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0.1 Point

Generating functions are a powerful tool to prove theorems. However, there

are times when a more elementary proof is available. We look at several

loaded dice questions and answer them both with generating function proofs

and elementary proofs. Which technique is better is a matter of opinion.

0.2 Loaded Dice

When you role a pair of fair 6-sided dice the probability of getting a 2 is

1/36 and the probability of getting a 7 is 1/6. Note that they are not

equal! Can you load dice to get fair sums? The answer is no, as was shown

by [Honsberger (1978)] using elementary methods and [Hofri (1995)] using

generating functions. [Chen et al. (1997)], [Gasarch and Kruskal (1999)],

and [Morrison (2014)] have looked at generalizations of this question. We

look at this question for two 6-sided dice and M d-sided dice.

Definition 0.1. A d-sided die is a tuple of d real numbers (p1, . . . , pd)

such that 0 ≤ pi ≤ 1 and
∑d

i=1 pi = 1.

0.3 Elementary and Gen Function Proofs for Two 6-Sided

Dice

Lemma 0.1. For all real x > 0, x + 1
x ≥ 2.

Proof. Since x > 0
√
x, 1√

x
∈ R+. Hence the following algebra makes

sense.

(√
x− 1√

x

)2

≥ 0

Hence
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x− 2
√
x

1√
x

+
1

x
≥ 0

x +
1

x
≥ 2

Theorem 0.1. There is no way to load two six-sided dice to obtain fair

sums.

Proof. Assume, by way of contradiction, that (p1, . . . , p6) and (q1, . . . , q6)

are a loaded pair of dice that yields fair sums. Each sum has probability

1/11 of occurring. From this premise we give two proofs.

Elementary Proof

If q1 = 0 then Prob(2) = 0 6= 1
11 , hence q1 6= 0. Similar for q6. Hence

we can divide by either of them.

Prob(2) = Prob(12) = p1q1 = p6q6.

Prob(7) = p1q6 + p2q5 + p3q4 + p4q3 + p5q2 + p6q1
≥ p1q6 + p6q1 = (p1q1) q6

q1
+ (p6q6) q1

q6

= 1
11

(
q6
q1

+ q1
q6

)
≥ 2

11 This step uses Lemma 0.1.

This is a contradiction.

Generating Function Proof

Consider the function

(p1x+p2x
2+p3x

3+p4x
4+p5x

5+p6x
6)(q1x+q2x

2+q3x
3+q4x

4+q5x
5+q6x

6)

Note that the coefficient of xn is Prob(n) = 1
11 . Hence

(p1x+p2x
2+p3x

3+p4x
4+p5x

5+p6x
6)(q1x+q2x

2+q3x
3+q4x

4+q5x
5+q6x

6)

=
1

11
(x2 + · · ·+ x12)

so
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(p1 +p2x+p3x
2 +p4x

3 +p5x
4 +p6x

5)(q1 + q2x+ q3x
2 + q4x

3 + q5x
4 + q6x

5)

=
1

11
(1 + · · ·+ x10)

The left hand side has at least two real roots (counting multiplicities)

since it is the product of two odd degree polynomials over the reals. Note

that (x11 − 1) = (x − 1)(x10 + · · · + 1) so the right hand side has as its

roots 10 of the 11 11th roots of unity. Since neither 1 nor -1 are roots

of the right hand side, the right hand side has no real roots. That is a

contradiction.

0.4 Generalizing Both Proofs to Two d-sided Dice

Which proof is better? One way to judge is to see if the proof easily

generalizes to the case of two d-sided dice. We leave it to the reader to

prove the following:

• The elementary proof easily generalizes to show that, for all d ≥ 2,

there is no way to load two d-sided dice to obtain fair sums.

• The generating function proof easily generalizes to show that, for

all d ≥ 2, d even, there is no way to load two d-sided dice to obtain

fair sums.

Since the elementary proof generalizes easily for all d, and the generating

function proof only for d even, this is a win for the elementary proof. But

is there some generating function proof that works for all d? There is!

However, rather than show you that we’ll show you both an elementary

and a generating function proof for the case of M d-sided dice.

0.5 Elementary and Gen Function Proof for M d-sided Dice

Definition 0.2. A polynomial f(x) = ad−1x
d−1 + · · · + a0 is palindromic

if, ad−1 = a0, ad−2 = a1, etc.

Lemma 0.2. Let f(x) be a polynomial such that the sum of the coefficients

is nonzero. If for every root r of f(x), 1
r is also a root with the same

multiplicity, then f is palindromic.
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Proof. Let f(x) = pd−1x
d−1 + · · · + p1x + p0. Let r be some root. Then

1/r is also a root. Hence

pd−1
1

rd−1
+ · · ·+ p1

1

r
+ p0 = 0.

pd−1 + pd−2r + · · ·+ p0r
d−1 = 0

Hence r is a root of

g(x) = pd−1 + pd−2x + · · ·+ p0x
d−1.

Therefore

f(x) = pd−1x
d−1 + · · ·+ p1x + p0

and

g(x) = p0x
d−1 + p1x

d−2 + · · ·+ pd−1

have the same roots (counting multiplicity). Hence f(x) is a multiple of

g(x), say f(x) = Ag(x). Note that f(1) and g(1) are both the sum of the

coefficients, hence they are equal and nonzero. Therefore A = f(1)/g(1) =

1, so f(x) = g(x). Thus we have f is palindromic.

Definition 0.3. If a+bi ∈ C then a + bi = a−bi is the conjugate of a+bi.

It is well known that if a f ∈ R[x] and f(r) = 0 then f(r) = 0.

The following is well known and easy to prove. It is the n = 2 case of

the AM-GM inequality.

Lemma 0.3. For all x, y ≥ 0, x+y
2 ≥ √xy.

Theorem 0.2. Let M ≥ 2 and d ≥ 2. There is no way to load M d-sided

dice to produce fair sums.

Proof. Assume, by way of contradiction, that (p11, . . . , p1d), (p21, . . . , p2d),

. . . (pM1, . . . , pMd), are a set of loaded M d-sided dice that yield fair sums.

There are M d-sided dice so the possible rolls range from M 1’s (total M)

to M d’s (total Md). Hence there are Md −M + 1 rolls. The probability

of any numbers between M and Md is 1
Md−M+1 .

Notation 0.1. The probability that dice M/2 rolls an i we write as p(M/2),i

rather than the rather ambiguous p(M/2)i. We will also add the comma in

other places where the meaning is unclear.
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Elementary Proof

The probability of rolling an M is the probability that all of the die roll

a 1. Hence

1

Md−M + 1
= Prob(M) = p11 · · · pM1

which yields

p11 =
1

Md−M + 1

1

p21 · · · pM1

The probability of rolling an Md is the probability that all of the die

roll a d. Hence

Prob(Md) = p1d · · · pMd =
1

Md−M + 1
.

which yields

p1d =
1

(Md−M + 1)p2d · · · pMd

The proof from this point needs two cases.

Case 1 M even We will use that M
2 is an integer.

The probability of rolling an (Md+M)/2 is bounded below by the sum

of the following (1) the prob that die 1 is a 1, dice 2, . . . ,M/2 are 1’s, and

dice (M/2) + 1, . . . ,M are d’s, and (2) the prob that die 1 is a d, dice

2, . . . ,M/2 are d’s and dice (M/2) + 1, . . . ,M are 1’s. We write this as

1

Md−M + 1
= Prob

(
Md + M

2

)
≥

p11 · · · p(M/2),1 × p(M/2+1),d · · · pMd + p1d · · · p(M/2),d × p(M/2+1),1 · · · pM1.

(Note that if d = 1 there would only be one term in the above summation.

We leave it to the reader to determine where the proof fails.)

By using the equations for p11 and p1d above we get

=
p21 · · · p(M/2),1 × p(M/2+1),d · · · pMd

(Md−M + 1)p21 · · · pM1
+
p2d · · · p(M/2),d × p((M/2)+1),1 · · · pM1

(Md−M + 1)p2d · · · pMd

Note that lots of terms cancel and we can factor out the 1
Md−M+1 to

obtain



December 20, 2016 15:48 ws-book9x6 Book Title dice page 6

6 Book Title

=
1

Md−M + 1

(
p(M/2+1),d · · · pMd

p(M/2+1),1 · · · pM1
+

p(M/2+1),1 · · · pM1

p(M/2+1),d · · · pMd

)

≥ 2

Md−M + 1
(This follows from Lemma 0.1.)

Putting this all together we get

1

Md−M + 1
>

2

Md−M + 1

which is a contradiction.

Case 2 M is odd Using the same equations above we can come to a

similar conclusion. We will assume that p1,1 ≥ p1,n without loss of gener-

ality.

Knowing the probability of rolling M ·d and using our assumption we arrive

at the following inequality:

p1,1 · p2,d · · · pM,d ≥ p1,d · p2,d · · · pM,d = P (M · d) =
1

Md−M + 1

The probability of rolling
(
M+1

2 + M−1
2 · d

)
is at least the following and

will also have an equal chance probability of 1
Md−M+1

So

P

(
M + 1

2
+

M − 1

2
· d
)
≥ p1,1·p2,1 · · · pM+1

2 ,1·pM+3
2 ,d · · · pM,d+p1,1·p2,d · · · pM+1

2 ,d·pM+3
2 ,1 · · · pM,1

1

Md−M + 1
≥ p1,1·p2,1 · · · pM+1

2 ,1·pM+3
2 ,d · · · pM,d+p1,1·p2,d · · · pM+1

2 ,d·pM+3
2 ,1 · · · pM,1

Using Lemma 0.3

1

Md−M + 1
≥ 2·√p1,1 · p2,1 · · · pM+1

2 ,1 · pM+3
2 ,d · · · pM,d · p1,1 · p2,d · · · pM+1

2 ,d · pM+3
2 ,1 · · · pM,1

1

Md−M + 1
≥ 2·

√(
p1,1 · p2,1 · · · pM+1

2 ,1 · pM+3
2 ,1 · · · pM,1

)
·
(
·p1,1 · p2,d · · · pM+1

2 ,d · pM+3
2 ,d · · · pM,d

)
1

Md−M + 1
≥ 2 ·

√(
1

Md−M + 1

)2
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1

Md−M + 1
≥ 2

Md−M + 1

We arrive at a contradiction ∴ We are done with the case where M is odd.

Generating Function Proof

Let the generating function for the ith dice be Pi(x) = pi1x + pi2x
2 +

· · ·+ pidx
d. If each sum occurs with equal probability, we have

P1(x) · · ·PM (x) =
1

Md−M + 1
(xM + · · ·+ xMd) (0.1)

which is equivalent to

(p11 + · · ·+ p1dx
d−1) · · · (pM1x + · · ·+ pMdx

d−1) =
xMd−M+1 − 1

(Md−M + 1)(x− 1)

Let Qi(x) = pi1 + pi2x + · · ·+ pidx
d−1. We rewrite the equation above

as

Q1(x)Q2(x) · · ·QM (x) =
xMd−M+1 − 1

(Md−M + 1)(x− 1)

The roots of the RHS are all of the (Md−M+1)-roots of unity except 1.

Thus, the roots of Q1(x)Q2(x) · · ·QM (x) come in conjugate pairs, except

possibly −1.

We consider two cases

Case 1: d is even. Since Qi(x) is of degree d−1 which is odd, Qi(x) has an

odd number of roots. Since the nonreal roots of Qi(x) come in conjugate

pairs, −1 must be a root of Qi(x). Hence, Q1(x)Q2(x) · · ·QM (x) has root

−1 with multiplicity M > 1. This is a contradiction.

Case 2: d is odd. Md −M + 1 is odd, so −1 is not a root. Thus, all

roots of Qi(x) come in conjugate pairs. Note that r is a root of Qi(x) if

and only if r = 1
r is also a root of Qi(x). Hence, by Lemma 0.2, Qi(x) is

palindromic. In particular pi1 = pid.

By equating the the coefficients of xMd and x(M−1)d+1 in equation (0.1),

we have

p1d · · · pMd =
1

Md−M + 1

and
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p11p2d · · · pMd+p1dp21p3d · · · pMd+other nonnegative terms =
1

Md−M + 1
.

By using that p11 = p1d and p21 = p2d we have

p1dp2d · · · pMd+p1dp2dp3d · · · pMd+other nonnegative terms =
1

Md−M + 1
.

Hence

2

Md−M + 1
+ other nonnegative terms =

1

Md−M + 1
,

which is a contradiction.

0.6 Many Dice

Using generating functions one can determine exactly when one can ob-

tain fair sums. That is, given any set of types of dice (e.g., four 3-

sided dice, six 10-sided dice, and four 11-sided dice), one can determine

if they can be loaded to obtain fair sums. This was done by Gasarch and

Kruskal [Gasarch and Kruskal (1999)] and later refined by Morrison [Mor-

rison (2014)]. Gasarch and Kruskal proved that there exists a way to load

a set of dice iff there is a way to load them so that every sum occurs exactly

once. They also gave an algorithm to determine this. Morison gave a faster

algorithm. We leave it as an exercise to load a 2-sided die and a 4-sided

die to obtain fair sums.
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