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Abstract

Diffusion models have made significant strides in image
generation, mastering tasks such as unconditional image
synthesis, text-image translation, and image-to-image con-
versions. However, their capability falls short in the realm of
video prediction, mainly because they treat videos as a collec-
tion of independent images, relying on external constraints
such as temporal attention mechanism to enforce temporal
coherence. In our paper, we introduce a novel model class,
that treats video as a continuous multi-dimensional process
rather than a series of discrete frames. Through extensive ex-
perimentation, we establish state-of-the-art performance in
video prediction, validated on benchmark datasets including
KTH, BAIR, Human3.6M and UCF101.

1. Introduction

In the evolving landscape of machine learning and generative
models, particularly in the domain of video representation,
there exists a pivotal challenge in adequately capturing the
dynamic transitions between consecutive frames. In this
paper, we introduce a novel approach to video representa-
tion that treats the video as a continuous process in multi-
dimensions. This methodology is anchored in the observa-
tion that transitions between consecutive frames in a video
do not uniformly contain the same amount of motion. Mod-
eling these transitions with a single-step process often leads
to suboptimal quality in sampling. Our method, therefore,
involves multiple predefined steps between two consecutive
frames, drawing inspiration from recent advancements in
diffusion models for image data. This multi-step diffusion
process has been instrumental in better modeling image data,
and we aim to extend this success to video data.

Previous efforts in video modeling with diffusion mod-
els have tended to approach videos as a series of images,
generating separate volumes of video frame sequences and
applying external constraints such as applying temporal at-
tention to maintain the temporal coherence. We argue that
this approach overlooks the inherent continuity in video data,
which can be more naturally conceptualized as a continuous
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Figure 1. The figure is divided into two parts. The top portion
of the figure illustrates the intermediate frames x; between two
consecutive frames. x,y represents consecutive frames from a
video sequence where y = x?™! and x = x?. x/ denotes some
frame at timestep 7 in the video sequence V = {xl}fvzl z denotes
the white noise. The lower portion of the figure represents the
directed graphical model considered in this work to represent the
continuous video process.

multi-dimensional process. Our proposed method defines

this continuous process, beginning with two consecutive

frames from a video sequence as endpoints this can be ob-
served in Fig. 1. We delineate the forward process through
interpolation between these endpoints, with a predefined
number of steps guiding the transition from one point to
another. To ensure the existence of p(x;) at all points, we
introduce a novel noise schedule that applies zero noise at
both endpoints.

We approximate each step between these endpoints using

a Gaussian distribution, following the assumptions made in

diffusion models for images by the paper [15, 21, 34, 35]. In

defining this forward process, we also lay the groundwork
for estimating a reverse process. This paper presents a novel
lower variational bound for estimating this reverse process.

To summarize, our contribution in this work is as follows:

* We introduce a novel approach for representing videos as
multi-dimensional continuous processes.

* We derive a novel variational bound that efficiently esti-
mates the reverse process in our proposed ‘Continuous
Video Process (CVP)’ model.

* Our method employs a unique noise schedule for the con-



tinuous video process, characterized by zero noise at both
endpoints, ensuring the existence of p(x;) at all intermedi-
ate timesteps.

* We demonstrate the efficacy of our approach through state-
of-the-art results in video prediction tasks across four dif-
ferent datasets namely, KTH action recognition, BAIR
robut push, Human3.6M, and UCF101 datasets.

2. Related Works

Understanding and predicting future states based on ob-
served past events is a cornerstone challenge in the domain of
video understanding, crucial for applications where captur-
ing the inherent multi-modality of future states is vital, such
as in autonomous vehicles. Early methods in this field, as
noted by Yuen et al.[48] and Walker et al.[43], primarily fo-
cused on matching past frames within datasets to extrapolate
future states, although these predictions were constrained
to either symbolic trajectories or directly retrieved future
frames. The advent of deep learning has significantly pro-
pelled advancements in this area. One of the seminal works
by Srivastava et al.[37] leveraged a multi-layer LSTM net-
work for deterministic representation learning of video se-
quences. Subsequent studies [8, 11, 17, 30, 39, 41, 45], have
expanded the scope of this research by constructing models
that account for the stochastic nature of future states, mark-
ing a notable shift from earlier deterministic approaches.

Recent research in this domain has explored both im-
plicit and explicit probabilistic modeling approaches. Im-
plicit probabilistic modeling, typified by GAN [20]-based
models, has a substantial history. Nonetheless, these mod-
els [10, 26, 28] often grapple with training stability issues
and mode collapse(where model only focuses on a few
modes in the dataset) issues. On the other hand, explicit
probabilistic modeling for video prediction encompasses
a range of methodologies, including Variational Autoen-
coders (VAEs) [24], Gaussian processes, and Diffusion mod-
els. VAE-based video prediction methods [7, 14, 26] tend
to average results to align with all potential future scenar-
ios, which undermines the fidelity of predictions. Gaus-
sian process-based models [4, 33] exhibit proficiency with
smaller datasets but encounter scalability issues owing to
matrix inversion limitations when calculating training like-
lihood. While workarounds exist, they tend to compromise
result fidelity.

Recent advancements in diffusion models [12, 22, 23,
42] have positioned them as the preferred choice for video
prediction tasks. These multi-step models offer superior
sample quality and are resilient to mode collapse. However,
even with such lucrative advantages, modeling videos with
these models tends to have downsides. Majorly methods
falling under this category enforce temporal consistency
using artificial external constraints such as the introduction
of temporal attention blocks. This might be effective but

comes at a cost of significant computing power.

Another class of popular video prediction models is hier-
archical prediction [5, 6, 40, 44, 46] models. These models
are multistage models that decompose the problems into two
stages. They first predict a high-level structure of a video,
like a human pose, and then leverage that structure to make
predictions at the pixel level. These models generally require
additional annotation for the high-level structure for train-
ing, unlike ours that predicts future frames utilizing only the
pixel-level information of context frames.

We also want to highlight some very recent works like
InDI [13], and Cold diffusion [3] that provide an alternate
approach to denoising diffusion models that is similar to
our approach. However, their works only explored such
formulation for image-based computational photography and
image generation tasks.

3. Method

Instead of introducing noise iteratively to the frames un-
til they conform to a Gaussian distribution, and adopting
a reverse process such as denoising diffusion, a commonly
employed technique for video prediction, we introduce a
novel model category designed to depict videos as continu-
ous processes. This section delves into the modeling of this
continuous video process.

Suppose we have a video sequence denoted by V =
{x!}V where x/ € R*"*™ i5 the frame at the timestep
7. We represent this video sequence as a continuous process.
The intermediate frames between x = x? and y = x/ T are
given by the following equation.

 tlog(t)
7 zZ

Here, z ~ N(0, I) denotes the white noise. From the
above Eqn, it can be seen that at t = 0, we get the frame
xJand at t = 1, we get the frame x/*!. We utilize this
continuous process of evolving x/ — x/71 given by Eqn. 1
and derive both the forward and reverse processes. For
defining the forward process, we take steps in the direction
t : T — O instead of the other way, which happens in
denoising diffusion process [21]. The reason for this is we
want the reverse process to start from past frame x and
according to the Eqn. 1 x; = xatt = 0.

We can write the forward process, i.e., going from the
start point y at ¢ = 7 to endpoint x at ¢t = 0,

xp=(1—-t)x+ty (1)

Xepar =X + (y — x)At — tlog(t)z )

From the above equation, we can write the posterior for
the forward process as q(x;i1|x¢,%,y) = N(X¢p1
A(x¢,%,y),g%(t)I). Where g(t) = —tlogt. The whole
derivation is provided in the appendix.
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Figure 2. Fig. (a) demonstrates the methodology for estimating x: in a single step, showcasing the specific computational process involved.
Fig. (b) details the training pipeline of our Continuous Video Process (CVP) model, where x; and ¢ are fed as inputs to the U-Net architecture,

and the anticipated output is ¥, with § = x'**1

in this scenario. Fig. (c) provides an overview of the sampling pipeline utilized in our CVP

method, illustrating the sequential steps to predict the next frame of the video sequence given the context frames.

For modeling our video diffusion process, we
like to model the likelihood function pg(xy) =
[ po(x0:7) dxo.:7—1 and minimize the negative log-
likelihood to obtain the best fit for our model. Here, pg(xo.7)
is the probability of the reverse process, and it is defined as
a Markov chain with learned Gaussian transitions starting
at p(Xg) = Pdata(x). Important note about the notations
Xo, X7, unless specified consider xg = x and Xxp = y
where x is the frame in the video sequence at 5 position
and y is the frame at (j + 1) position. One important
assumption about the continuous video process is we assume
the transition between the frames x and y to follow Markov
chain, i.e., the current state at timestep ¢ only depends on the
previous state at timestep ¢ — 1. Leveraging this assumption
we can define the reverse process as follows,

T
po(x0.7) = p(x0) [ [ po(xelxi-1) 3)
=1

where,  po(xi—1]x¢) = N (x5 prg(x—1,t
1),3p(x¢—1,t —1)). We are interested in learning
the reverse process to perform our video prediction task.

The forward process or the diffusion process is a fixed
Markov chain that gradually transforms the frame y to frame
X.

T

HQ(xt—1|Xt)v

t=1

“)

Q(XO:T—1|XT) =

Training is performed by minimizing the variational
bound on the negative log-likelihood.

E [—logpe(x7)] < E, [_ log m} ©
<E, [ log p(xo) — > log = :TItxtl))}
t>1
(6)
=: L(0) @

This variational bound can be simplified to the following
(we refer the readers to the appendix to follow the simplifi-
cation of from Eqn. 7 to the following equation),

L(0) = > Dxu(g(xelxi-1,%,¥) || po(xelxi-1,%)) (8)
t>1

In the above Eqn, the KL divergence term utilizes the
comparison of py(x:|x;—_1,x) with forward process poste-
rior term, which is tractable under the process given by
Eqn. 2. The forward process posterior term is given by

- N(Xt : ﬂ(Xt_l,X, y)).gz(t)l) (9)

where, [i(x¢,X,y) = x¢ + (y — x) and g(t) = —tlog(t).
Consequently, all KL divergences in Eqn. 8 are compar-
isons between Gaussians, so they can be calculated in a
Rao-Blackwellized fashion with closed-form expressions
instead of high-variance Monte Carlo estimates. It is impor-
tant to note while deriving the Eqn. 8, we ignore some terms
that purely involve the forward process posteriors as ¢ has
no learnable parameters, so such terms are constants during
training.

Now we discuss our choices in pp(x¢|xi—1,%) =
N (%45 pg(x4—1,t—1,%), Bg(x¢—1,t—1,%x)) for1 < ¢ <T.
First, we set Xg(x;_1,t — 1) = ¢*(#)I to untrained time
dependent constants. Experimentally, the choice of g(t) =
—tlog(t) works the best. This noise function has an inter-
esting property that noise is absent both at the start and end
points, i.e., g(t) =0 Vvt ={0,1}.

Second, to represent the mean g4 (X¢, t, X), we propose
a specific parameterization motivated by the forward pro-
cess posterior given by Eqn. 9. With py(x4|x;—1,x) =
N (x4 pg(x4-1,t — 1,x), g*(t)I), we can write:

L(0) = By | gt ) -

Q(Xt|Xt—17 X, Y)

+C
(10)

/,l,‘g(Xt,t,X)”Q

where C' is a constant that does not depend on 6. So, we
see that the most straightforward parameterization of i, is a
model that predicts fi,, the forward process posterior mean.



Algorithm 1 Training of CVP model

1: repeat
20 X,y ~ qaaa(X,y)
3: ¢ ~ Uniform({1,...,T})
4: z~N(0,1I)
5: Take gradient descent step on
Vosgig Iy = yo((1 = t)x + ty — (tlog(t)/v2)z, 1)
6: until converged

I

Algorithm 2 Sampling Algorithm

11 X ~ Gaa(X)

2: X0 =X

3:d= %, Here N denotes number of steps.
4: fort=1,...,Ndo

50 z~N(0,Id)ift > 1,elsez =0

6: Xt4+1 = Xt + (g(Xt, t) — X)d — thg(t)Z

7: end for

8: return xr

However, we can simplify Eqn. 10 further and obtain a
very simple training loss objective by delving in the term fi.
We further parameterize the term g as follows,

(1)

When we substitute this pg(x¢, t, x) parameterization in
the Eqn. 10 we get the simplified version of the loss L(6) as
follows,

Mo (Xt,t, %) = X¢ + (yo(xt) — X)

1
Lanptl6) = Bo 535 Iy = volGru 0l 12
For training the video prediction model utilizing the above
Eqn. 12 we obtain the x; as a function of ¢ by leveraging the
Eqn. 1. The following equation gives a more generic form of
the final loss function utilized to train the video prediction
model,

L
2g°(t)

Hy —yo((1 —t)x+ty + g(\/%)z,t)

(13)

argminE; x o
9

The whole training and sampling pipeline is described in the
training Alg. 1, sampling Alg. 2 and depicted in Fig. 2.

4. Experiments

Video prediction task can be defined as given a few context
frames, the model has to predict the subsequent future frames.
In this section, we empirically demonstrate that our approach
yields superior results in modeling the video prediction task.

4.1. Datasets

We chose 4 different types of datasets to demonstrate the
efficacy of our approach. These are standard benchmarks

T

for video prediction tasks. Dataset lists include KTH action
recognition dataset [32], BAIR robot pushing dataset [16],
Human3.6M [9] and UCF101 [36] datasets. Training and
architecture-specific details about the approach are included
in the appendix.

KTH Action Recognition Dataset. The KTH action
dataset [32] consists of video sequences of 25 people per-
forming six different actions: walking, jogging, running,
boxing, hand-waving, and hand-clapping. The background
is uniform, and a single person is performing actions in the
foreground. The foreground motion of the person in the
frame is fairly regular. The frames in the video for this
dataset consist of a single channel. The spatial resolution
of the frames in the video is downsampled to the size of
64 x 64.

BAIR pushing Dataset. The BAIR robot pushing
dataset [16] contains the videos of table mounted sawyer
robotic arm pushing various objects around. The BAIR
dataset consists of different actions given to the robotic arm
to perform. The spatial resolution of the frames in the video
is kept to be 64 x 64.

Human3.6M Dataset. Human3.6M [9] dataset consists of
10 subjects performing 15 different actions. The pose in-
formation from the dataset was not used in predicting next
frame. The background is uniform, and a single person is
performing actions in the foreground. The foreground mo-
tion of the person in the frame is fairly regular. The frames
in the video for this dataset consist of ‘RGB’ channels. The
spatial resolution of the frames in the video is downsampled
to the size of 64 x 64.

UCF101 Dataset. This dataset [36] consists of 13,320
videos belonging to 101 different action classes. The video
seems to have a variety of backgrounds and the frames of
the video have three channels, namely ‘RGB’. We reshape
the resolution of frames from the original size of 320 x 240
down to 128 x 128 for our video prediction tasks. The
downsampling is done utilizing the bicubic downsampling.

4.2. Metrics

We primarily use the FVD [38] metric to determine the
best-performing baseline when evaluating a video prediction
task. FVD metric evaluates a baseline on both terms, the
reconstruction quality and diversity of the generated samples.
FVD is calculated as the frechet distance between the 13D
embeddings of generated video samples and real samples.
The I3D network used for obtaining the embeddings for real
and generated video is trained on the Kinetics-400 dataset.

5. Setup and Results

Below, we describe in detail how the setup for our experi-
ment looks compared to baselines. We also showcase our
findings about the performance of our method and compari-
son to baselines in this section.
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Figure 3. Figure represents qualitative results of our CVP model on
the KTH dataset. The number of context frames used in the above
setting is 4 for all three sequences. Every 4" predicted future
frame is shown in the figure.

Table 1. Video prediction results on KTH (64 x 64), predicting 30
and 40 frames using models trained to predict k frames at a time.
All models condition on 10 past frames on 256 test videos.

KTH [10 — #pred; trained on k]| k #pred [ FVD] PSNRT SSIM1
SVG-LP [14] 10 30 |377 28.1 0.844
SAVP [26] 10 30 |374 26.5 0.756
MCVD [42] 5 30 |323 27.5 0.835
SLAMP [1] 10 30 |228 29.4  0.865
SRVP [18] 10 30 |222 29.7 0.870
RIVER [12] 10 30 |180 304 0.86
CVP (Ours) 1 30 [140.6 29.8 0.872
Struct-vRNN [29] 10 40 [395.0 2429 0.766
SVG-LP [14] 10 40 |157.9 2391 0.800
MCVD [42] 5 40 |276.7 2640 0.812
SAVP-VAE [26] 10 40 |145.7 26.00 0.806
Grid-keypoints [19] 10 40 |1442 27.11 0.837
RIVER [12] 10 40 |170.5 29.0 0.82
CVP (Ours) 1 40 (1201 29.2 0.841

KTH action recognition dataset: For this dataset, we ad-
hered to the baseline setup [42], which utilizes the first 10
frames as context frames. In baseline setup, these 10 frames
are utilized to predict the subsequent 30 and 40 frames. A
notable aspect of our experiment is we only used the last 4
frames from this sequence of 10 frames as context frames
in our CVP model, while disregarding the information in
the remaining 6 frames. This decision was taken to main-
tain consistency with the experimental setups used in prior
baseline methodologies. The outcomes of this evaluation are
summarized in Table. 1.

It can be observed from the Table. 1, our model’s unique
approach requires a significantly reduced number of frames
for training. Contrary to other methods that train on an
additional set of k frames (10[context frames]+k[future
frames]), our model uses just one frame (effectively 4[con-

text frames]+1[future frames]). We employ the 4 context
frames to predict the immediate next frame and then autore-
gressively generate either 30 or 40 frames, depending on the
evaluation requirement. This methodology is supported by
our model’s efficient handling of video sequences as con-
tinuous processes, which eliminates the need for external
artificial constraints, such as temporal attention mechanisms.

The results, as shown in Table 1, clearly indicate that

our method delivers state-of-the-art performance when com-
pared to other baseline models. Additionally, the qualitative
results for our CVP model on the KTH dataset can be ob-
served in Fig. 3.
BAIR Robot Push dataset: The BAIR Robot Push dataset
is characterized by highly stochastic video sequences. In our
study, we adhered to a baseline setup [42] with three main
experimental settings: 1) using only one context frame to
predict the next 15 frames, 2) employing two context frames
to predict 14 future frames, and 3) utilizing two context
frames to forecast the next 28 frames. The outcomes of these
approaches are summarized in Table 2.

As observed in Table 2, a trend emerges where increasing
the number of frames predicted at a time concurrently results
in a degradation of prediction quality. This phenomenon is
hypothesized to stem from an augmented disparity between
the blocks of context frames and predicted future frames.
Specifically, consider the scenario where two context frames
are designated as x°:2, corresponding to x in the context of
Eqn.1. Under the first experimental condition, where the
model predicts a single frame at a time, the future frame pre-
diction block is represented as x'*3, analogous to y in Eqn.1.
Conversely, in the second condition, where two frames are
predicted simultaneously, the future frame block extends to
x24, again paralleling y in the equation. This setup implies
that in the former setting, interpolation occurs between adja-
cent frames (i.e., the transition from x° — x! and x! — x2),
while in the latter, interpolation spans a two-frame interval
(i.e., the transition from x° — x2 and from x! — x3). The
expanded interval in the second scenario is posited as the
causative factor for the observed reduction in predictive per-
formance, particularly in configurations where k£ = 2 and
p=2.

The results, as shown in Table 2, clearly indicate that our
method delivers state-of-the-art performance compared to
other baseline models. Additionally, the qualitative results
for our CVP model on the BAIR dataset can be observed in
Fig. 4.

Human3.6M dataset: Similar to the KTH dataset, the Hu-
man3.6M dataset features actors performing distinct actions
against a static background. However, the Human3.6M
dataset distinguishes itself by offering a greater variety of
distinct actions within its videos and providing three-channel
video frames, in contrast to the single-channel frames of the
KTH dataset. For evaluating the Human3.6M dataset, we
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Figure 4. Figure represents qualitative results of our CVP model on
the BAIR dataset. The number of context frames used in the above
setting is two for both sequences. Every 6" predicted future frame
is shown in the figure.
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Table 2. BAIR dataset evaluation. Video prediction results on
BAIR (64 x 64) conditioning on p past frames and predicting pred
frames in the future, using models trained to predict k frames at at
time.The common way to compute the FVD is to compare 100256
generated sequences to 256 randomly sampled test videos. Best
results are marked in bold.

BAIR (64 x 64) | p k #pred | FVD]
LVT [31] 1 15 15 125.8
DVD-GAN-FP[10] |1 15 15 109.8
TrIVD-GAN-FP [28] | 1 15 15 103.3
VideoGPT [47] 1 15 15 103.3
CCVS [25] 1 15 15 99.0
FitVid [2] 1 15 15 93.6
MCVD [42] 1 5 15 89.5
NUWA [27] 1 15 15 86.9
RaMViD [23] 1 15 15 84.2
VDM [22] 1 15 15 66.9
RIVER [12] 1 15 15 73.5
CVP (Ours) 11 15 70.1
DVG [33] 2 14 14 120.0
SAVP [26] 2 14 14 116.4
MCVD [42] 2 5 14 87.9
CVP (Ours) 2 2 14 68.2
CVP (Ours) 2 1 14 65.1
SAVP [26] 2 10 28 143.4
Hier-vRNN [7] 2 10 28 143.4
MCVD [42] 2 5 28 118.4
CVP (Ours) 2 2 28 95.1
CVP (Ours) 2 1 28 85.1

employed a similar setup to that used for the KTH dataset,
where 5 frames are provided as context, and the model pre-
dicts the subsequent 30 frames based on these context frames.
The results of this evaluation are summarized in Table 3.

Table 3. Quantitative comparisons on the Human3.6M dataset. The
best results under each metric are marked in bold.

Human3.6M  |p k #pred|FVD]
SVG-LP [14] 510 30 | 718
Struct-VRNN [29]]5 10 30 |5234
DVG [33] 510 30 |4795
SRVP [18] 510 30 |416.5
Grid keypoint [19]|8 8 30 |166.1
CVP (Ours) 51 30 |144.5

An analysis of Table 3 reveals that our model, with its
unique approach, requires a significantly lower number of
frames for training, needing only a total of 6 frames per
block to yield results that are considerably better than those
of the baselines.

The results, as presented in Table 3, unequivocally demon-

strate that our method outperforms other baseline models, es-
tablishing a new state-of-the-art on the Human3.6M dataset.
Furthermore, the qualitative efficacy of our CVP model on
the Human3.6M dataset is illustrated in Fig. 5, showcasing
the model’s ability to effectively capture and predict the
dataset’s varied actions.
UCF101 dataset: The UCF101 dataset presents a greater
level of complexity compared to the KTH or Human3.6M
datasets, owing to its substantially higher number of ac-
tion categories, diverse backgrounds, and significant camera
movements. Notably, we only use information from the con-
text frames for our prediction task. No extra information,
like class labels, was used for the prediction task. In evalu-
ating the UCF101 dataset, we adopted an approach similar
to that used for the Human3.6M dataset, where 5 context
frames are provided, and the model is tasked with predicting
the next 16 frames based on these. The outcomes of this
evaluation are detailed in Table. 4.

An examination of Table. 4 reveals that our CVP model
surpasses the performance of other baseline models, thereby
setting a new benchmark for the UCF101 dataset. Addi-
tionally, the qualitative performance of our CVP model on
the UCF101 dataset is depicted in Fig. 6. This illustration
showcases the model’s proficiency in accurately capturing
and predicting the diverse range of actions featured in the
dataset.

6. Limitation

While our method demonstrates promising results in video
prediction, it is important to acknowledge its limitations to
guide future research and application development.

A primary limitation of our approach is its reliance on a
limited context frame window for predicting the next frame.
Specifically, when a context vector, denoted as x4, com-
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Figure 5. Figure represents qualitative results of our CVP model on the Human3.6M dataset. The number of context frames used in the
above setting is 4 for all three sequences. Every 4'" predicted future frame is shown in the figure.

Table 4. Video prediction results on UCF (128 x 128), predicting
16 frames. All models are conditioned on 5 past frames.

UCF101 [5 — 16]|p k #pred|FVD]

SVG-LP [14] 510 16 | 1248
CCVS [25] 516 16 | 409
MCVD [42] 55 16 | 387
RaMViD [23] 54 16 | 356
CVP (Ours) 51 16 |2452

prising 4 video frames is used, the prediction of the subse-
quent frame is entirely dependent on this four-frame window.
This model architecture performs adequately in scenarios
involving uniform video sequences. However, its efficacy
diminishes in a setting that requires more context to pre-
dict the future frame. Addressing this limitation requires
a more adaptive approach that can handle varying contex-
tual information, a challenge we have earmarked for future
research.

Another constraint lies in the computational efficiency of
our model. Currently, it necessitates multiple steps to sample
a single frame, which could become a significant bottleneck,

especially when a larger number of frame predictions are
required. Although our method is more efficient in terms of
the number of steps needed for frame sampling compared to
diffusion-based counterparts, further optimization is neces-
sary to reduce the computational overhead associated with
this process.

Additionally, our experimental setup was constrained by
the computational resources available to us. The model was
developed and tested using just two A6000 GPUs. This
limitation raises questions about the potential improvements
that could be achieved with a more powerful computational
setup. A larger model with an increased number of parame-
ters, trained on more advanced hardware, could potentially
unveil further advancements in video prediction capabilities.
We recognize this as an important area for investigation and
encourage labs with more substantial resources to explore
this avenue.

In summary, while our model represents a significant
step forward in video prediction, these limitations highlight
crucial areas for future research and development, paving the
way for more robust and versatile video prediction models.
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Figure 6. Figure represents qualitative results of our CVP model on the UCF dataset. The number of context frames used in the above setting
is 5 for all three sequences. Every 4" predicted future frame is shown in the figure.

7. Conclusion

In this work, we have presented a novel model class designed
specifically for video representation, marking a significant
advancement in the field of video prediction tasks. Our com-
prehensive experimental evaluations across various datasets,
including KTH, BAIR, Human3.6M, and UCF101, have not
only validated the effectiveness of our model but also estab-
lished new benchmarks in state-of-the-art performance for
video prediction tasks.

A notable aspect of our approach is its efficiency in terms
of the required number of context and future frames for
training. Moreover, our model’s continuous video process
capability uniquely operates without the need for additional
constraints such as temporal attention, which are typically
employed to ensure temporal consistency. This aspect of our
model underscores its inherent ability to maintain temporal
coherence, further simplifying the video prediction process
while enhancing its effectiveness.

In conclusion, the innovations introduced in our model

offer promising directions for future research in video repre-
sentation and prediction. The achievements demonstrated in
this paper not only contribute to the advancement of video
prediction methodologies but also open avenues for explor-
ing more efficient and effective ways of video representation
in various real-world applications.

8. Broader Impact

We used this method for video prediction; however, such
modeling can make a major impact on many computa-
tional photography tasks. Here, one end of the CVP
can be a corrupted image and the other end be a clean
ground truth image. Additionally, a larger model with
an increased number of parameters, trained on more
advanced hardware, could potentially have advanced
video prediction capabilities. This can lead to a signif-
icant increase in the creation of high-quality artificially
generated content, further compounding the problems of
fake content. However, a positive contribution of this
approach can help with its application in autonomous driving.
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Video Prediction by Modeling Videos as Continuous Multi-Dimensional Processes

Supplementary Material

A. Extended derivations of Eq. (8)

Below is a derivation of Eq. (8), the reduced variance varia-
tional bound for our CVP models.

L=E;|-log _Polxor) }

q(x0:7—1]%7)

Po (Xt Xt—1
=E, | — log p(xo) Zlo xf| |tX ))]
L t>1 t-11
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Both x¢ and x7 are observed variable hence, we ignore
the first term in the RHS. We focus on the second term for
training the parameters for our CVP models. Therefore, the
resulting loss function becomes,

L(9) = ZDKL(Q(Xt|Xt—17an) | Po(x¢[x¢-1,%0)) -
t>1

B. Extended derivation for Eq. (2)
Using Eq. (2) we can write the term x;4 A, as follows,
=1-({t+A))x+ (t+At)y

_ (t+AD)log(t+ A
\/i t+At

Xt+At

Considering the term (¢t + At) log(t + At) we simplify fur-
ther,

(t + At) log(t + At) =t (1 + A) logt (1 + Att) .
(14)

if At is infinitesimally small we can write (1 + §) — 1.
Using this property we can rewrite X; 4 A as,

tlog(t
Xt+ At = (1 — (t + At))x + (t + At)y - i/g§<)Zt+At
(15)
(16)

Now, Subtracting x;+ A¢+(Eq. (16)) and x,(Eq. (1)) we get,

tlog(t)
V2

Focusing on the term (z;a: — 2¢).
N(0,T). Hence, we can write,

x)At —

Xi+At — Xt = (y - (Zt+At - Zt) (17)

Here, ZiyZy Nt ™

=12z where,z ~ N(0,1) (18)

(Zernt — 2t)
Substituting this result back to Eq. (17) we get the following,

Xepar — X = (y — z) At — tlog(t)z. (19)

Rearranging the terms we get the Eq. (2).

C. Training Details

For the optimization of our model, we harnessed the com-
pute of two Nvidia A6000 GPUs, each equipped with 48GB
of memory, to train our CVP model effectively. We adopted a
batch size of 64 and conducted training for a total of 500,000
iterations. To optimize the model parameters, we employed
the AdamW optimizer. Additionally, we incorporated a co-
sine decay schedule for learning rate adjustment, with warm-
up steps set at 10,000 iterations. The maximum learning rate
(Max LR) utilized during training was 5e-5.



Table 5. U-NET: We utilize Hugging face diffusers library for our
U-Net implementation. We utilize ‘positional’ type for timestep
embeddings. We utilize 4 layers per block. The target resolution for
KTH, BAIR and Human3.6M is kept at 64 x 64 and 128 x 128 for
UCF101 dataset. Additionally, we keep the number of timesteps
T as 100 given our compute resources. ¢ denotes the number of
channels present in the frame. n is the number of initial context
frames based on which next frame is predicted,i.e., x0m oy bt

Module ‘ Type ‘ Num Inputs ‘ Num Outputs
Conv2D nxec 128
DownBlock2D 128 128
DownBlock2D 128 128
Encoder DownBlock2D 128 256
DownBlock2D 256 256
AttnDownBlock2D 256 512
ResnetDownsampleBlock2D 512 512
ResnetUpsampleBlock2D 512 512
AttnUpBlock2D 512 512
UpBlock2D 512 256
Decoder UpBlock2D 256 256
UpBlock2D 256 128
UpBlock2D 128 128

Conv2d 128 nxc
D. Ablation Studies

In this section, we present a series of ablation studies con-
ducted to ascertain the impact of various components in our
proposed methodology. These studies focus on three primary
aspects: the modification of the noise schedule denoted as
g(t), the variation in the number of sampling steps, and the
exploration of different strategies for sampling the timestep
t. Our experimental framework utilizes the KTH dataset for
these evaluations.

The outcomes of these experiments are systematically
tabulated in Table. 6, offering a comprehensive view of the
results. The key insights derived from these ablation studies
are threefold. Firstly, our analysis underscores the criticality
of sampling the timestep ¢ from a uniform square root distri-
bution, specifically ¢ ~ /1[0, 1]. This approach appears to
significantly influence the model’s performance.

Secondly, regarding the noise schedule ¢(t), we find that
the optimal formulation for the task of video prediction is
given by g(t) = %. This particular noise schedule is
characterized by a zero initial and final noise level, with a
peak near ¢ = 0. Such a configuration is advantageous for
our application.

Thirdly, our results, as detailed in Table 6, indicate that
an increase in the number of sampling steps beyond 25 does
not substantially improve the outcome. However, this obser-
vation may vary if the model is trained with a significantly
higher number of steps, such as 1000, as opposed to the
current setup of 100 steps.

In summary, these ablation studies provide valuable in-
sights into the dynamics of our model under varying con-

Table 6. Ablation study: Video prediction results on KTH (64 x
64), predicting 30 frames. All models condition on 4 past frames
on 256 test videos. The method with settings marked with * is
reported in the main paper.

KTH Noise Sampling t FVD]
Schedule(v/2g(t)) steps  Distrbution

- 25 Uujo,1] [348.2

sin(rt) 25 uo,1] |2782

sin(rt) 25 JUo,1] 2377

tsin(t) 25 ulo,1] |240.7

t sin(rt) 25 VU[0,1] |208.4

CVvP t(1—1t) 25 ulo,1] |209.6

Model H1—1) 25 JU0,1] |187.8

Ablations —tlog(t) 25 u[o,1] [190.4
—tlog(t)= 25% /U0, 1]* | 140.6%

—tlog(t) 5 VuU0,1] |165.7

—tlog(t) 10 JU,1] |1443

—tlog(t) 50 \/ul[0,1] |139.4

ditions, highlighting the importance of specific parameter
settings and offering guidance for future research directions.
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