Approximate Fair Loaded Dice
by
Berlanga, Gasarch, Tian

1 Numerics

We have shown that there do not exist \(mn \)-sided die with all sums equally likely. The main question now is: how close can we get to having equal sums?

First we need a concrete measurement of being close to “equally likely”. Perhaps the most natural metric is the variance of our sums. Let \(k = mn - m + 1 \). If the probabilities of the sums occurring are \(x_1, \ldots, x_k \), the sums are close to equally likely when the variance

\[
\frac{(x_1 - \frac{1}{k})^2 + \cdots + (x_k - \frac{1}{k})^2}{k}
\]

is close to 0.

Another natural metric is the sum of squares of differences. That is, the smaller

\[
\sum_{1 \leq i < j \leq k} (x_i - x_j)^2
\]

is, the more equally likely the sums are. Since \(x_1 + \cdots + x_k = 1 \), we have

\[
\frac{(x_1 - \frac{1}{k})^2 + \cdots + (x_k - \frac{1}{k})^2}{k} = \frac{x_1^2 - \frac{2x_1}{k} + \frac{1}{k^2} + \cdots + x_k^2 - \frac{2x_k}{k} + \frac{1}{k^2}}{k} = \frac{x_1^2 + \cdots + x_k^2}{k} - \frac{2}{k} (x_1 + \cdots + x_k) + \frac{1}{k^2}
\]

and

\[
\sum_{1 \leq i < j \leq k} (x_i - x_j)^2 = \sum_{1 \leq i < j \leq k} (x_i^2 - 2x_i x_j + x_j^2)
\]

\[
= (k - 1)(x_1^2 + \cdots + x_k^2) - 2 \sum_{1 \leq i < j \leq k} x_i x_j
\]

\[
= (k - 1)(x_1^2 + \cdots + x_k^2) - [(x_1 + \cdots + x_k)^2 - (x_1^2 + \cdots + x_k^2)]
\]

\[
= k(x_1^2 + \cdots + x_k^2) - 1.
\]

Therefore, minimizing the variance or sum of squares of differences is equivalent to minimizing the sum of squares \(x_1^2 + \cdots + x_k^2 \) metric. Therefore, we focus on minimizing the sum of squares.
Using mathematica, we have computed the dice which minimize the sum of squares of sums for small pairs of \(m \) and \(n \) \((m, n) = (2, 2), (2, 3), (2, 4), (3, 2), (4, 2)\)). We have also approximately computed the dice for bigger pairs of \(m \) and \(n \) using java programming, and then extrapolated the fractions from the decimals. Our data strongly supports the following conjecture.

Conjecture 1.1. The set of \(m \) \(n \)-sided dice with the minimum variance (or sum of squares) is

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{dice} & P(1) & P(2) & \cdots & P(n - 1) & P(n) \\
\hline
\text{dice 1} & \frac{m}{m(2m - 2) - n + 2} & \frac{2m - 1}{m(2m - 2) - n + 2} & \cdots & \frac{2m - 1}{m(2m - 2) - n + 2} & \frac{m}{m(2m - 2) - n + 2} \\
\text{dice 2} & \frac{1}{2} & 0 & \cdots & 0 & \frac{1}{2} \\
\text{dice 3} & \frac{1}{2} & 0 & \cdots & 0 & \frac{1}{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\text{dice } m - 1 & \frac{1}{2} & 0 & \cdots & 0 & \frac{1}{2} \\
\text{dice } m & \frac{1}{2} & 0 & \cdots & 0 & \frac{1}{2} \\
\hline
\end{array}
\]

The minimum sum of squares for a set of \(m \) \(n \)-sided dice is

\[
\frac{(2m - 1)!}{2^{m-n-2}((m-1)!)^2(2m+(n-2)(2m-1))}
\]

(achieved by the above dice).

For these dice, the probability of rolling a sum of \(m \) is

\[
\frac{m!}{2m-n-2((m-1)!)^2(2m+(n-2)(2m-1))}
\]

The probability of rolling a sum of \(m + 1, \ldots, n + m - 3 \), or \(n + m - 2 \) is each

\[
\frac{m!}{2m-n-2((m-1)!)^2(2m+(n-2)(2m-1))}
\]

In general, the probability of rolling a sum of \(in + m - i \) is

\[
\frac{m!}{2m-n-2((m-1)!)^2(2m+(n-2)(2m-1))}
\]

and the probability of rolling a sum of \(in + m - i + 1, \ldots, (i+1)n + m - i - 2 \) is each

\[
\frac{(m-1)!}{2m-n-2((m-1)!)^2(2m+(n-2)(2m-1))}
\]

Therefore, the sum of squares for these dice is

\[
m^2 + \binom{m}{1}m^2 + \cdots + \binom{m}{m}m^2 + (n - 2)(2m - 1)^2 + (n - 2)(m - 1)^2 + \cdots + (n - 2)(m - 2)^2 + (m - 1)^2 + (m - 2)^2 + \cdots + (m - n - 2)^2
\]

\[
= \frac{m^2 \left(\binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{m} \right) + (n - 2)(2m - 1)^2 + (n - 2)(m - 1)^2 + \cdots + (n - 2)(m - 2)^2 + (m - 1)^2}{2m-n-2(2m+(n-2)(2m-1))^2}
\]

\[
= \frac{m^2(2m) + (n - 2)(2m - 1)^2 + (m - 2)^2 + \cdots + (m - n - 2)^2}{2m-n-2(2m+(n-2)(2m-1))^2}
\]

\[
= \frac{m^2(2m) + (n - 2)(2m - 1)^2 + (m - 2)^2 + \cdots + (m - n - 2)^2}{2m-n-2(2m+(n-2)(2m-1))^2}
\]

\[
= \frac{(m - 1)!}{2m-n-2((m-1)!)^2(2m+(n-2)(2m-1))}
\]

\[
= \frac{1}{mn-m+1}
\]

Let \(\mu = \frac{1}{mn-m+1} \) be the mean. The coefficient of variance is

\[
\sqrt{\frac{x^2 + \cdots + x^2}{k} - \frac{1}{k^2} - \mu^2} = \sqrt{\frac{\mu \cdot 2m-n-2((m-1)!)^2(2m+(n-2)(2m-1))}{\mu} - \mu^2} = \sqrt{\frac{(2m - 1)!((mn - m + 1))}{2m-n-2((m-1)!)^2(2m+(n-2)(2m-1))}} - 1.
\]
For fixed m, we can see that the coefficient of variance is decreasing in terms of n and that when n goes to ∞, the coefficient of variance approaches

$$\sqrt{-1 + \frac{m}{2^{2m-2}} \left(\frac{2m-2}{m-1} \right)}.$$

Note that this is positive for any $m > 2$ and is 0 when $m = 2$. We can also see that for fixed n, the coefficient of variance is increasing in m and approaches ∞ as $m \to \infty$ (although rather slowly). Therefore, for bigger m or n, the sums become less equally likely. Also, we can only get equally likely sums when $m = 1$ or when $m = 2$ and $n \to \infty$. Our computations for the coefficient of variance for a few pairs of m and n support our observations:

<table>
<thead>
<tr>
<th>Coefficient of Variance Data</th>
<th>m number of dice</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>n sides</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0.3536</td>
<td>0.5000</td>
<td>0.6060</td>
<td>0.6903</td>
<td>0.7610</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.2673</td>
<td>0.4395</td>
<td>0.5590</td>
<td>0.6517</td>
<td>0.7281</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2236</td>
<td>0.4146</td>
<td>0.5409</td>
<td>0.6374</td>
<td>0.7161</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1961</td>
<td>0.4009</td>
<td>0.5313</td>
<td>0.6299</td>
<td>0.7099</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1768</td>
<td>0.3922</td>
<td>0.5254</td>
<td>0.6253</td>
<td>0.7061</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1622</td>
<td>0.3863</td>
<td>0.5213</td>
<td>0.6222</td>
<td>0.7035</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.1508</td>
<td>0.3819</td>
<td>0.5184</td>
<td>0.6199</td>
<td>0.7017</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.1414</td>
<td>0.3785</td>
<td>0.5162</td>
<td>0.6182</td>
<td>0.7003</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1336</td>
<td>0.3759</td>
<td>0.5144</td>
<td>0.6169</td>
<td>0.6992</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.0410</td>
<td>0.3557</td>
<td>0.5013</td>
<td>0.6070</td>
<td>0.6912</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.0129</td>
<td>0.3538</td>
<td>0.5001</td>
<td>0.6061</td>
<td>0.6904</td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>0</td>
<td>0.3536</td>
<td>0.5000</td>
<td>0.6060</td>
<td>0.6903</td>
<td></td>
</tr>
</tbody>
</table>

Another way to measure how equally likely the sums are is to minimize the range of our sums. That is, the smaller $\max_{1 \leq i < j \leq k} |x_i - x_j|$ is, the closer the sums are to uniformly likely. Again, we were able to find the dice which minimize the range for small pairs of m and n with mathematica, and we were able to use java programming to approximately verify this for bigger values of m and n. Our data strongly supports the following conjecture.

Conjecture 1.2. The set of m n-sided dice with the minimum range is

<table>
<thead>
<tr>
<th>dice</th>
<th>$P(1)$</th>
<th>$P(2)$</th>
<th>$P(n-1)$</th>
<th>$P(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{m+1}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
<td>$\frac{m}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
<td>$\frac{m}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
<td>$\frac{m+1}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{m}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{m}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m-1$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{m}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>m</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{m}{2^{\lceil \frac{m+1}{2} \rceil+m(n-2)}}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>
The minimum range for a set of \(m \) \(n \)-sided dice is

\[
\left(\frac{m-1}{m+1} \right) m - \left\lfloor \frac{m+1}{2} \right\rfloor \frac{2^{m-1}}{2^{\left\lfloor \frac{m+1}{2} \right\rfloor + m(n-2)}}.
\]

We can see that the probability of rolling a sum of \(m + in - i \) is

\[
\frac{\left(\frac{m}{m+1} \right) m - \left\lfloor \frac{m+1}{2} \right\rfloor}{2^{m-1}(2^{\left\lfloor \frac{m+1}{2} \right\rfloor + m(n-2))}}.
\]

and the probability of rolling a sum of \(m + in - i + 1, \ldots, m + (i+1)n - i - 2 \) is each

\[
\frac{\left(\frac{m-1}{m+1} \right) m - \left\lfloor \frac{m+1}{2} \right\rfloor}{2^{m-1}(2^{\left\lfloor \frac{m+1}{2} \right\rfloor + m(n-2))}}.
\]

It is not hard to see that the range of these sums is

\[
\left(\frac{m-1}{m+1} \right) m - \left\lfloor \frac{m+1}{2} \right\rfloor \frac{2^{m-1}}{2^{\left\lfloor \frac{m+1}{2} \right\rfloor + m(n-2)}}.
\]

For visual comparison of the distribution of sums for our dice for minimum variance and minimum range, see the graphs below.
4d4

5d3

5d4
2 Proof of two sides case of conjecture

First we prove the \(n = 2 \) special case of Conjecture 1.1.

Theorem 2.1. The following \(m \) two-sided dice (the \(n = 2 \) case of Conjecture 1.1)

<table>
<thead>
<tr>
<th>dice 1</th>
<th>(P(1))</th>
<th>(P(2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>dice 2</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>dice (m)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

minimizes the sum of squares (or variance).

Proof. Let our \(m \) dice be \(p_1(x) = a_1 + (1 - a_1)x, \ldots, p_m(x) = a_m + (1 - a_m)x \). It suffices to show that \(a_1 = \cdots = a_m = \frac{1}{2} \) is the global minimum for the sum of squares \(S \). Note that the sum of squares \(S \) can be represented by

\[
S = \frac{1}{2\pi i} \int_{|x|=1} \frac{(a_1 + (1 - a_1)x) \cdots (a_n + (1 - a_m)x)(a_1 + \frac{1-a_1}{x}) \cdots (a_n + \frac{1-a_m}{x})}{x} dx.
\]

We will first show that \(a_1 = \cdots = a_m = \frac{1}{2} \) is the only critical point of \(S \). Note that

\[
\frac{\partial S}{\partial a_1} = \frac{1}{2\pi i} \int_{|x|=1} \frac{[4a_1 - 2 + (1 - 2a_1)(\frac{1}{x} + x)] \prod_{j=2}^n [(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x})]}{x} dx
\]

\[
= \frac{2a_1 - 1}{2\pi i} \int_{|x|=1} \frac{(2 - \frac{1}{x} - x) \prod_{j=2}^n [(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x})]}{x} dx.
\]

This partial vanishes when \(a_1 = \frac{1}{2} \). Similarly \(\frac{\partial S}{\partial a_j} \) vanishes when \(a_j = \frac{1}{2} \). Therefore, \(a_1 = \cdots = a_m = \frac{1}{2} \) is a critical point.

Now we show that there are no other critical points. We show that \(\frac{\partial S}{\partial a_1} \neq 0 \) when \(a_1 \neq \frac{1}{2} \). Note that

\[
\frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^n \frac{(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x})}{x} dx = \frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^n \frac{(a_j + (1 - a_j)x)(a_j + (1 - a_j)x)}{x} dx
\]

\[
= \frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^n \frac{(a_j + (1 - a_j)x)^2}{x} dx
\]

\[
= \frac{1}{2\pi} \int_{0}^{2\pi} \prod_{j=2}^n \left| (a_j + (1 - a_j)e^{i\theta}) \right|^2 e^{i\theta} d\theta
\]

\[
= \frac{1}{2\pi} \int_{0}^{2\pi} \prod_{j=2}^n \left| (a_j + (1 - a_j)e^{i\theta}) \right|^2 d\theta,
\]
and that

\[
\frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right] \frac{dx}{x}, \quad \frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right] \frac{dx}{x}
\]

are the linear and constant coefficients of \(\prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right] \). Therefore both are real. Thus we have

\[
\frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right] \frac{dx}{x} = \text{Re} \left(\frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right] \frac{dx}{x} \right)
\]

\[
= \text{Re} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left| \prod_{j=2}^{n} (a_j + (1 - a_j)e^{i\theta}) \right|^2 e^{i\theta} d\theta \right)
\]

\[
= \frac{1}{2\pi} \int_{0}^{2\pi} \left| \prod_{j=2}^{n} (a_j + (1 - a_j)e^{i\theta}) \right|^2 \cos \theta d\theta
\]

and

\[
\frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right] \frac{dx}{x} = \text{Re} \left(\frac{1}{2\pi i} \int_{|x|=1} \prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right] \frac{dx}{x} \right)
\]

\[
= \text{Re} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left| \prod_{j=2}^{n} (a_j + (1 - a_j)e^{i\theta}) \right|^2 e^{i\theta} d\theta \right)
\]

\[
= \frac{1}{2\pi} \int_{0}^{2\pi} \left| \prod_{j=2}^{n} (a_j + (1 - a_j)e^{i\theta}) \right|^2 \cos \theta d\theta.
\]

Thus,

\[
\frac{\partial S}{\partial a_1} = (2a_1 - 1) \frac{1}{2\pi} \int_{|x|=1} \frac{(2 - \frac{1}{x} - x) \prod_{j=2}^{n} \left[(a_j + (1 - a_j)x)(a_j + \frac{1-a_j}{x}) \right]}{x} \frac{dx}{x}
\]

\[
= 2(2a_1 - 1) \frac{1}{2\pi} \int_{0}^{2\pi} \left| \prod_{j=2}^{n} (a_j + (1 - a_j)e^{i\theta}) \right|^2 (1 - \cos \theta) d\theta
\]

Note that the integrand is positive when \(\theta = \frac{\pi}{2} \). Since the integrand is continuous and nonnegative, the integral is strictly positive. Therefore, \(\frac{\partial S}{\partial a_1} \neq 0 \) unless \(a_1 = \frac{1}{2} \). Thus \(a_i = \frac{1}{2} \) for all \(i \) is the only critical point.
Now we are ready to prove our theorem by induction. The base case of $m = 1$ is trivial. Suppose our theorem is true for some $m - 1 \geq 1$. For m dice, since $a_i = \frac{1}{2}$ for all i is the only critical point, we know that the global minimum occurs when $a_i = 0$ or $a_i = 1$ for some i (the boundary) or when $a_i = \frac{1}{2}$ for all i. By our inductive hypothesis, our first case is minimized when $a_i = 0$, $a_j = \frac{1}{2}$ for all $j \neq i$. As we computed earlier, the sum of squares for our first case is

$$\frac{(2m-3)!}{2^{2m-4}((m-2)!)^2(2m-2)}$$

and the sum of squares for our second case is

$$\frac{(2m-1)!}{2^{2m-2}((m-1)!)^2(2m)}.$$

Since

$$\frac{(2m-1)!}{2^{2m-2}((m-1)!)^2(2m)} = \frac{(2m-1)(2m-2)}{2^2 (m-1)^2 \left(\frac{2m}{2m-2} \right)} = \frac{2m-1}{2m} < 1$$

we see that the global minimum for the m dice two sides case is $a_j = \frac{1}{2}$ for all j. Our induction is complete.

\square

3 Local Minimum Proof for two dice

Next we partially prove a different special case of Conjecture 1.1. Specifically, we prove that the $m = 2$ case given in Conjecture 1.1 is a local minimizer for the sum of squares.

Theorem 3.1. The following two n-sided dice (which is the $m = 2$ case of Conjecture 1.1)

<table>
<thead>
<tr>
<th></th>
<th>$P(1)$</th>
<th>$P(2)$</th>
<th>\cdots</th>
<th>$P(n-1)$</th>
<th>$P(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dice 1</td>
<td>$\frac{2}{3n-2}$</td>
<td>$\frac{3}{3n-2}$</td>
<td>\cdots</td>
<td>$\frac{3}{3n-2}$</td>
<td>$\frac{2}{3n-2}$</td>
</tr>
<tr>
<td>dice 2</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>\cdots</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

are a local minima for the sum of squares (and variance).

Proof. Our two dice are $p_1 + p_2 x + \cdots + p_n x^{n-1}$ and $q_1 + q_2 x + \cdots + q_n x^{n-1}$ and we will show that $p_1 = p_n = \frac{2}{3n-2}, p_2 = \cdots = p_{n-1} = \frac{3}{3n-2}, q_1 = q_n = \frac{1}{2}, q_2 = \cdots = q_{n-1} = 0$ are local minimizers of

$$S = (p_1 q_1)^2 + (p_1 q_2 + p_2 q_1)^2 + \cdots + (p_n q_n)^2$$

subject to the constraints

$$p_1 + \cdots + p_n = 1$$
$$q_1 + \cdots + q_n = 1$$
$$p_1, p_2, \ldots, p_n \geq 0$$
First note that
\[S = \frac{1}{2\pi i} \int_{|x|=1} \frac{P(x)Q(x)P(\frac{1}{x})Q(\frac{1}{x})}{x} \, dx \]
and we have the Lagrangian
\[L = S + \lambda(p_1 + \cdots + p_{n-1}) + \mu(q_1 + \cdots + q_{n-1}) + \lambda_1(-p_1) + \cdots + \lambda_n(-p_n) + \mu_1(-q_1) + \cdots + \mu_n(-q_n) \]
where \(\lambda \) and \(\mu \) are Lagrange multipliers and \(\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_n \geq 0 \) are Karush-Kuhn-Tucker multipliers. We will first show that
\[p_1 = p_n = \frac{2}{3n-2}, p_2 = \cdots = p_{n-1} = \frac{3}{3n-2}, q_1 = q_n = \frac{1}{2}, q_2 = \cdots = q_{n-1} = 0, \lambda = -\frac{3}{3n-2}, \mu = -\left(\frac{2}{3n-2}\right)^2 [3 + \left(\frac{3}{2}\right)^2 (n - 2)], \lambda_1 = \cdots = \lambda_n = 0, \mu_1 = \mu_n = 0, \mu_2 = \cdots = \mu_{n-1} = \frac{3}{(3n-2)^2} \]
is a solution of the Karush Kuhn Tucker equations
\[
\begin{align*}
\frac{\partial S}{\partial p_\ell} + \lambda - \lambda_\ell &= 0 \\
\frac{\partial S}{\partial q_\ell} + \mu - \mu_\ell &= 0 \\
\lambda_1(-p_1) + \cdots + \lambda_n(-p_n) + \mu_1(-q_1) + \cdots + \mu_n(-q_n) &= 0 \\
p_1 + p_2 + \cdots + p_{n-1} + 1 &= 0 \\
q_1 + q_2 + \cdots + q_{n-1} + 1 &= 0 \\
-p_1 \leq 0, \ldots, -p_n \leq 0 \\
-q_1 \leq 0, \ldots, -q_n \leq 0.
\end{align*}
\]
First observe that
\[
\frac{\partial S}{\partial p_\ell} = \frac{1}{2\pi i} \int_{|x|=1} \left[P\left(\frac{1}{x}\right) Q(x)Q\left(\frac{1}{x}\right) x^{\ell-2} + P(x)Q(x)Q\left(\frac{1}{x}\right) \frac{1}{x^{\ell}} \right] \, dx
\]
\[= \frac{1}{4} \left(\frac{6}{3n-2} \right) + \frac{1}{4} \left(\frac{6}{3n-2} \right) = \frac{3}{3n-2} = \lambda_\ell - \lambda \]
and that
\[
\frac{\partial S}{\partial q_1} = \frac{1}{2\pi i} \int_{|x|=1} \left[P(x)P \left(\frac{1}{x} \right) Q \left(\frac{1}{x} \right)\frac{1}{x} + P(x)Q \left(\frac{1}{x} \right)\frac{1}{x} \right] \, dx \\
= \left(\frac{2}{3n-2} \right)^2 \left[1^2 + \left(\frac{3}{2} \right)^2 (n-2) + 1^2 \right] + \left(\frac{2}{3n-2} \right)^2 \left(\frac{1+1}{2} \right) \\
= \left(\frac{2}{3n-2} \right)^2 \left[3 + \left(\frac{3}{2} \right)^2 (n-2) \right] \\
= -\mu,
\]

\[
\frac{\partial S}{\partial q_1} = \frac{1}{2\pi i} \int_{|x|=1} \left[P(x)P \left(\frac{1}{x} \right) Q \left(\frac{1}{x} \right) x^{n-2} + P(x)P \left(\frac{1}{x} \right) Q \left(\frac{1}{x} \right) x^{-n} \right] \, dx \\
= \left(\frac{2}{3n-2} \right)^2 \left[1^2 + \left(\frac{3}{2} \right)^2 (n-2) + 1^2 \right] + \left(\frac{2}{3n-2} \right)^2 \left(\frac{1+1}{2} \right) \\
= \left(\frac{2}{3n-2} \right)^2 \left[3 + \left(\frac{3}{2} \right)^2 (n-2) \right] \\
= -\mu,
\]

and

\[
\frac{\partial S}{\partial q_\ell} = \frac{1}{2\pi i} \int_{|x|=1} \left[P(x)P \left(\frac{1}{x} \right) Q \left(\frac{1}{x} \right) x^{\ell-1} + P(x)P \left(\frac{1}{x} \right) Q \left(\frac{1}{x} \right) x^{-\ell} \right] \, dx \\
= \left(\frac{2}{3n-2} \right)^2 \left[3 + \left(\frac{3}{2} \right)^2 (n-3) + \frac{3}{2} \right] + \left(\frac{2}{3n-2} \right)^2 \left(\frac{3}{2} + \frac{3}{2} \right) \\
= \left(\frac{2}{3n-2} \right)^2 \left[6 + \left(\frac{3}{2} \right)^2 (n-3) \right] \\
= \left(\frac{2}{3n-2} \right)^2 \left[3 + \left(\frac{3}{2} \right)^2 (n-2) + \frac{3}{4} \right] \\
= -\mu + \mu_\ell.
\]

Thus we have shown that our conjectured dice satisfy the Karush-Kuhn-Tucker conditions, which means that it is a critical point. Now we use the Hessian to show that it is indeed a strict local minimizer.

Since the constraint equations and constraint inequalities are all linear, we have \(\text{Hess}(L) = \text{Hess}(S) \). We consider \(y = (y_1 \cdots y_{2n})^T \) such that

\[
\text{grad}(p_1 + p_2 + \cdots + p_n - 1)y = 0,
\]
grad(q_1 + q_2 + \cdots + q_n - 1)y = 0

and

grad(-q_j)y = 0

for j = 2, \ldots, n - 1 because \mu_2, \ldots, \mu_{n-1} > 0. These equations imply y_{n+2} = \cdots = y_{2n-1} = 0, y_1 + \cdots + y_n = 0, and y_{n+1} + y_{2n} = 0.

\[y^T \text{Hess}(L)y = y^T \text{Hess}(S)y \]

\[
= \sum_{k, \ell=1}^{n} \frac{\partial^2 S}{\partial p_k \partial p_\ell} y_k y_\ell + \sum_{k, \ell=1}^{n} \frac{\partial^2 S}{\partial p_k \partial q_\ell} y_k y_{n+\ell} + \sum_{k, \ell=1}^{n} \frac{\partial^2 S}{\partial q_k \partial q_\ell} y_{n+k}y_{n+\ell}
\]

\[
= \sum_{k, \ell=1}^{n} \frac{\partial^2 S}{\partial p_k \partial p_\ell} y_k y_\ell + \sum_{k=1}^{n} \frac{\partial^2 S}{\partial p_k \partial q_1} y_k y_{n+1} + \sum_{k=1}^{n} \frac{\partial^2 S}{\partial p_k \partial q_n} y_k y_{2n} + \frac{\partial^2 S}{\partial q_1^2} y_{n+1}^2 + 2 \frac{\partial^2 S}{\partial q_1 \partial q_n} y_{n+1}y_{2n} + \frac{\partial^2 S}{\partial q_n^2} y_{2n}^2
\]

where the last equality follows from the fact y_{n+2} = \cdots = y_{2n-1} = 0. We have

\[
\frac{\partial^2 S}{\partial p_k \partial p_\ell} = \frac{1}{2\pi i} \int_{|x|=1} \left[Q(x)Q\left(\frac{1}{x}\right) x^{k-\ell-1} + Q(x)Q\left(\frac{1}{x}\right) x^{\ell-1-k} \right] dx
\]

\[
= \frac{1}{2\pi i} \int_{|x|=1} \frac{1}{4} \left(2 + x^{n-1} + \frac{1}{x^{n-1}} \right) \left(x^{k-\ell-1} + x^{\ell-1-k} \right) dx
\]

\[
= \begin{cases}
1 & \text{if } k = \ell \\
\frac{1}{2} & \text{if } k = n, \ell = 1 \\
\frac{1}{2} & \text{if } k = 1, \ell = n \\
0 & \text{otherwise}
\end{cases}
\]

The matrix \(\left(\frac{\partial^2 S}{\partial p_k \partial p_\ell} \right) \) is positive definite by checking principle minors.

We can also check that

\[
\frac{\partial^2 S}{\partial p_k \partial q_1} = \frac{\partial^2 S}{\partial p_k \partial q_n}
\]

at \(p_1 = \frac{2}{3n-2}, p_2 = \cdots = p_{n-1} = \frac{3}{3n-2}, p_n = \frac{2}{3n-2}, q_1 = \frac{1}{2}, q_2 = \cdots = q_{n-1} = 0, q_n = \frac{1}{2}. \)

Hence,

\[
y^T \text{Hess}(L)y = \sum_{k, \ell=1}^{n} \frac{\partial^2 S}{\partial p_k \partial p_\ell} y_k y_\ell + \frac{\partial^2 S}{\partial q_1^2} y_{n+1}^2 + 2 \frac{\partial^2 S}{\partial q_1 \partial q_n} y_{n+1}y_{2n} + \frac{\partial^2 S}{\partial q_n^2} y_{2n}^2.
\]

We also have

11
\[
\frac{\partial^2 S}{\partial q_1^2} = \frac{1}{2\pi i} \int_{|x|=1} \left[P(x)P \left(\frac{1}{x} \right) + P(x)P \left(\frac{1}{x} \right) \right] \frac{1}{x} dx = 2 \left(\frac{2}{3n-2} \right)^2 \left[1^2 + \left(\frac{3}{2} \right)^2 (n-2) + 1^2 \right],
\]

\[
\frac{\partial^2 S}{\partial q_n^2} = \frac{1}{2\pi i} \int_{|x|=1} \left[P(x)P \left(\frac{1}{x} \right) \frac{x^{n-2}}{x^{n-1}} + P(x)P \left(\frac{1}{x} \right) \frac{x^{n-1}}{x^n} \right] dx = 2 \left(\frac{2}{3n-2} \right)^2 \left[1^2 + \left(\frac{3}{2} \right)^2 (n-2) + 1^2 \right],
\]

\[
\frac{\partial^2 S}{\partial q_1 \partial q_n} = \frac{1}{2\pi i} \int_{|x|=1} \left(P(x)P \left(\frac{1}{x} \right) \frac{1}{x^n} + P(x)P \left(\frac{1}{x} \right) x^{n-2} \right) dx = \left(\frac{2}{3n-2} \right)^2 [1 + 1].
\]

Finally,

\[
y^T \text{Hess}(L)y = [y_1 \cdots y_n] \left(\frac{\partial^2 S}{\partial q_k \partial q_\ell} \right) y + \left(2 \frac{\partial^2 S}{\partial q_1^2} - 2 \frac{\partial^2 S}{\partial q_1 \partial q_n} \right) y_{n+1}^2
\]

\[
= [y_1 \cdots y_n] \left(\frac{\partial^2 S}{\partial q_k \partial q_\ell} \right) y + 2 \left(\frac{2}{3n-2} \right)^2 \left[\left(\frac{3}{2} \right)^2 (n-2) + 1 \right] y_{n+1}^2.
\]

Recall that \(\left(\frac{\partial^2 S}{\partial q_k \partial q_\ell} \right) \) is positive definite. Thus, if \(y_{n+1} \neq 0 \), we have \(y^T \text{Hess}(L)y \geq 2 \left(\frac{2}{3n-2} \right)^2 \left[\left(\frac{3}{2} \right)^2 (n-2) + 1 \right] y_{n+1}^2 > 0 \). If \(y_{n+1} = 0 \), then since \(y_{n+1} + y_2 = 0 \) and \((y_1 \cdots y_n, y_{n+1}, 0 \cdots 0, y_{2n})^T \neq \vec{0} \), we have \(y_{2n} = 0 \) and thus \((y_1 \cdots y_n)^T \neq 0 \). Therefore, we have \(y^T \text{Hess}(L)y = y^T \left(\frac{\partial^2 S}{\partial q_k \partial q_\ell} \right) y > 0 \). Thus we have proved that our conjectured dice are indeed a strict local minimizer. \(\square \)