computers due to their neuron-like behaviour. A range of
memristors exist, including titanium dioxide and carbon nanotube memristors,
and they are in use by many neuromorphic machines [29]. There are, however,
doubts as to whether a ”true memristor” can actually exist, and whether all
existing ones are merely very good approximations [35] (although they are good
enough that we can’t tell the difference).

2.2 Advantages

By virtue of its focused design, neuromorphic computation is by far more effi-
cient than standard computation for machine learning, both in theory and in
practice. Neuromorphic chips boast significantly reduced power consumption
and power density [51]. More importantly, however, neuromorphic computa-
tion is much faster and more space efficient than typical computers—it’s even
more time and space efficient than the human brain [45]. It is also highly pro-
grammable, and approachable for use by non-experts.

2.3 Disadvantages

This all comes with some notable caveats. Neural networks as an architec-
ture, for example, are fundamentally unpredictable, in that different trainings
can result in different networks with differing levels of success. In addition,
neuromorphic computing is fundamentally inefficient for simple mathematical
computation, since it has to learn from scratch the rules of arithmetic [2]. Neu-
romorphic microprocessors also have hit several stumbling blocks when it comes
to ease of use, integration with standard computers, and even integration with
other neuromorphic processors [25]. Notably, as with all forms of dedicated
hardware, neuromorphic architectures may ‘phase out’ when better versions
are developed, since it becomes difficult to run modern software on outdated
single-purpose hardware.

2.4 Current Work

Much research is being done on neuromorphic computation, and there are sev-
eral notable working chips and microprocessors that are designed for this form
of computation. The Intel Loihi research chip shows remarkable success, both
in terms of speed and energy efficiency, and is designed for asynchronous spiking

2



neural network computation [6]. More recently, IBM’s TrueNorth microproces-
sor has shown similar results [25], but with more success at overcoming integra-
tion problems, and is currently in use by DARPA’s SyNAPSE processor [34].

2.5 Metrics

Neuromorphic computing is a very specialized category designed explicitly for
machine learning. Therefore, the metrics that should be used to evaluate neu-
romorphic computing are the same ones used to evaluate machine learning ar-
chitectures, such as time to convergence and training error. In addition, there
are hardware considerations: energy efficiency, space efficiency, durability, and
integrability with other neuromorphic/classical architectures.

3 Neurological

3.1 Overview

Neurological computation refers to the way biological neurons self-organize to
process information. While we know with certainty that it is very effective,
scientists have only a limited understanding of the biochemical processes that
occur to make the brain function. Sometimes referred to as wetware, as opposed
to hardware or software, this form of computation is especially effective when
it comes to association and learning processes.

3.2 Advantages

Neurological computing has all the potential advantages of human brains over
computers — brains are exceptional at self-organizing and rewriting, at classifi-
cation, and at learning tasks. In addition, the biochemical nature of neurological
systems means they are remarkably energy efficient when compared with clas-
sical computers [26].

3.3 Disadvantages

Of course, this also means that neurological computers have all the flaws of
human brains. They require delicate physical, biochemical, and thermal condi-
tions, and we lack much of the requisite knowledge to maintain them outside of
living organisms. They tend to be computationally disorganized and inefficient
for standard tasks, and since they are fundamentally association machines, they
have a tendency to make mistakes.

3.4 Current Work

Of course, there are plenty of examples of functioning neurological computers -
there’s one in every head, human, animal, and even insect. More importantly,
we’ve made headway into understanding them, as the fields of cognitive science
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and neuroscience clearly demonstrate. There is even an example of a man-
made (or rather, man-designed) neurological computer. In 1999, William Ditto
created a computer using leech neurons that could perform simple addition [28].
However, it is fair to say we understand so little of the human brain that any
form of useful neurological computer is far away, even for research.

3.5 Metrics

Neurological computation is specialized in the same way as neuromorphic com-
putation, and thus should be evaluated by the same metrics - time to conver-
gence, energy consumption, space efficiency, and durability. Notably, however,
one should also consider interpretability for this form of computation, as it is
not always easy to extract answers. Of course, the lack of understanding of neu-
rological systems presents an obstacle to identifying effective metrics, so this list
should be considered incomplete.

4 Spintronics

4.1 Overview

Fundamental particles have a property known as spin, which influences how
they interact with magnetic fields. Notably, the measured spin of an electron is
always one of two directions: up or down. Spintronics deals with harnessing this
property of electron spin for use in solid-state (no moving parts) systems. By
deliberately altering and measuring the spins of trapped electrons, we can build
spintronic chips and, hopefully, computers. These would function logically in
the same way as classical computers, but with multiple practical benefits. This
is already being done for information storage [9], but it has yet to be done for
computing.

4.2 Advantages

Spintronics has great potential for use in the future as a replacement for, or
supplement to, classical computing via storage and processing improvements.
We explore both these themes.

Spintronic storage has various hardware advantages, including increased
writing speed, space efficiency, resistance to heat and electromagnetic interfer-
ence, and critically, non-volatility (storage does not require constant power) [12].
These improvements have been demonstrated by existing storage chips, as will
be seen later.

Spintronic computation shows great potential for future development in a
variety of areas that have yet to be practically realized. These include computa-
tion using spintronic transistors, spinplasmonics (see next paragraph) and even
integrations of spintronics with quantum and/or neuromorphic computing. It is
expected that improvements in these areas will share the speed, space efficiency,
and resilience against heat and electromagnetism of existing spintronic storage.
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Spinplasmonics is a combination of spintronics with plasmonics, a field study-
ing plasmons. Plasmons are quanta of plasma oscillation, and play a role in the
light waves used to read and write to spintronic data. Through use of plas-
monics, it is possible to read and write to spintronic data without electronic
components, which may accelerate read and write speeds [22]. The major hope,
however, is that spinplasmonics may enable further miniaturization of spintronic
computing.

The idea of integrating spintronics with quantum computing is founded on
the observation that a particle’s spin can behave as a qubit. Then, by combin-
ing spintronics’ ability to manipulate spin with quantum’s ability to compute
with it, we may improve the efficiency of quantum computation. This goal rests
far in the future, however, as quantum computation is still a growing field, and
spintronic techniques lack the power as of yet to accomplish this integration.
Neuromorphic computing, on the other hand, can make use of spintronics in a
simpler way, the same way as classical computation does. This entails using ef-
ficient spintronic processing and memory for neuromorphic computation. Thus,
integrations of neuromorphic and spintronic computing are more promising for
the near future, since the technology to integrate is better-understood.

4.3 Disadvantages

There are issues when integrating spintronics with classical computing. In par-
ticular, cross-platform information transfer is energy costly and slow. There
are also trade-offs for various hardware constraints of spintronic storage: good
retention means high power consumption, and low power consumption degrades
retention, for example [50]. At the moment, spintronic MRAM (magnetic ran-
dom access memory) is very space- and cost-inefficient [3], though further re-
search may alleviate this. In addition, although this technology shows great
promise, spintronic processing does not show any signs of reducing the number
of steps of any computation (although it does reduce the time it takes to do one
step); in short, it lacks a ”killer application,” such as quantum computing’s po-
tential to lower the time complexity of factoring from exponential to polynomial
time.

4.4 Current Work

Many microchip and electronics companies are investing a great deal of time
and money into spintronics research. Some of them have developed, tested, and
even sold working MRAM chips used for data storage that use spintronic tech-
niques. Notably, Everspin has developed working STT-MRAM (Spin-transfer
torque) chips that have been incorporated into working demonstration com-
puters by Intel, Samsung, and others [20]. IBM, too, is breaking ground with
experimental but incredibly efficient Racetrack Memory chips that may poten-
tially outperform almost all modern computer memory chips [4]. Spintronic
processors, however, are yet to be practically realized, though current research
suggests they may be in the near future.
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4.5 Metrics

Spintronic computation is not specialized as of now - it computes in the same
way as classical computers, but with different fundamental components. For
this reason, the valuable metrics for spintronics are hardware metrics, since
having hardware advantages over electronic computers is what makes it viable
as a form of alternative computation. The hardware metrics worth considering
include space efficiency, speed, energy efficiency, and durability. Also notable
as a useful way of tracking progress in spintronic research is the accessibility of
spintronic devices for non-expert use.

5 Quantum

5.1 Overview

Classical computers store and manipulate information as bits, which can each
be in one of two discrete states (1 and 0). Quantum computers, however, ma-
nipulate qubits, special structures that utilize the quantum properties of matter
and can exist in the states of 0, 1, or any superposition of the two. However,
when measured, qubits ”collapse” to either 1 or 0. By using complex super-
positions of qubits, quantum computers can compute things quickly (and often
probabilistically) that classical computers cannot.

5.2 Advantages

Essentially, quantum computing is a form of powerful parallel processing with
strong limitations on its readout; although a set of n qubits can store n complex
numbers worth of information, only n bits of it can be accessed. The freedom
to manipulate which bits are accessed is what gives quantum computation its
power, but figuring out how to do so is difficult. The Deutsch problem serves
as a simple example.

Suppose you have a function f:{0, 1} → {0, 1}. Clearly, there are only 4 such
functions : f(x) = x, f(x) = 1-x, f(x) = 0, and f(x) = 1. We can say that f(x) =
x and f(x) = 1-x are balanced and f(x) = 0 and f(x) = 1 are constant. Suppose
we are given a black box that computes one of these functions, and we want to
determine if it is balanced or constant in as few evaluations as possible. From
an information theory point of view, we only desire one bit of information, and
each function evaluation gives us one bit, so we’d like it to be possible in one
evaluation. With a classical computer, of course, this is impossible - we must
evaluate the function twice. A quantum computer, however, can determine
if the function is balanced or constant in a single evaluation, by performing
the function on a superposition of 0 and 1, and then changing the bases of
measurement such that balanced functions evaluate to 1 and constant functions
to 0.

This technique can be used for a variety of quantum algorithms. The most
famous are Shor’s and Grover’s algorithms for discrete log and unsorted search,
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but there are a variety of lesser-known algorithms that have been developed.
Many are algebraic and number theoretic in nature, like Shor’s algorithm, and
some are ”oracular,” like Grover’s, but a number are simulation algorithms [30].

Quantum is probably best known for its applications to number theory, and
especially for Shor’s algorithms for factoring and discrete log. Constraint satis-
faction problems, subset sum, matrix product verification, and various abstract
algebra problems are possible with quantum computing [30], and some algo-
rithms for these problems have superpolynomial improvements over their clas-
sical counterparts, which is the reason for the majority of the buzz surrounding
quantum.

Oracular algorithms deal with “oracle problems,” or problems in which we
desire some information about a difficult-to-analyze function. The Deutsch
problem seen above is one of the simplest examples of this, and has been ex-
tended into the Deutsch-Josza algorithm for n-bit cases of the problem. These
algorithms cover a wide range of topics [30], including boolean evaluation, linear
systems, graph properties, and even machine learning [30] [49].

When quantum computing was first introduced, many of its proponents,
including Richard Feynman, were most excited about its potential to simulate
quantum systems [52]. This remains a major motivation for quantum research,
and other forms of simulation and approximation algorithms have been devised
that show potential. These algorithms cover a range of topics including knot
theory, manifolds, and linear algebra [30].

5.3 Disadvantages

Quantum computation has its flaws, however. As of now, no quantum com-
puter has been able to outpace classical computers at factoring, although they
continue to shrink the gap. Beyond this, however, there are more fundamental
issues. Quantum computers are very informationally noisy [43], so there are
limits on the accuracy of computation. In addition, most quantum comput-
ers must be supercooled to function. Even if all of this is addressed, however,
quantum computing only has a small set of problems it is expected to be able
to solve. Finally, quantum machines require high levels of expertise to use, and
programming them efficiently is still a growing and very technically difficult
field.

5.4 Current Work

Quantum technology has made great strides recently. Prior to 2016, the most
qubits any quantum machine has been able to use was 12, but since then there
has been an explosion of corporate interest. Many companies now have working
quantum computers and chips used for research purposes, such as Google’s 72
qubit Bristlecone [32], Intel’s 49 qubit Tangle Lake [5], and IBM’s unnamed
50 qubit prototype [33]. IBM has even released a ”commercial” (being sold
to a limited group for research) quantum computer, the Q System One [7],
a 9-foot cube with 20 qubits, and is selling computation time on it to other
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companies and labs. It must be noted that there is a company called D-Wave
that claims to have surpassed 2000 qubits with a technique called ”quantum
annealing,” but there are heavy doubts as to whether their computers classify
as truly quantum [14]. There is much more work to be done, however, as all of
these processors are designed for research, rather than practice.

5.5 Metrics

Quantum computing is a very atypical form of computing, as it is not used for
routine computation, but rather for remarkably specific applications that are
still in progress. In addition, many major quantum algorithms, such as Shor’s
and Grover’s algorithms, are probabilistic. As such, the most valuable metrics
to use are unusual, such as the largest number it has factored, the temperature
required, and the probability of algorithm success. Some, however, are more
typical, such as the time complexity of algorithms for quantum computation.

6 Optical

6.1 Overview

There are several potential paradigms of optical computation, since it belongs
in a mostly theoretical domain. The simplest of these paradigms is the same as
typical computers with all electrical components replaced or supplemented by
optical components. Some other paradigms, however, are less straightforward.
For example, time delay optical computing involves splitting and delaying beams
of light to perform highly parallel processes.

6.2 Advantages

All forms of optical computing have an edge over classical computers in heat,
resistance to interference, and energy consumption [8]. This is because elec-
trons interact more directly with matter than photons, which wastes energy
and makes them susceptible to the environment. In addition, optical comput-
ing shows promise for image processing and machine learning. Some theoretical
designs even show potential in solving NP-Hard problems such as the subset-sum
problem [46].

6.3 Disadvantages

Unfortunately, optical computers have difficulty interfacing with classical com-
puters due to constraints on the efficiency of converting information between
light and electricity [38]. Also notably, the theoretical designs that promise
computational complexity improvements also promise abysmal performance on
standard problems. When coupled with integration problems, this poses a chal-
lenge to complex problem solving for any general-purpose optical computer.
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6.4 Current Work

While there are a number of theoretical designs for optical computing devices,
very few actually exist. Some, however, have made it to the point of commer-
cial availability - Optalysys launched the first commercially available optical
processing system, the FT:X 2000, on March 7th of 2019 [8]. The FT:X is an
AI co-processor designed for image and video machine learning applications.
Beyond that, however, nothing of much impact has left the research phase.

6.5 Metrics

The metrics that are useful to evaluating optical computing vary depending on
the optical architecture being examined. For classical computers using optical
components, the metrics worth considering are hardware metrics, such as speed,
heat, energy efficiency, and durability. For other, more specialized versions,
they must be evaluated on the metrics relating to the problems they solve. For
example, the FT:X should be evaluated on time to convergence for visual data
processing, etc. Work with optical processors requires some level of familiarity,
however.

7 Chemical

7.1 Overview

Chemical computation refers to computation using chemical reactions, and is
relatively broad in that there are several theoretical models of how one might
function. The most studied example is the Belousov-Zhabotinsky (BZ) com-
puter, also known as the reaction-diffusion computer. These computers use the
spread of a periodic reaction and the interaction between concentration waves to
compute. The reaction can be modified to be light-sensitive, and so is researched
in connection with image processing [44]. Another, less developed paradigm is
molecular computing, which uses individual molecules as data and logical gates.
Some aspects of molecular computing show intersection with amorphous com-
puting, which will be covered in the next section.

7.2 Advantages

Chemical computing is fundamentally completely different from classical com-
puting, both in processing and in information storage. For clarity, we examine
both these concepts separately.

All forms of chemical computer show potential to be excellent parallel pro-
cessing tools, due to the non-sequential nature of chemical reactions. BZ com-
puters show potential to be used as effective image-processing tools due to their
light-sensitive variants. Molecular computing also shows great parallel process-
ing potential, perhaps even more that BZ.
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BZ computers don’t show much potential for storage improvements, but
molecular computers do to an immense degree. By storing information in molec-
ular arrangements, molecular computers could surpass the Moore’s Law limit
and potentially store information in as little space as is physically possible under
any scheme.

7.3 Disadvantages

Individual computational steps on chemical computers take a long time (in
contrast with, say, spintronics, where individual steps are faster than classical
computers). Chemical reactions are fundamentally slow, so when it isn’t possi-
ble to take advantage of parallel processing chemical computers can’t keep pace.
Extracting answers from chemical computers can also be difficult, since mea-
suring results visually requires the addition of indicator chemicals that may be
slow or unreliable [21]. The major hurdle, however, is the difficulty of program-
ming chemical computers with useful or lengthy instructions, as the molecules
required to do this may be unstable or hard to synthesize. In addition, it re-
quires expertise both in computer science and in chemistry to effectively operate
chemical computers, and it is difficult to predict whether this will change in the
future.

BZ computers show no real storage improvements at all, and in fact may be
less information dense than classical computers. Read and write times for BZ
computers are also not promising, though reading and writing may be conducted
in parallel. Molecular computers also present challenges, as most likely storage
will be difficult to access, and may be unordered.

7.4 Current Work

Several proof-of-concept BZ-computers have been developed, mostly for image
processing. One such computer was used to compute the shortest path between
two points in a maze without having to check every path, like a GPS-style
computation would [48]. Research is being done to improve upon these models
and design them to perform more useful computation. In addition, numer-
ous computing molecules have been designed and tested [42], though none yet
demonstrate promising complexity of computation.

7.5 Metrics

Chemical processing is strange in that it functions in a fundamentally stochastic,
non-sequential fashion. As such, it is necessary to compare it both on linear and
parallel terms. For this reason, the metrics that should be examined include
speed of linear computation and speed of parallel computation. In addition,
specialized chemical computers for tasks such as image processing should also
be evaluated on specific criteria pertaining to those tasks, such as reliability and
resolution.
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For chemical storage, other areas require quantification. Since BZ computers
will likely lower data storage density, while molecular computers will increase
it, both should be evaluated on that metric. Reading and writing times, too,
should be considered, as accessing data will be difficult. In fact, both paradigms
struggle with the fundamental issue of interpretability of results, and so this
metric should be addressed as concretely as possible.

8 Amorphous

8.1 Overview

The term “amorphous computing” was coined in the Amorphous Computing
Manifesto [10] in 1996. Amorphous computation, in the broadest sense, is com-
puting with emergent properties of self-organizing systems. More specifically,
an amorphous computer is a interconnected network of simple processors, each
with no prior knowledge of its position or anything beyond its neighborhood,
operating asynchronously (without a shared clock). This paradigm is notable
in that it is hardware-agnostic; an amorphous computer could be a collection of
inter-communicative robots, a cluster of cells, or even a well-designed chemical
solution.

8.2 Advantages

Of course, the most major benefit of this style of computation is parallelism, the
natural advantage of aggregating many small processors together. Further, how-
ever, amorphous computation is an excellent model for many forms of natural
system. Biological cells operate together as amorphous computers; for example,
the cells of a leopard’s skin communicate via chemical signals to form a dis-
tinctive rosette pattern [37]. Similar mechanisms regulate the heartbeats and
brainwaves of living organisms.

Amorphous computing also shows potential to be used for specific forms of
microfabrication, using a thin sheet of microprocessors that can change state to
self-organize into electronic circuits [19]. Similarly, proponents of the paradigm
hope that its potential to organize complex behavior from simple parts may fuel
a new generation of smart materials. On a more macro scale, MIT labs have
already begun testing amorphous computing concepts and algorithms with ant-
like robot networks and self-assembling structures [13].

8.3 Disadvantages

By nature, amorphous computers are random, inexact, and do not preserve
information well. They are not well suited for any form of sequential operation,
and the design constraints of cells with no prior knowledge of their locations
or surroundings severely cripple even simple tasks. Addressing all cells of the
computer, for example, requires random addressing over a large enough space
to preclude duplicates [10], which means that cells must have prior knowledge
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of the size of the computer, and even this may not be desired. They are poorly
understood, and while they are programmable, we don’t understand well how
to design effective algorithms for amorphous computers.

The largest disadvantage to amorphous computation, however, is the fact
that any centrally-organized classical computer of the same size as an amor-
phous one is strictly better for all sequential operations. Classical computers
are even usually better for parallel computation due to the difficulty of design-
ing amorphous algorithms that can effectively parallelize computation. For this
reason, amorphous computers are only more effective computation tools for very
specific problems.

8.4 Current Work

The principles of amorphous computing are plainly visible in the natural world,
especially in cellular biology. Human-made amorphous computers, however,
largely remain in the theoretical realm. That said, there is a growing body
of research on amorphous computing, including investigation of error correc-
tion [18], self-repairing systems [53], and amorphous computing languages such
as the Growing Point Language [19]. Theoretical models of amorphous comput-
ers show promise for certain parallel tasks, as do real-world biological amorphous
computers like Physarum Polycephalum, a yellow slime mold with remarkable
intelligence. That said, given how new the field is, it’s very difficult to tell how
research will develop.

Other approaches involve using chemical processes to create chemical sim-
ulated annealing machines based on the Ising model. This claims to have the
advantage being able to approximate solutions to NP-hard problems like the
satisfiability problem.

8.5 Metrics

Amorphous computing is a very young field, even relative to the other forms
of largely theoretical computation described herein. For this reason, all of the
following examples of metrics that could be used to evaluate an amorphous
computer should be taken with a grain of salt.

Amorphous computing, like chemical computing, is fundamentally asyn-
chronous and stochastic. As such, it is necessary to compare it both on lin-
ear and parallel terms. For this reason, the speed of both linear and parallel
computation should be examined. In fact, given the (currently) small space of
problems for which amorphous computing provides any speed advantage, the
size of said space can be considered an important metric of evaluation.

Given amorphous computing’s unique propensity for microfabrication, var-
ious metrics relating to self-assembling materials should also be considered.
These, of course, include the size and speed of the microprocessors used, as well
as their physical integrity for certain applications. In addition, various consid-
erations including communication range and reliability, microprocessor failure
rate, and even resistance to malicious interference should be considerations.
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9 DNA

9.1 Overview

DNA is a chemical chain consisting of 4 chemical bases, and it is stored in the
cells of a wide variety of organisms. It stores a massive amount of information
and is used as the blueprint for all of the proteins the body produces. The
intent of DNA computing is to harness the preexisting chemical structure and
properties of DNA to store and manipulate information encoded into those 4
chemical bases.

9.2 Advantages

We know that DNA computing has potential, because our bodies compute with
DNA every minute of every day, replicating it and using it to grow new cells.
Since it is a molecular-level structure, DNA is incredibly space efficient [47],
and moreover is very well suited for massive parallelism. This means that DNA
computing has the potential to reach incredibly high speed for problems that
can be effectively parallelized. Thus, it is claimed that DNA computers might
be able to solve problems such as evaluating boolean circuits [39].

9.3 Disadvantages

Unfortunately, DNA computing is limited by the speed of the reactions with
which it can be edited, copied, and read. As such, even though it is massively
parallel, it is limited in speed by the inefficiency of basic computation. In
addition, it is a tremendous challenge to read and interpret data produced by
a DNA computer [16], since it is such a microscale process. Finally, it requires
a relatively large expenditure of chemical resources to program and run an
algorithm on a DNA computer.

9.4 Current Work

An impressive amount of success has been attained by the field of DNA com-
puting research. DNA computing has been used to solve the traveling salesman
problem on 7 cities [11] and 3-SAT on 20 variables [15], and even to play Tic-
Tac-Toe [23]. Notably, however, is the fact that although it has solved these
problems, in many cases the answers could not be extracted, because it is dif-
ficult to interpret answers from DNA computation. In addition, the TSP and
3-SAT results are from 1994 and 2002 respectively, and while work has built on
this research, no breakthroughs have granted DNA computing practical viabil-
ity. Still, research into DNA computing shows impressive potential.

Current research has also suggested ways to overcome poor DNA synthesis
speed - a team at the University of Illinois has developed a scheme that involves
”nicking” native E. coli DNA to store information [36], effectively negating
the cost of synthesis. This scheme also has a highly parallelizable theoretical
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language to allow for in-memory computation, limiting readout costs. This is
still deeply in the theoretical realm, however, and has major logistical concerns
relating to computation fidelity. This has led to the consideration of employing
stochastic computing methods. For example, one could randomly nick a strand
of DNA with a frequency of 1/n and another strand with 1/m. By taking the
logical AND of these strands, one could approximate 1/mn, allowing for simple
multiplicative computation.

9.5 Metrics

The major advantages and disadvantages of DNA computing lie in its chemical
nature, which leads it to be highly parallel and information-dense. The metrics
best for evaluating this are speed of sequential computation, speed of parallel
computation, data storage density and longevity, and interpretability of solu-
tions. While the final metric is difficult to evaluate, it is critical to consider
when examining the viability of DNA computing due the importance that must
be given to resolving this problem.

10 Peptide

10.1 Overview

Peptides are chemical chains consisting of 20 types of amino acid, and they are
used for many different biological processes. They, like DNA, can store much
information in the sequence of amino acids they consist of. The intent of peptide
computing is to harness the information storage and manipulation capabilities
of peptides to perform computation.

10.2 Advantages

Peptide computing is very similar to DNA computing, and thus has many of the
same advantages, primarily extremely space efficient data storage and massive
parallelism. It also has notable advantages over DNA in a few ways, however.
First, with 20 amino acids instead of 4 bases, peptide computing has the po-
tential to be even more space efficient than DNA. Second, peptide reactions are
more flexible and can more easily accept antibodies for reaction [27].

10.3 Disadvantages

Of course, peptide computing has all of the downsides of DNA computing as well.
Not only does it present no potential for faster simple computation than DNA,
it also shows no signs of being any easier to extract results from. The major
roadblock, however, is the lack of availability of some monoclonal antibodies
which would be necessary to realize a working peptide computer [27]. The
details of what monoclonal antibodies are and why they are necessary do not
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concern us here, except to note that their scarcity presents an obstacle for
peptide computing.

10.4 Current Work

Although no working peptide computers exist, there is much substantive re-
search on how one might be practically realized. A paper by Hug and Schuler [27]
describes how a peptide computer might be used to solve NP-Complete prob-
lems like the satisfiability problem. The pace of research remains steady, despite
the lack of experimental results.

10.5 Metrics

Peptide computing is incredibly similar to DNA computing. The major advan-
tages and disadvantages of peptide computing lie in its chemical nature, which
leads it to be highly parallel and information-dense. The metrics best for eval-
uating this are speed of sequential computation, speed of parallel computation,
data storage density, and interpretability of solutions. While the final metric
is difficult to evaluate, it is critical to consider when examining the viability of
peptide computing due to the importance that must be given to resolving this
problem.

11 Membrane

11.1 Overview

Membrane computation is a theoretical computational model inspired by the
function of cellular membranes. It studies nested ”membranes” in various ar-
rangements, known as P-systems, and the evolution rules they follow that lead
to desirable computations. This model of computation is not a physical system,
but rather a theoretical area of study, and has no direct hardware analog from
which it is derived. The closest version of such a thing is the behavior of cell
membranes, but the theoretical system and the physical system are fundamen-
tally different in nature.

11.2 Advantages

P-systems have the advantage of being somewhat efficient for computing in
parallel, and describe effectively the properties of self-organizing systems [40].
In addition, since similar systems are in play within our bodies, membrane
computing could be used to understand bodily computing and vice versa.

11.3 Disadvantages

Membrane computing is an entirely theoretical computing paradigm, offering no
major practical benefits and with no working hardware models. It is unknown
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how to implement most necessary and useful algorithms using membrane com-
putation, even including simple programming concepts such as recursion.

11.4 Current Work

There exists an abandoned patent for a potential liquid model of a membrane
computer [31]. Otherwise, all work done is theoretical and still in progress.
Though a substantial amount of theoretical work has been done, no satisfactory
physically implementable systems yet exist.

11.5 Metrics

Seeing as no practical models of membrane computing exist, viable metrics are
hard to identify. However, since it is designed as an alternative to classical
computing that is similarly universal and is focused on parallel processing, we
can extrapolate from chemical computing what may be necessary. The metrics
that should be examined include the time complexity of linear computation and
the time complexity of parallel computation. Of course, the lack of existing
systems to draw conclusions from means this list is woefully incomplete.

12 Fluidic

12.1 Overview

Fluidic computation uses and collides jets of water to create logic gates. These
logic gates are aggregated into a physical system, much like a microchip, to
perform computations. For example, one can simulate an OR gate with two
jets that meet into a stream. When either jet is on, water flows through the
stream and the gate is active.

12.2 Advantages

Fluidic computing is most applicable in areas of nanotechnology, where minia-
turization is paramount and so classical computing is difficult or impossible.
There, microfluidic systems may be able to be integrated into nanoscale ma-
chines for processing. Microfluidic systems implementing bubble logic [41] can
carry chemical payloads, allowing for both computation and material manipu-
lation simultaneously. Microfluidic systems can also be used as effective simu-
lations for biological systems, or even as time-delay drug delivery mechanisms,
and are therefore useful for medical applications [1]. While it may not be im-
mediately obvious that this can be considered computing, we take an expansive
view, and therefore argue that it qualifies. Certainly, whether it qualifies or not,
it would be useful if fully developed. For more large-scale fluidic systems, the
primary advantage is hardware flexibility.
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12.3 Disadvantages

Fluidic computation is incredibly difficult to reprogram, since there are no mov-
ing parts, and so most fluidic systems are limited to predesigned single-use
systems. Fluidic systems are both space-, time-, and energy-inefficient, and
heat sensitive. They have no theoretical computation benefits when not used as
analog systems.

12.4 Current Work

Given that no papers appear when searching Google Scholar for ”fluidic com-
puter,” it is safe to say that no serious research is being done into the subject.
Several amateur enthusiasts have designed and built such computers, as have
some students at Stanford [17], but these are entertainment projects rather
than practical designs. For biomedical applications, however, tangent work is
being done into miniature, microfluidic systems for injection and physiological
simulation [1].

12.5 Metrics

The valuable metrics for fluidics are hardware metrics, such as space efficiency,
speed, durability, and bio-compatibility. This is because fluidic computation
is not specialized, and is primarily useful for non-programmable (much like a
circuit), bio-compatible applications.
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