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Abstract. Bitcoin’s core innovation is its solution to double-spending,
called Nakamoto consensus. This provides a probabilistic guarantee that
transactions will not be reversed or redirected, provided that it is im-
probable for an attacker to obtain a majority of mining power in the
network. While this may be true in the traditional sense, this assump-
tion becomes tenuous when miners are assumed to be rational and hence
venal. Accordingly, we present the whale attack, in which a minority at-
tacker increases her chances of double-spending by incentivizing miners
to subvert the consensus protocol and to collude via whale transactions,
or transactions carrying anomalously large fees. We analyze the expected
cost to carry out the attack, and simulate the attack under realistic sys-
tem parameters. Our results show that double-spend attacks, conven-
tionally thought to be impractical for minority attackers, can actually
be financially feasible and worthwhile under the whale attack. Perhaps
more importantly, this work demonstrates that rationality should not
underestimated when evaluating Bitcoin’s security.

1 Introduction

Decentralized cryptocurrencies have precipitated considerable interest in recent
years. Bitcoin [1], the first empirical success of its kind, has laid the foundation
for subsequent decentralized cryptocurrencies through its innovative solution to
double-spending, a long-standing failure mode of digital currencies that allows
an attacker to spend a given set of coins more than once. This solution, known
as Nakamoto consensus, provides a high assurance that coins will not be dou-
ble spent, barring if an attacker obtains an improbable amount of resources.
However, this tenuous assumption has induced notions of a looming crisis in the
Bitcoin community, which casts serious doubt on the security of cryptocurrencies
as currently prescribed.

In general, the security of a digital currency is congruous with the irreversibil-
ity of its transactions. More concretely, when users send coins to vendors in ex-
change for merchandise, vendors expect that once the purchased merchandise
has been disbursed, the transaction will not be reversed or redirected elsewhere.
Double-spending undermines this desideratum, in that if an attacker issues two
conflicting transactions using the same set of coins, say, one to the vendor and
one to herself, eventually one of these transactions will be invalidated. If the



vendor unknowingly disburses the merchandise, under the impression that it
has been paid for, and the paying transaction is invalidated, then the vendor is
left empty-handed.

In this regard, Nakamoto consensus offers a probabilistic guarantee that a
transaction will not be reversed. The protocol is as follows. Participants in the
Bitcoin network, known as miners, compete to solve a computationally expen-
sive proof-of-work puzzle. The miner who solves this puzzle is permitted to add
a block of newly confirmed transactions to the blockchain, a distributed public
ledger serializing all transactions ever issued. In remuneration, the miner is re-
warded with newly minted bitcoins and (more importantly for this work), any
embedded transaction fees, which are gratuities left by payers. The new block
and its proof-of-work are then broadcast to the network, and upon verification,
miners will add the block to their corresponding blockchains and repeat the min-
ing process atop their updated ledgers. Since mining is performed concurrently,
it may be the case that conflicting versions of the blockchain form, known as
branches. In the prescribed protocol, miners resolve this by mining on the longest
branch, as measured by the total expense of mining power. During this process,
the shorter branch will be orphaned and any conflicting transactions will be
invalidated.

Although transactions invalidated during branch selection enables the pos-
sibility of double-spending, as transactions gain more confirmations, in other
words, when new blocks are added atop their respective blocks, the probability
that a conflicting longer branch forms decreases exponentially. Thus, a trans-
action with six confirmations is well-accepted by the community to be secure
against double-spending.

The main caveat of this probabilistic guarantee is that it assumes no single
mining entity wields a majority of mining power in the network. Otherwise the
system ceases to be decentralized—a majority miner can unilaterally control the
blockchain and can thus double-spend at will. Bitcoin’s security guarantees have
been proven [2] only in accordance with this assumption, namely that a majority
of miners (as measured by their mining powers) behave honestly by adhering to
the prescribed protocol. The question then arises of whether or not these security
guarantees hold when miners are, instead, assumed to behave rationally, in other
words, they are incentivized by maximizing profit.

Our contributions. We consider a minority attacker, henceforth referred to as
Alice, who attempts to double-spend against a vendor, henceforth referred to as
Bob, within a purely rational network. From a cost perspective, double-spend
attacks require a large proportion of mining power that may be improbable to
attain singly. Auspiciously, Alice can amplify her own mining power by incen-
tivizing, or “bribing,” rational miners into subverting the prescribed protocol.

Accordingly, we present a novel double-spending strategy called the whale at-
tack, which was inspired by a peculiar (perhaps erroneous) bitcoin transaction,1

in which the payer issued a transaction carrying an exorbitant transaction fee of

1 https://blockchain.info/tx/143707654



291 bitcoins.2 We henceforth generalize transactions carrying anomalously large
transaction fees as whale transactions, and we study the implications of these
transactions on mining consensus. In particular, we are interested in the capa-
bilities of whale transactions to incentivize rational and transaction-fee sensitive
miners into colluding towards a double-spend attack.

The main contributions of this work are the following:

1. We introduce and formalize the whale attack, which demonstrates that ra-
tionality should not be underestimated when evaluating Bitcoin’s security.

2. We establish informal upper bounds on the expected cost to carry out the
whale attack with success probability 1.

3. We simulate the whale attack, mirroring the actual Bitcoin network, as a
proof of concept for the feasibility of the attack, even when the attacker
wields a modest amount of mining power and capital.

1.1 The Whale Attack

We begin by informally introducing the whale attack. Suppose a minority at-
tacker Alice attempts to launch a double-spend attack against a vendor Bob.
Alice initiates the attack by mining a block, but instead of broadcasting this
block to the network, she surreptitiously mines atop this block by herself, thereby
forming her private branch. She then uses the same set of bitcoins to pay Bob on
the original branch, while issuing a conflicting transaction to herself on her pri-
vate branch. Upon receiving Alice’s transaction, Bob will wait six confirmations,
as per conventional wisdom, before sending the purchased merchandise.

For the attack to succeed, Alice’s private branch must keep up with and
overtake the original branch after at least six confirmations have been reached.
Consider that in a traditional double-spending attack, that is, without bribing
other miners into colluding, the probability that Alice succeeds is quite low since
she wields a minority of mining power in the network. Alternatively, suppose
Alice proceeds as before and she mines on her private branch while waiting for
six confirmations. Then, once six confirmations have been reached, if Alice’s
private branch is shorter than the original branch, she publishes her branch to
the network and issues whale transactions, which are redeemable only by mining
on her branch.

Assuming miners in the network are rational, they will choose to whale mine
on Alice’s branch if doing so is more profitable than honest mining. Whether
whale mining is more profitable depends on the whale transactions’ fees given
the risk of mining on a shorter branch and the forgone block rewards should
the attack fail. As more miners switch to whale mining, the probability that the
double-spend succeeds increases. If a majority of mining power comes to whale
mine, then the attack is guaranteed to succeed. Finally, once Alice’s branch

2 The current recommended transaction fee for a no-delay transaction is 6.0 × 10−7

bitcoins per byte. At the current median transaction size of 257 bytes, this would only
amount to a transaction fee of 1.542 × 10−4 bitcoins (from https://bitcoinfees.

21.co, accessed September 1, 2016).



overtakes the original branch in length, Alice’s transaction to Bob is invalidated,
and Bob is left empty-handed.

1.2 Related Work

There is a growing body of research examining incentive compatibility in Bitcoin.
A number of recent works study the implications of block withholding, that is,
delaying the broadcast of newly mined blocks. Rosenfeld [3] and Eyal [4] analyze
block withholding attacks, in which an infiltrating miner discards full proofs-of-
work, thereby sabotaging the victim pool’s expected rewards. Eyal and Sirer [5]
develop the selfish mining attack, in which an attacker surreptitiously forks the
blockchain and withholds blocks in attempt to later orphan the original branch,
thereby wasting computations by honest miners. Nayak et al. [6] and Sapirshtein
et al. [7] further analyze and optimize the space of selfish mining strategies.

More closely related to this work are bribery attacks. Bonneau [8] presents
various bribery attacks, in which an attacker temporarily rents mining power
rather than traditionally buying mining hardware. For example, an attacker
pays miners out-of-band, in other words, outside of Bitcoin, to mine on a chosen
branch. Alternatively, an attacker sends bribery money to a set of scripted ad-
dresses, located in-band on the attacker’s branch, that can be claimed by mining
the next block(s). Our attack differs from the former, in that whale transactions
are trustless and can be issued anonymously, and compares to the latter, but
instead disburses bribery money through transaction fees, which are inherent to
the protocol.

Teutsch et al. [9] present another bribery attack, in which an attacker casts
proof-of-work puzzles as Ethereum smart contracts, called script puzzles, to serve
as an additional mining revenue source. Thus, rational miners may increase their
profits by apportioning their mining powers between puzzle-solving and Bitcoin
mining, thereby reducing mining power in the Bitcoin network. Our attack differs
from the script puzzle attack, in that miners are purveyed a single source of
revenue, namely the block rewards on the longest branch.

More broadly, there is also a growing interest in the interrelationship between
transaction fees and Bitcoin’s long-term health. Möser and Böhme [10] perform
a longitudinal analysis of transaction fees and examine the externalities that
influence these fees. Kroll et al. [11], Houy [12], and Kaşkaloǧlu [13] consider
the economics of Bitcoin mining and discuss potential changes to transaction
fees and their policies in the long-term. Carlsten et al. [14] develop a new attack
strategy and revisit the selfish mining attack in the context of a transaction-fee
regime.

2 Model

We adapt the model used by Rosenfeld [15] and updated by Sompolinsky and
Zohar [16] to consider double-spending under the whale attack.



We assume that the distribution of mining power in the network remains
constant. An attacker Alice controls a fraction α of the mining power, where
α ≤ 0.5, since otherwise she could double-spend by herself at will. The remaining
network consists of k mining entities controlling a fraction β = 1−α of the mining
power. Thus, each mining entity i controls a fraction βi such that

∑k
i=1 βi = β.

Miners mine blocks according to a Poisson process with rate λ, which also
remains constant. Further, the propagation of new blocks to the network is
instantaneous. Thus, the passage of time is a discrete-time process marked by
block creation events on either of the original branch or Alice’s branch. The
reward for mining a block on the original branch is 1; the reward for mining a
block on Alice’s branch is δ + 1.

Following each block creation event, each mining entity, including Alice,
makes a new rational decision that will be pursued until the next block cre-
ation event. More specifically, Alice makes a rational decision for whether to
continue the attack or reset the attack. Similarly, once whale transactions are
underway underway, each mining entity i makes a binary rational decision for
γi ∈ {0, 1} of whether to honest mine (γi = 0) or whale mine (γi = 1).

At this point, the remaining network β can be further divided into two
partitions: whale miners and honest miners. More formally, a fraction q =
α+
∑k
i=1 γi·βi of the mining power is devoted to whale mining, in other words, ex-

tending Alice’s branch. On the other hand, a fraction p =
∑k
i=1(1−γi)·βi = 1−q

of the mining power is devoted to honest mining, in other words, extending the
original branch.

2.1 Attack Strategy

The whale attack is carried out in two phases: the pre-mining phase and the
race phase. An algorithm for the attack is fully specified in Algorithm 1.

Pre-mining phase. In this phase, Alice surreptitiously forks the blockchain,
issues a pair of conflicting double-spend transactions (txB to Bob and txA to
herself), and then singly mines on her private branch until txB has reached n
confirmations, at which point Bob will disburse the merchandise. Note that Alice
with neither reveal her private branch nor issue whale transactions before Bob
disburses the merchandise, since either action could dissuade Bob from doing so.

To initiate the attack, while Alice need only mine one block to begin her
private branch, Sompolinsky and Zohar present the pre-mining [16] strategy, by
which Alice could, in theory, mine n+ 1 blocks prior to double-spending. Thus,
the attack succeeds with probability 1. Since this may take a long time to achieve
(depending on n), the underlying premise is that Alice can freely choose when
to purchase merchandise from Bob. We aver that, in practice, this is a plausible
assumption. Nonetheless, Alice can alternatively pre-mine fewer blocks to carry
out the attack with a lower success probability. Regardless, Sompolinsky and
Zohar also point out that Alice can employ selfish mining strategies [5] to gain
while pre-mining.



Algorithm 1 Whale Attack

1: procedure Reset
2: original branch← longest branch
3: Alice branch← longest branch
4: l count← 0 . len(Alice branch)− len(original branch).
5: Issue txA on Alice branch.
6: Mine at head of Alice branch.

7: procedure Pre-mine(l, n)
8: Reset
9: while l count < l do

10: new block ← Listen . Listen for block creation event.
11: if new block on Alice branch then
12: l count← l count+ 1
13: else if l count = 0 then . len(Alice branch) < len(original branch).
14: Reset
15: else . len(Alice branch) ≥ len(original branch).
16: l count← l count− 1

17: Issue txB on original branch.
18: n count← 0
19: m← 0
20: while n count < n do
21: new block ← Listen
22: if new block on Alice branch then
23: m← m+ 1
24: else
25: n count← n count+ 1

26: Publish Alice branch.
27: if m+ l ≤ n then . len(Alice branch) ≤ len(original branch).
28: Race(n− (m+ l))

29: procedure Race(z)
30: Issue new txW on Alice branch.
31: while z > −1 do
32: new block ← Listen
33: if new block on Alice branch then
34: z ← z − 1
35: Issue txW j on Alice branch.
36: else if z = zlim − 1 then . Cut off attack.
37: Reset
38: else
39: z ← z + 1



Suppose Alice aims to pre-mine l ∈ N : 1 ≤ l ≤ n + 1 blocks more than the
original branch before issuing txB . Alice embeds txA in the first block she mines
ahead of the original branch, which marks the start of a new “attempt.” In any
attempt, if the original branch overtakes Alice’s branch in length, she accepts
the original branch and resets to a new attempt. Otherwise, if Alice successfully
pre-mines l blocks more than the original branch, she issues txB on the original
branch.

Then, overloading Sompolinsky’s and Zohar’s definition of pre-mining, Alice
also singly mines m blocks on her private branch while waiting for txB to reach
n confirmations. In accordance with Rosenfeld’s analysis [15], the probability for
a given value of m is

P (m) =

(
m+ n− 1

m

)
αmβn. (1)

Finally, once Bob disburses the merchandise, Alice publishes her heretofore pri-
vate branch containing m + l pre-mined blocks. If m + l ≤ n, in other words,
Alice’s branch is shorter than the original branch, then the attack transitions to
the race phase.

Race phase. In this phase, Alice’s branch and the original branch enter into a
race. However, instead of continuing to singly mine on her branch, Alice issues
whale transactions (txW ) on her branch, which offer a δ percentage increase over
the normal block reward. Throughout the rest of this paper, when we refer to
the value of whale transactions, we are referring to the value of its transaction
fee. Although Alice can choose from several payout structures, we assume that
she issues a new whale transaction in each block on her branch until the attack
succeeds. This allows for a more consistent proportion of whale mining power in
the network, since mining entities persistently contend for txW fees throughout
the race phase (see Section 3 for more details about our assumptions).

The race phase can be modeled as a biased random walk. The initial state is
z = n− (m+ l), where z is the lead of the original branch. In each block creation
step, z increases by 1 with probability p and z decreases by 1 with probability
q, where p and q are the mining powers devoted to honest mining and whale
mining, respectively. Again, in accordance with Rosenfeld’s analysis [15], the
probability that z reaches the absorbing state −1, in other words, Alice’s branch
becomes longer than the original branch, as a function of p, q,and z is

az = min(q/p, 1)max(z+1,0) =

{
1 if z < 0 or q > p

(q/p)z+1 if z ≥ 0 and q ≤ p.
(2)

As z increases, the probability that the attack succeeds decreases and the attack
may become intractable. For this reason, Alice can choose to cut off the attack
when z reaches zlim. This is then analagous to the Gambler’s Ruin problem.

In accordance with Sompolinsky’s and Zohar’s analysis [16], the probability
that the whale attack fully succeeds in a given attempt is



f(n, α) =

∞∑
l=0

1− 2α

β
·
(
α

β

)l
·(

n−l∑
m=0

(
m+ n− 1

m

)
αmβn ·

(
q

p

)n+1−m−l

+

∞∑
m=n−l+1

(
m+ n− 1

m

)
αmβn

)
.

(3)

While it would be interesting to analyze the success probabilities of the attack
further, we are more interested in the expected cost to carry out the whale attack
with success probability 1. This allows us to determine if the whale attack is
worthwhile, without having to make any assumptions about Alice’s risk tolerance
or the liquidity of the purhased merchandise should the attack fail.

3 Analysis

We now establish informal upper bounds on the expected cost to carry out the
whale attack with success probability 1. Since Alice’s profit is contingent on the
value of the double-spend being greater than the sum of the whale transactions,
the main questions we are trying to answer are “How large do whale transactions
need to be?” and “How many whale transactions are needed?”

Before we begin, we make a number of simplifying assumptions and explain
their rationales here, as well as en route of the analysis. Granted, these as-
sumptions may differ in practice and could dramatically change (in most cases
dramatically reduce) the cost of the attack. However, these simplifications are
meant to make the analysis more tractable, and to determine if the attack is
even practically worthwhile. We leave these as points of discussion in Section 4.

1. Mining entities consider at least their own mining power and Alice’s mining
power when making rational decisions. We make minimal assumptions about
the sophistication of mining entities in evaluating their profits. We simply
assume that each mining entity considers its own mining power and Alice’s
mining power.

2. Mining entities are not “sticky.” When mining entities mine a whale block,
they will not simply “stick” to whale mining for the remainder of the attack.
Instead, they continue to make new rational decisions following each block
event, without taking into consideration their prior earnings.

3. Mining entities will choose the more profitable (even marginally) mining
strategy. We later determine appropriate values for whale transactions δ,
which, if even marginally sufficient, will incentivize mining entities to whale
mine.

4. Whale mining power is kept constant throughout the race phase. Instead
of keeping the values of whale transactions constant throughout the attack,
Alice keeps whale mining power constant by issuing appropriate whale trans-
actions in each block on her branch.



5. Alice issues whale transactions in every block on her branch until the attack
succeeds. Since mining entities always make new rational decisions following
each block event, Alice issues whale transactions until her branch is longer
than the original branch. This also means that she never cuts off the attack
(zlim =∞).

Assumptions 1, 2, and 5 are meant to induce an upper bound on the cost of
the attack. To prevent any confusion, we call δ an upper bound, by virtue of
our assumptions, but it is defined as the minimum whale transaction necessary
for whale mining to be profitable. Thus, Assumption 3 establishes that whale
transactions need only be marginally more than δ for a given block event, or
the sum of δs, for the cost of the entire attack. Finally, Assumption 4 simply
makes the analysis more tractable, since the race phase can then be modeled as
a steady state stochastic process.

3.1 How large do whale transactions need to be?

The first step in evaluating the cost of the whale attack is to determine what val-
ues of whale transactions δ are appropriate for incentivizing a desired proportion
of the network to whale mine. To do this, we examine the decision problem faced
by a rational mining entity m in accordance with our assumptions, particularly
Assumption 1.

Suppose m has mining power βm and decides to honest mine (γm = 0).
This means that m receives block rewards only if the whale attack fails. From
Equation 2, the probability that the whale attack fails is equal to 1 − az =
1−min(q/p, 1)max(z+1,0). Recall that whale mining power q = α+

∑k
i=1 γi · βi.

Since Alice singly whale mines, q = α. Then, honest mining power p is simply
equal to 1 − q = β. Conditioned on the whale attack failing, m receives block
rewards with probability βm/p. It follows that m’s profit when honest mining is
given by

πm(α, βm, γm = 0, δ = 0, z) =
(1− az) · βm

p
=

(
1−

(
α
β

)z+1)
· βm

β
. (4)

On the other hand, suppose m decides to whale mine (γm = 1). This means
that m receives block rewards only if the whale attack succeeds. The probability
that the whale attack succeeds is az = min(q/p, 1)max(z+1,0), where q = α+ βm
and p = 1−q = β−βm. Conditioned on the whale attack succeeding, m receives
block rewards with probability βm/q. Recall that the normal block reward is 1
and the whale block reward is δ+1. It follows that m’s profit when whale mining
is given by

πm(α, βm, γm = 1, δ, z) =
az · βm
q

· (δ + 1) =

(
α+βm

β−βm

)z+1

· βm
α+ βm

· (δ + 1). (5)



More generally, m’s profit is given by

πm(α, βm, γm, δ, z) =
γm ·

(
α+βm

β−βm

)z+1

· βm
α+ βm

· (δ + 1)

+
(1− γm) ·

(
1−

(
α
β

)z+1)
· βm

β
.

(6)

By rationality, m will choose γi ∈ {0, 1} that maximizes its profit πm. Clearly,
as long as πm(α, βm, γm = 1, δ, z) > πm(α, βm, γm = 0, δ = 0, z), in other words,
Equation 5 is greater than Equation 4, then m will choose to whale mine. We
can then solve for δ to determine what values of whale transactions make whale
mining more profitable.

δ >

(
1−

(
α
β

)z+1)
β

· α+ βm(
α+βm

β−βm

)z+1 − 1, (7)

which is equivalent to

δ >
Pr[whale attack fails | γm = 0]

Pr[honest block | γm = 0]
· Pr[whale block | γm = 1]

Pr[whale attack succeeds | γm = 1]
− 1.

Table 1 provides values for δ, as functions of α and βm.
We now point out several insights from Equation 7 and Table 1. First, we see

that, in terms of cost, larger mining entities are more easily bribed into whale
mining. In fact, as z approaches −1, m may choose to whale mine regardless
of whether or not there are whale transactions on Alice’s branch. An intuitive
explanation for this is that, from m’s perspective in accordance with Assumption
1, it earns a larger proportion of the block rewards on Alice’s branch as long as
honest mining power is greater than whale mining power. Thus, as the whale
attack becomes more likely to succeed, the expected profit in whale mining for
a larger proportion of the block reward becomes greater than that of honest
mining and being left empty-handed should the whale attack succeed.

Second, if we convert Equation 7 into a function f(α) and we differentiate
with respect to α, we see that f(α) is strictly decreasing in the interval α ∈
[0, 0.5). This insight is rather straightforward and tells us that increasing Alice’s
mining power α will decrease the cost of the whale attack. Similarly, if we convert
Equation 7 into a function f(βm), and differentiate with respect to βm, we see
that f(βm) is strictly decreasing in the interval βm ∈ [0, 0.5). This means that if
whale mining is profitable for m, then whale mining is profitable for all mining
entities with mining power greater than or equal to βm.

Now, it becomes more clear why Assumption 1 induces an “upper bound” on
the cost. By the latter insights, if it is profitable for m to whale mine, then mining
entities larger than m will also whale mine. From m’s perspective, considering
that larger entities will whale mine has the same effect as if Alice were to increase



Table 1. The value of δ that makes whale mining more profitable than honest mining,
as a function of the lead of the original branch at the start of the race phase z, Alice’s
mining power α, and m’s mining power βm. For z = 0, δ is always equal to 0.

z = 6
α 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.05 47045879.95 503469.42 29624.20 3448.26 574.53 117.91 27.07 6.19 0.93 0
0.10 531439.89 31270.04 3639.89 606.50 124.52 28.63 6.59 1.04 0 0
0.15 33109.34 3854.04 642.23 131.90 30.37 7.04 1.16 0 0 0
0.20 4094.75 682.40 140.20 32.33 7.54 1.29 0 0 0 0
0.25 727.76 149.56 34.54 8.11 1.44 0 0 0 0 0
0.30 159.96 37.00 8.74 1.61 0 0 0 0 0 0
0.35 39.49 9.38 1.78 0 0 0 0 0 0 0
0.40 9.72 1.88 0 0 0 0 0 0 0 0
0.45 1.51 0 0 0 0 0 0 0 0 0

z = 3
α 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.05 6857.95 689.63 161.81 52.89 20.32 8.36 3.38 1.13 0.06 0
0.10 727.89 170.83 55.88 21.50 8.88 3.63 1.25 0.12 0 0
0.15 180.79 59.18 22.80 9.45 3.89 1.38 0.18 0 0 0
0.20 62.75 24.21 10.07 4.18 1.52 0.25 0 0 0 0
0.25 25.67 10.71 4.48 1.67 0.32 0 0 0 0 0
0.30 11.28 4.75 1.80 0.39 0 0 0 0 0 0
0.35 4.87 1.85 0.42 0 0 0 0 0 0 0
0.40 1.71 0.34 0 0 0 0 0 0 0 0
0.45 0.01 0 0 0 0 0 0 0 0 0

z = 1
α 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.05 17.95 7.50 4.06 2.36 1.36 0.71 0.27 0 0 0
0.10 7.89 4.29 2.51 1.47 0.79 0.32 0 0 0 0
0.15 4.49 2.65 1.56 0.86 0.38 0.03 0 0 0 0
0.20 2.75 1.64 0.91 0.41 0.05 0 0 0 0 0
0.25 1.67 0.94 0.43 0.07 0 0 0 0 0 0
0.30 0.90 0.41 0.05 0 0 0 0 0 0 0
0.35 0.32 0 0 0 0 0 0 0 0 0
0.40 0 0 0 0 0 0 0 0 0 0
0.45 0 0 0 0 0 0 0 0 0 0



her mining power, which we already know decreases δ. Regardless, this does not
affect m’s decision, since whale mining remains the rational strategy.

3.2 How many whale transactions are needed?

The next step in evaluating the cost of the whale attack is to determine how
many whale transactions are expected to guarantee that the attack succeeds.
Referring back to our assumptions, Alice will keep whale mining power constant
by issuing appropriate whale transactions δ in each block, and she will continue
doing so until her branch is longer than the original branch. Setting aside the
assumption that Alice never cuts off the attack for a moment (Assumption 6),
the race phase we propose in Section 2.1, in which Alice chooses a finite cutoff
for the attack zlim, is analagous to the Gambler’s Ruin problem.

To recap, the initial state in the race phase is the lead of the original branch
over Alice’s branch z. Then, z decreases by 1 with probability q, which is the
proportion of whale mining power, and increases by 1 with probability p = 1−q,
which is the proportion of honest mining power. Alice’s goal is to reach the
absorbing state z = −1, before reaching the absorbing state z = zlim, at which
point she becomes ruined. Although, if Alice becomes ruined, the only costs
incurred are the forgone block rewards she could have received mining honestly,
not the whale transactions.

Alternatively, we can define the initial state as zlim and the absorbing states
as 0 and S = zlim + z + 1. Thus, we can calculate the expected number of steps
(block creation events) before we hit an absorbing state using

E(zlim, z) =

{
zlim
1−2q −

S
1−2q ·

( p
q )

zlim−1
( p
q )

S−1 if p 6= 0.5

zlim · (z + 1) if p = 0.5.
(8)

THen, extending this back to Assumption 6, which stipulates that Alice never
cuts off the attack until it succeeds, is simple.

lim
zlim→∞

E(zlim, z) =

{
z+1
2q−1 if p 6= 0.5

∞ if p = 0.5.
(9)

The expected number of whale transactions is then

lim
zlim→∞

E(zlim, z)

2
+ z + 1, (10)

since Alice only issues whale transactions in blocks on her own branch.
Now that we have established an informal upper bound on appropriate values

for whale transactions and have calculated the number of whale transactions
expected, the ultimate question we are trying to answer is “How much does the
whale attack cost?” Given the complexity of posing an analytical result for this
question, we determine the cost of the attack by simulation. Before we detail our
simulations, here are a number of considerations on the cost of the attack.



First, consider that Alice reclaims her own whale transactions with probabil-
ity α

q , which is reflected in our simulations. Second, to interpret our results, recall
that δ is a lower bound on the value of whale transactions for whale mining to
be more profitable. Thus, the cost of the attack is marginally more than the sum
of the whale transactions in our simulations. Finally, recognize that the whale
attack being profitable is different from it being rational. The whale attack is
rationally worthwhile for Alice only if the difference between the double-spend
txB and the cost of the attack is greater than what Alice would have earned
simply by honest mining. However, do consider that Alice reaps all of the block
rewards from her m+ l pre-mined blocks.

3.3 Simulation

We model the snapshot of the Bitcoin network shown in Table 2 and we represent
Alice by the largest pool in the network (α = 0.188). As aforementioned, we are
interested in the expected cost to carry out the attack with success probability 1,
so we only consider cases in which the whale mining power q > 0.5. For example,
we run simulations issuing appropriate δs, such that all pools as large as BTCC
Pool will whale mine, to get q = 0.532. Similarly, we run simulations issuing
appropriate δs, such that pools as large as BW.COM will whale mine, to get
q = 0.670, and so on. Table 3 presents the cost of the whale attack in terms of
δ under different parameters of q and z.

Table 2. Distribution of mining power among the ten largest pools (95% of the net-
work) from July 30-August 2, 2016 (Source: https://blockchain.info/pools).

AntPool F2Pool BTCC Pool BW.COM BitFury

18.8% 18.2% 16.2% 13.8% 9.4%

HaoBTC SlushPool ViaBTC BitClub Net Kano CKPool

6.4% 5.9% 4.4% 3.7% 3.1%

4 Discussion

Our simulations return a number of interesting results. Immediately, we can see
the impact that pre-mining has on the cost of the whale attack. As Sompolinsky
and Zohar have mentioned, while the l blocks pre-mined before even issuing txB
may take a long time, as long as Alice controls the timing of the attack and
employs selfish mining strategies, mining these l blocks need not be costly [16].
Then, once txB has been issued, Alice can mine m more blocks on top of the l
guaranteed blocks before txB reaches n confirmations to further reduce costs.

Next, we see that centralization of mining increases the venality of the net-
work. As shown in Section 3.1, larger pools are more easily bribed than smaller



Table 3. The simulated attack cost (sum of δs) under different parameters of the whale
mining power q and the lead of the original branch at the start of the race phase z.
The values shown are averages across 106 simulations for each pair of q and z.

q 6 5 4 3 2 1 0

0.532 2.93e+23 3.09e+22 8.03e+21 1.10e+22 2.57e+24 2.50e+21 4.40e+20
0.670 999.79 464.74 307.71 267.72 56.09 17.64 3.63
0.764 768.09 291.86 109.89 40.16 12.73 2.48 0
0.828 1265.14 417.85 135.80 42.32 11.60 1.65 0
0.887 1205.00 390.63 123.93 37.23 9.46 1.00 0
0.931 1806.67 540.75 159.34 44.66 10.69 1.12 0
0.968 2178.58 628.13 178.19 48.29 11.23 1.15 0
0.999 2598.64 723.92 198.92 52.33 11.89 1.22 0

pools. In our simulation, the three largest pools, which includes Alice, already
combine for a majority of whale mining power. Since q = 0.532 is only slightly
above a majority, the cost of the attack is exorbitant. However, simply adding
the fourth largest pool for q = 0.670 dramatically reduces the cost of the at-
tack. Observing Table 3 for z = 6, we see that Alice’s cheapest option is to aim
for q = 0.764. Attempting to bribe the smaller pools, which would allow z to
converge faster, would not be cost efficient. Now, consider if mining was com-
pletely decentralized, and the largest pools wielded less than 0.01 of the mining
power—the whale attack would be incredibly costly in our model.

Finally, consider that Alice only wields α = 0.188 of the mining power in our
simulations. In the past, mining pools have enjoyed much larger shares of mining
power, even exceeding a majority on several occasions. Observing Table 1, we
can see that a larger attacker could dramatically reduce the cost of the attack.
Thus, we aver that α = 0.188 is modest in comparison, and even so, the whale
attack need not require an intractable amount of capital. Taking this a step
further, our assumptions from Section 3, already induce an upper bound on the
cost. We address these assumptions below, and discuss how they might differ in
practice.

Assumption 1. We briefly discussed this in Section 3, but a more sophisti-
cated mining entity who considers the decisions of other mining entities could
dramatically lower the necessary δ for whale mining to be rational. In prac-
tice, cooperative mining entities would achieve similar effects, since they could
certainly account for each other’s mining power when evaluating the profits.

Assumption 2. In practice, if a mining entity mines a large whale block, it
would likely be in its best interest to “stick” to whale mining. Consider that it
may even be rational to issue their own smaller whale transactions to ensure the
success of Alice’s branch. From Alice’s perspective, the best case (other than if
she were to reclaim every whale transaction) would be to have different mining
entities each mine a single whale block. If these entities combine for a majority
of whale mining power, it is probable that further whale transactions would not
be needed at all. Our model assumes the worst case, in which some negligibly



sized mining entity miraculously receives 1−α
q of the rewards, thus rendering the

other mining entities “unsticky.”
Assumption 3. In practice, a marginal profit for whale mining over honest

mining may not be sufficient, and we would need to consider the “cost of devia-
tion.”

Assumption 4. In practice, it is not necessary for Alice to keep whale min-
ing power consistent, especially if Alice does not require that the whale attack
succeed with probability 1. Perhaps if the purchased merchandise is quite liq-
uid, having the attack fail with nonzero probability would not be a tremendous
setback.

Assumption 5. As we mentioned before in addressing Assumption 2, there
are cases in which it would not be necessary to issue whale transactions until the
attack is completed. Additionally, Alice might also choose a finite cutoff for zlim,
since continuing the whale attack would not be rational if the attack unluckily
takes longer than expected.

Our work is primarily a proof-of-concept for the whale attack being feasible
for a minority attacker, and we leave open the challenges of modeling the cost
of the attack more precisely and exploring the strategy space when combining
the whale attack with other mining attacks.

5 Conclusion

Cryptocurrencies fail to fit into established theoretical frameworks for secure
distributed systems. Instead, their security relies on the assumption that a ma-
jority of miners, as measured by their computational resources, will behave hon-
estly. In this regard, researchers have uncovered many deviant mining strategies,
which reveal evident security gaps in a rational setting. In this work, we pre-
sented the whale attack, in which a minority attacker increases her chances of
double-spending by incentivizing rational miners into colluding. Moreover, we
demonstrated that such an attack is feasible, even when the attacker wields a
modest amount of mining power and capital. While Nakamoto consensus has
been a stopgap to the issue of double-spending, we showed that as currently
prescribed, it is by no means a panacea.
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