
EM509 Stochastic Processes Project : Random Walks

Gihan Jayatilaka∗ E/14/158

09-07-2020

Abstract

First random walks are introduced in the order of 1D (without barriers and with barriers), 2D
(without barriers and with barriers). Then Markov property is explained. The Markov property is
proved for the 1D simple case and a complicated 2D case with both absorbing and reflecting barriers.
Image segmentation problem is introduced from an application point of view and converted into a
mathematical formulation. Random walker algorithm for image segmentation is introduced and it
is proven to be a Markov process. The study is concluded by implementing the Random Walker
algorithm and testing it by segmenting a set of images.

Contents

1 Random Walks 2
1.1 Simple 1D random walk . 2
1.2 2D Random walk . 2
1.3 Random walks with barriers . 3

1.3.1 1D case . 3
1.3.2 2D case . 4

2 Markov Processes 6
2.1 Markov Property . 6

2.1.1 Markov Process . 6
2.2 States of a Markov Process . 6

2.2.1 Communicable states . 6
2.2.2 Transient states . 6
2.2.3 Recurrent states . 6

2.3 Irreducibilityy of Markov Chains . 6
2.4 Stationary distributions . 7

3 Random Walks and Markov Properties 7
3.1 Simple 1D random walk as a Markov Process . 7
3.2 2D random walk with Barriers as a markov process . 7

4 Application : Random Walker Algorithm for Image Segmentation 8
4.1 Images . 8
4.2 Segmentation . 8
4.3 Mathematical formulation of image segmentation . 8
4.4 Random Walker Algorithm . 9
4.5 Markov property of the Random Walker Algorithm (including classification of states and

the stationary distribution) . 12
4.6 Implementation and results of the Random Walker Algorithm 12

4.6.1 Implementation . 12
4.6.2 Experiments and Results . 12

5 Appendix 14

∗gihanjayatilaka@eng.pdn.ac.lk

1

https://gihan.me
mailto:gihanjayatilaka@eng.pdn.ac.lk

1 Random Walks

This section introduces random walks in an intuitive point of view and formally defines them. Later we
look into different types of random walks and barrier conditions.

Random walks refers to a kind of random processes where the current state is defined by the sum of
random steps. Another way of looking at random walks is as the path traversed while making random
steps. The simplest form of Random walks are one dimensional walks along the number line (Z) with
unit steps on either direction (±1) chosen at random from an uniform distribution. More complicated
random walks can be introduced starting form here by generalizing the space being traversed to 2D
or N-D, allowing steps in other directions and different distances. Furthermore, random walks can be
picking steps out of different probability distributions other than uniform distributions (such as Gaussian,
Poisson, etc:). In addition to unbounded spaces listed above, random walks can happen in bounded spaces
as well. The boundaries themselves can be of different shapes and have different properties such reflecting,
absorbing, etc:

1.1 Simple 1D random walk

The simplest of random walks, 1D infinite length integer line walk can be defined as below.

Figure 1: 1D Simple Random walk

Assume that a particle’s position at time t is given by Yt ∈ Z and Y0 = 0 (the starting position is at
the zero). The particle moves along the number line in integer steps Xt. t ∈ Z, t ≥ 0. Yt is given by,

Yt = Y0 +

τ=t∑
τ=1

Xτ

Since Y0 = 0,

Yt =

τ=t∑
τ=1

Xτ

Xt is picked from −1, 1 with equal probability.

Xt ∼ U({−1,+1})

p(Xt = −1) = p(Xt = 1) = 0.5

This gives rise to the probability distribution for Yt+1 as,

p(Yt+1 = Yt + 1) = p(Yt+1 = Yt − 1) = 0.5 (1)

This is illustrated in Figure 1

1.2 2D Random walk

We can try to extend the idea of 1D random walk to it’s 2D version.
The space being walked upon (Z in the 1D case) is being extended to a 2D grid Z2 in this case. While

there was only two possible steps (±1) in 1D case, we have 4 possible steps (±1 in either dimension) in
the 2D case. We can define the random process as,

Xt ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}

2

Y0 = (0, 0)

Xt ∼ U({(1, 0), (−1, 0), (0, 1), (0,−1)})

⇒ p(Xt) = (1, 0) = (−1, 0) = (0, 1) = (0,−1) =
1

4

Figure Figure 2 is an illustration of the 2D Random walk.
Application wise, most spatial information (maps, photographs) are 2D grids. Therefor, 2D random

walks have a range of usecases. The example being discussed in this study (Random walker algorithm
for image segmentation) is also based on the 2D random walk.

Figure 2: 2D random walk without barriers

1.3 Random walks with barriers

1.3.1 1D case

In reality, we dont have infinitely large spaces for random walks. Therefore, we cannot practically talk
about Yt ∈ Z. Instead we have to go for bounded spaces given by,

Yt ∈ {y; y ∈ Z, a ≤ y ≤ b}

When we introduce this barrier, we have to limit the possible steps near the boundary as well. There
are multiple possible behaviors for barriers such as reflecting and absorbing.

Assume that there is an absorbing barrier at Yt = a and a reflecting barrier at Yt = b. This is
illustrated in Figure 3. Their behavior can be mathematically represented as,

Yt = a⇒ Yt+1 = a

Yt = b⇒ Yt+1 = b− 1

This is achieved through limiting the steps. We started the simple random walk with only Xt ∈ {±1}.
But for absorbing barrier to exist, we need to introduce another new type of step. The new set of steps
would be

Xt ∈ {−1, 0,+1}

. For reflecting barrier to exist, we need to allow only one step.

Xt ∈ {−1}

3

Figure 3: 1D Random walk with barriers

We introduce this new type of steps only for the absorbing barrier and reflecting barrier.,

Xt+1 ∈


{0} ;Yt = a

{−1,+1} ; a < Yt < b

{−1} ;Yt = b

This gives rise to new step probabilities as well.
Yt p(Xt+1) p(Yt+1)
a p(Xt+1 = 0) = 1.0 p(Yt+1 = a) = 1.0

(a, b) p(Xt+1 = −1) = p(Xt+1 = 1) = 0.5 p(Yt+1 = Yt − 1) = p(Yt+1 = Yt + 1) = 0.5
b p(Xt+1 = −1) = 1.0 p(Yt+1 = b− 1) = 1.0

1.3.2 2D case

Similarly, we can introduce barriers for the 2D case as well. Here, we introduce an reflecting as a rectangle
with corners (au, av), (bu, av), (bu, bv), (au, bv).

We can define bounds for Yt as

Yt ∈ {y = (u, v); y = (u, v) ∈ Z2, au ≤ u ≤ bu, av ≤ v ≤ bv}

.
Now we will assume that the barriers for u are reflecting and the barriers for v are absorbing. It is

assumed that the absorbtion property takes precedence over the reflectance property. We will write the
possible steps and their probabilities for this case.

Xt+1 ∈


{(0, 0)} ; vt ∈ {av, bv}
{(1, 0)} ;ut = au and av < vt < bv}
{(−1, 0)} ;ut = bu and av < vt < bv}
{(−1, 0), (1, 0), (0, 1), (0,−1)} ; au < ut < bu and av < vt < bv}

Since all these steps are equi probable (the step is picked at random from the possible set of steps)
we get the following probabilities.

ut vt p(Xt+1)
au ≤ ut ≤ bu vt ∈ {av, bv} p(Xt+1 = (0, 0)) = 1.0

ut = au av < vt < bv{av, bv} p(Xt+1 = (1, 0)) = 1.0
ut = bu av < vt < bv{av, bv} p(Xt+1 = (−1, 0)) = 1.0

au < ut < bu av < vt < bv

p(Xt+1 = (−1, 0)) = p(Xt+1 = (1, 0))
= p(Xt+1 = (0,−1)) = p(Xt+1 = (0, 1))
= 0.25

We can obtain the probabilities for Yt+1 as

An illustration for this random walk is given in Figure 4

4

Figure 4: 2D Random walk with barriers

ut vt p(Yt+1)
au ≤ ut ≤ bu vt ∈ {av, bv} p(Xt+1 = (0, 0)) = 1.0

ut = au av < vt < bv{av, bv} p(Xt+1 = (1, 0)) = 1.0
ut = bu av < vt < bv{av, bv} p(Xt+1 = (−1, 0)) = 1.0

au < ut < bu av < vt < bv

p(Xt+1 = (−1, 0)) = p(Xt+1 = (1, 0))
= p(Xt+1 = (0,−1)) = p(Xt+1 = (0, 1))

= 0.25

Table 1: 2D Random walk with Barriers, transition probabilities

5

2 Markov Processes

In this section we look at what the markov property of a random process is. Then we try to justify
the markov property of the simplest random walk and a 2D random walk with barriers. This way, we
establish the fact that random walks could be proven to be markov.

2.1 Markov Property

Markov property refers to the memorylessness of a random process. The future states of a random process
with Markov property is dependent only on the present state. This can be mathematically formulated as
below.
Consider a random variable Xt. If the conditional probability of the future states depend on all the
previous states, we can write it as,

p(Xt+1) = f(Xt, Xt−1, Xt−2....)

Here, we don’t have the Markov property since we need all the previous states Xt, Xt−1, Xt−2.... to predict
the next state.
If random variable Xt has the Markov property, it can be written as,

p(Xt+1) = f(Xt)

or using conditional probabilities as,

p(Xt+1|Xt, Xt−1, Xt−2...) = p(Xt+1|Xt) (2)

2.1.1 Markov Process

A Markov process (also known as a Markov chain) is a random process with discrete state spaces and
discrete index sets whose random variables the Markov property.

2.2 States of a Markov Process

This section describes the theory behind different definitions for states in Markov processes.

2.2.1 Communicable states

Two states are considered communicable if there is a non zero probability of reaching either state starting
from the other state.

2.2.2 Transient states

A state is considered transient if there is a non zero probability for a markov chain starting at that state
to return back to the state.

2.2.3 Recurrent states

All states that are not transient are considered recurrent states.
Note: A recurrent state is not a state with a non zero probability of returning to it (which is a broader
set than recurrent states).

2.3 Irreducibilityy of Markov Chains

An irreducible Markov chain is a chain where any state can be reached starting from any state.
Markov chains with at least one absorbing state is not irreducible.

6

2.4 Stationary distributions

Intuitively, the stationary distribution is the convergent state of the Markov Chains. This can be formally
defined as below.

Consider a random process with Yt and p(Yt+1|Yt) taking usual meanings. Let T be the transition
probability martix and where

Ti,j = p(Yt+1 = j|Yt = i)

and π being the convergent probability distribution with

πi = p(lim
t→∞

Yt = i)

At steady state we have,
π = Tπ

Irreducible Markov chains have a unique π.
Absorbing Markov chains (Markov chains with at least one absorbing state) may have multiple πs. But
all these steady states have non zero probabilities only on the absorbing states.

3 Random Walks and Markov Properties

3.1 Simple 1D random walk as a Markov Process

Equation (1) can be rewritten as,

p(Yt+1 = y|Yt = y ± 1) = 0.5 for all Yt−1, Yt−2, Yt−3...

This is of the same form as (2). ⇒ Simple 1D random walk is a markov process.

The state of this markov process is Yt. The state can take any value in Z. We can graphically show
the states and the transition probabilites between the states as in Figure ??.

Several observations we can make are,

• There are infinitely many states.

• Every state has inward probabilities.

• Every state has outward probabilities.

We can draw the following conclusions,

• All states (infinitely many) are recurrent states.

• Since this process has infinitely many states, there cannot exist a stationary distribution.

• All states are accessible from any starting state. Therefore, the markov chain is irreducible.

3.2 2D random walk with Barriers as a markov process

In this section we try to look into the 2D random walk with barriers (absorbing and reflecting) as a
Markov process. We use the same example discusses in Table 1. We can clearly see how p(Yt+1) is a
function of Yt = (ut, vt). This can be written as,

p(Yt+1|Yt) = p(Yt+1|Yt, Yt−1, Yt−2...)

Since this equation satisfies the Markov property, 2D random walk with barriers is a Markov process.
Figure 1 illustrates this process.
When considering the states in this markov chain, any walk starting at an absorbing barrier is going

to be self contained. Therefore those states are recurrent.

7

Every walk staring from any other state has a non zero probability of going to the absorbing barrier
and getting stuch there. Therefore, all other states are transient states.

An absorbing markov chain with a finite number of states is going to converge to a stationary distri-
bution. At the stationary distribution, there will be non zero values on the absorbing states and every
other state will be zero.

The stationary distribution is not unique because not all states are positive recurrent in this.

4 Application : Random Walker Algorithm for Image Segmen-
tation

In this section we consider an application of random walks – Random walker algorithm for image seg-
mentation. We try to formulate the image segmentation problem as a stochastic process. We bring in
the image segmentation intuition to the transition matrix of the stochastic process. Then we prove that
the process is a Markov chain. Finally, we look into the results obtained by the algorithm.

4.1 Images

Images are 2D grids of pixels. Individual pixels may be monochromatic (scalars), RGB (3 dimensional
vectors) or multi/hyper spectral (higher dimensional vectors. For this section, we consider RGB images.
Assuming that they are of height H and width W , we can represent the image as IH×W×3.

4.2 Segmentation

Segmentation is the process of splitting image pixels into different classes for a particular objective (e.g.
segmenting by colour, background-foreground, texture, etc:.) Segmentation can also be considered as a
pixelwise classification problem.
Usually, segments consist of blobs of connected pixels. Figure 5 shows a practical case of image segmen-
tation. Different colour shades are applied over different segments.

Figure 5: Image segmentation example. The image is divided into multiple segments and labelled them
by colours

4.3 Mathematical formulation of image segmentation

We define a function f for image segmentation. The input images are considered to be IH×W×3 and the
output is considered to be a SH×W matrix with integers denoting the segment label for individual pixel.

f : IH×W×3 −→ SH×W

f is dependent on a distance measure g between the pixels. In this study, we use the second norm of
the difference between colour vectors as the distance.

g(I(ui,vi), I(uj ,vj)) = ‖I(ui, vi)− I(uj , vj)‖

8

ut vt Xt+1

(ut, vt) ∈ N0 {(0,0)}
0 0 {(1,0),(0,1)}
0 W-1 {(1,0),(0,-1)}

H-1 0 {(-1,0),(0,1)}
H-1 W-1 {(-1,0),(0,-1)}
0 1 ≤ vt ≤W − 2 {(1,0),(0,1),(0,-1)}

H-1 1 ≤ vt ≤W − 2 {(-1,0),(0,1),(0,-1)}
1≤ ut ≤ H − 2 0 {(-1,0),(1,0),(0,1)}
1≤ ut ≤ H − 2 W-1 {(-1,0),(1,0),(0,-1)}
1 ≤ ut ≤ H − 2 1 ≤ vt ≤W − 2 {(-1,0),(1,0),(0,-1),(0,1)}

Table 2: Possible steps for random walkers

4.4 Random Walker Algorithm

In order to solve formulated problem, we introduce an algorithm based on random walks. The algorithm
design is as following,

• The image is considered to be a 2D grid with reflecting barriers on the edges.

• We require the used to input N0 (an arbitrary number) pixel’s segment labels. These pixels should
include at least one pixel from every segment. This is shown in Figure 6. The pixles marked 1, 2
are the user inputs. Rest of the pixels are to be segmented.

• Since there are H ×W pixels in the image and only N0 are labelled, we have HW −N0 pixles to
segment.

How the algorithm solves the problem is as following.

1. Initialize N1 = HW − N0 random walkers from the unlabelled pixels. An example is shown in
Figure 7. We are initializing random walkers on top left and right.

2. Let the random walkers traverse the grid until they land on one of the originally labelled pixels.
This is shown in Figure 8.

3. The starting pixel of the random walker gets the label of the labelled pixel it first reach.

We index the image with (0, 0) in the top left. (u, v) is situated u pixels down and v pixels right from
the origin. The bottom right pixel is indexed as (H − 1,W − 1).

The random walks are carried out by a transition probability matrix. That is generated by the
following steps.

Consider a random walker at state Yt = (ut, vt).
Please note that the first N0 points are considered to be absorbing states.
In order to assign the probabilities p(Xt+1), we consider the difference of the pixels. Consider the

case where Yt = (ut, vt) and Xt+1|Yt can take M values. The probability of the random walker picking
a particular realization of Xt+1 is given by,

p(Xt+1 = xi) =
e−|I(Yt)−I(Yt+xi)|2∑

xj∈Xt+1|Yt
e−|I(Yt)−I(Yt+xj)|2

(3)

Please note that the symbol Xt+1 is used for the random variable and Xt+1|Yt is used to denote the
possible steps.

9

Figure 6: The iunitialization of the Random Walker Algorithm. Individual pixels have colours. Two
pixels have been assigned segments form user input.

Figure 7: Two unlabelled pixels have been chosen to be segmented. We initalize random walks from tose
pixels.

10

Figure 8: Random walk step. We can see there is more probability for a random walk to stay in the same
colour because of how transition probabilities are assigned by colour similarity. The edges of the 2D grid
acts as reflecting barriers and the random walks cannot go out of those edges. The marked pixels act as
absorbing barriers.

Figure 9: States of the Random Walker Algorithm. Absorbing states have been marked. Every other
state is a transient state.

11

4.5 Markov property of the Random Walker Algorithm (including classifica-
tion of states and the stationary distribution)

We can derive an expression for Yt+1 from (3) as given in

p(Yt+1 = yi|Yt = yk) = p(Xt+1 = xi); Where yi = yk + xi

p(Yt+1 = yi|Yt = yk) =
e−|I(yi)−I(yk)|

2∑
xj∈Xt+1|Yt=yi

e−|I(yi)−I(yj)|
2 ; Where yj = yi + xj

p(Yt+1 = yi|Yt = yk) = f(yi, yk) (4)

(4) is in the form of Markov property. Therefore the Random Walkder Algorithm can be considered
as a case of Markov Chains.

This Markov Chain has absorbing states (initially labelled pixels). Any other pixel can reach such
absorbing states. Therefore, this algorithm can be categorized as an absorbing Markov chain.

This algorithm also has the following properties.

• The absorbing states (the pixels that have a known label) are recurrent states.

• All other states are transient states.

• There are absorbing states in this system. No state can be reached from thsoe states. The Markov
chain is not irreducible.

• There exists multiple stationary distributions. But all of them have a common property – only
absorbing states can have non zero probabilities.

The above information is clearly shown in Figure 9
Consider the set of stationary distributions S with possible stationary distributions πi ∈ S and

transition matrix T .
Assume that there are M absorbing states. SM is the set of stationary distributions when all random
walkers get absorbed to one such state. Let πj ∈ SM be a one hot vector (only 1 element is 1, every
other element is zero) with 1 on the jth absorbing state.
Every possible stationary distribution πi ∈ S can be written as a linear combinarion of πj ∈ SM

4.6 Implementation and results of the Random Walker Algorithm

4.6.1 Implementation

We implement the proposed algorithm using the following technologies as given in table below.
Python for scripting
Numpy for numerical calculations
OpenCV for image handling

The code in given in Appendix.

4.6.2 Experiments and Results

As an example for the performance of the implemented algorithm, we show the results from Figure 5 as
the ground truth.

The process is shown in Figure 10. We start with 4 segments and manually mark 20 pixels for each
segment (left). Then we initalize random walker algorithm. The segments given by random walkers
according to the stationary distribution they converge to is given in Figure 10.

It can be seen that the algorithm is not good at segmenting such structures (with fine features).
Then we look at a simpler image of an aquarium for segmentation in Figure 11. The results obtained

are adequate.

12

Figure 10: Performance of the Random Walker Algorithm on the Pradeniya Photograph

Figure 11: Performance of the Random Walker Algorithm on the Aquarium

13

References

[1] Leo Grady. Random walks for image segmentation. IEEE transactions on pattern analysis and
machine intelligence, 28(11):1768–1783, 2006.

[2] Robert G Gallager. Markov chains with countably infinite state spaces. In Discrete Stochastic Pro-
cesses, pages 149–186. Springer, 1996.

[3] Russell Gerrard. Random Walks. City, University of London, 2020.

[4] Shuchi Chawla. CS787: Advanced Algorithms Lecture 15: Random walks and Markov chains. Uni-
versity of Wisconsin - Madison, 2020.

5 Appendix

’ ’ ’
EM509 : S t o c h a s t i c P r o c e s s e s P r o j e c t
Random Wa l k e r A l g o r i t h m f o r Ima g e S e g m e n t a t i o n
E / 1 4 / 1 5 8

g i h a n j a y a t i l a k a [a t] e n g [d o t] p dn [d o t] a c [d o t] l k
2020 −07 −06

’ ’ ’
import cv2 as cv
import argparse
import numpy as np
import random

FACTOR = 0.5
COLORS= [[255,0,0],[30,105,210],[169,169,169],[0,255,0]]
B l u e , Brown , Gr e y , G r e en

def down(x):
return int(x ∗FACTOR)

def up(x):
return int(x/FACTOR)

def mouse callback(event, x, y, flags, params):

if event==1:
clicks.append([x,y])
print(clicks)

def getVal(y,x,ar):
if x<0 or y <0 or y >= ar.shape[0] or x >=ar.shape[1]:

return np.array([−1000.0,−1000.0,−1000.0])
else:

return ar[y,x,:]

if name ==" main ":
args=argparse.ArgumentParser()
args.add argument("−i","−−input",dest="input",type=str)
args.add argument("−n","−−noSegments",dest="noSegments",type=int)
args=args.parse args()

img=cv.imread(args.input)
noSegments=args.noSegments

14

labelledPixelsXY=[]
noPixels = int(str(input("No pixels being marked?: ")).strip())

#>>>>>>> I n t e r a c t i v e i n p u t f o r i n i t i a l l y ma r k e d p i x e l s
for n in range(noSegments):

print("NOW WE ARE IN SEGMENT",n)
cv.imshow("image",img)
clicks=[]
cv.setMouseCallback(’image’, mouse callback)
while True:

if len(clicks)==noPixels:
break

cv.waitKey(1)
labelledPixelsXY.append(clicks)
clicks=[]

print(labelledPixelsXY)

#>>>>>>>> S a v e t h e i n i t i a l m a r k i n g s
imgCopy=np.array(img)
for n in range(noSegments):

for i in range(len(labelledPixelsXY[n])):
print(imgCopy, labelledPixelsXY[n][i], 2,COLORS[n],3)
cv.circle(imgCopy, (labelledPixelsXY[n][i][0],\

labelledPixelsXY[n][i][1]), 2,COLORS[n],3)

#>>>>>>> R e s i z e t h e im a g e t o s a v e c o m p u t a t i o n a l t i m e
imgOriginal=np.array(img)
img=img/255.0
img=cv.resize(img, (int(img.shape[1]∗FACTOR)+1,\

int(img.shape[0]∗FACTOR)+1))

initiallyMarked=np.zeros((img.shape[0],img.shape[1]),dtype=np.int)
initiallyMarked.fill(−1)
segments=np.zeros((img.shape[0],img.shape[1]),dtype=np.int)
segments.fill(−1)
cumilativeProbUpRightDownLeft=np.zeros((img.shape[0],\

img.shape[1],4),dtype=np.float)

#G e n e r a t e t h e t r a n s i t i o n p r o b a b i l i t e s b a s e d on p i x e l s i m i l a r i t y
for y in range(img.shape[0]):

for x in range(img.shape[1]):
urdl=[getVal(y−1,x,img),getVal(y,x+1,img),\

getVal(y+1,x,img),getVal(y,x−1,img)]
nonNormalizedProbURDL=[]
for a in range(4):

tt=np.mean(np.abs(urdl[a]−img[y,x,:]))
tt=np.exp(−1∗np.power(tt,2))
nonNormalizedProbURDL.append(tt)

nonNormalizedProbURDL=np.array(nonNormalizedProbURDL)
normalizedProbURDL = \

15

nonNormalizedProbURDL / np.sum(nonNormalizedProbURDL)
p r i n t (n o rma l i z e d P r o bURDL)
p r i n t (y , x , c u m i l a t i v e P r o b U p R i g h t D o w n L e f t . s h a p e)
cumilativeProbUpRightDownLeft[y,x,0]=normalizedProbURDL[0]
for a in range(1,4):

cumilativeProbUpRightDownLeft[y,x,a]=\
cumilativeProbUpRightDownLeft[y,x,a−1]+\

normalizedProbURDL[a]

for s in range(noSegments):
for a in range(len(labelledPixelsXY[s])):

print(initiallyMarked.shape ,\
down(labelledPixelsXY[s][a][1]),\

down(labelledPixelsXY[s][a][0]))
initiallyMarked[down(labelledPixelsXY[s][a][1]),\

down(labelledPixelsXY[s][a][0])]=s
segments[down(labelledPixelsXY[s][a][1]),\

down(labelledPixelsXY[s][a][0])]=s

#Random Wa l k e r A l g o r i t h m
for y in range(segments.shape[0]):

for x in range(segments.shape[1]):
if segments[y][x]==−1:

yy=y
xx=x

while(initiallyMarked[yy,xx]==−1):
rv = random.random()
if cumilativeProbUpRightDownLeft[yy,xx,0]>rv:

yy−=1
elif cumilativeProbUpRightDownLeft[yy,xx,1]>rv:

xx+=1
elif cumilativeProbUpRightDownLeft[yy,xx,2]>rv:

yy+=1
else:

xx−=1
segments[y,x]=initiallyMarked[yy,xx]

print("Finished marking ",y,x)

outputImg=np.array(imgOriginal)
for y in range(outputImg.shape[0]):

for x in range(outputImg.shape[1]):
outputImg[y,x]=COLORS[segments[down(y),down(x)]]

cv.imwrite(" { } { } ".format(args.input[:4],"initial.jpg"),imgCopy)
cv.imwrite(" { } { } ".format(args.input[:4],"segments.jpg"),outputImg)
cv.imwrite(" { } { } ".format(args.input[:4],"fullProcess.jpg"),\

np.concatenate((imgCopy,outputImg),axis=1))

16

	Random Walks
	Simple 1D random walk
	2D Random walk
	Random walks with barriers
	1D case
	2D case

	Markov Processes
	Markov Property
	Markov Process

	States of a Markov Process
	Communicable states
	Transient states
	Recurrent states

	Irreducibilityy of Markov Chains
	Stationary distributions

	Random Walks and Markov Properties
	Simple 1D random walk as a Markov Process
	2D random walk with Barriers as a markov process

	Application : Random Walker Algorithm for Image Segmentation
	Images
	Segmentation
	Mathematical formulation of image segmentation
	Random Walker Algorithm
	Markov property of the Random Walker Algorithm (including classification of states and the stationary distribution)
	Implementation and results of the Random Walker Algorithm
	Implementation
	Experiments and Results

	Appendix

