This Is publicly accessible
on

https://www.cs.umd.edu/~qgihan/resources/cmsci132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

CMSC132: Week 02, Lab 1

2025-Feb-03, Gihan

Outline

e Project 01
o Submissions
o Test types — Public, release, private
o Coding style

e Inheritance (Recap from Week 01, Lab 2)

e ArrayList
o Initialization, add, get, set, remove, clear, iterations
e 2D Arrays

o Initialization, ragged, iterations

Additional resources Brian, Angelyn

https://beelauuu.github.io/slides/docs/20325#1
https://docs.google.com/presentation/d/18JCI8pGHN28C2XXvyuSkoiPn8G4yFvfXniq0_ipzmB8/edit#slide=id.p

CMSC132: Week 02, Lab 2

2025-Feb-05, Gihan

Outline

e Check — are you fine with submitting the Project 17?
e Doubts check — lecture material.
e Debugger

Breakpoints

Views

Step into, step over, step return

Colors for public, private, static, instance variables.
e Debugging instead of print()!

o Checking the value of variables, arrays, and ArrayLists.

o O O O

CMSC132: Week 03, Lab 1

2025-Feb-10, Gihan

Outline

e How is Proj 1 going?
e Java assert
e JUnit

o assertTure, assertEquals, assertFalse
o E.g. AuxMath, Zip archive

e Memory maps
o Stack, heap, static, code

Stack

Frame #2

Frame #1

Heap

Static Area

Example #1 (Static Methods)

Draw a memory map for the following program at the point 1r

public class Driver {
public static int sumOfSquares(int x, int y) {
int answer;

answer = x * x +y * y;
/* HERE */
return answer;

}

public static void main (String[] args) ({
int a = 3, b = 4, result;

result = sumOfSquares(a, b);
System.out.println("Answer: " + result);

sumOfSquares

main

—

11

answer

y

X

result

b

args

Stack

25

Heap

Static Area

Example #2 (Methods/Objects)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE*/.

public class Person { public class Driver {
public static double MINIMUM SALARY = 1000.00;
private String name; public static void task(Person friend, double salary) {
private double salary; double newSal = salary + 100;
private StringBuffer calls; Person p = friend;
public Person(String name, double salary) { P.increaseSalary (newSal) ;
this.name = name; friend.addCall ("toschool") ;
this.salary = salary; friend = null;
calls = new StringBuffer("Calls: ") ;
} /* HERE */

}

public Person(String name) {

this (name, MINIMUM SALARY) ; public static void main(String[] args) {
} double pay = 4000;
public Person increaseSalary(double delta) { Person laura = new Person("Laura", 2000);
salary += delta; task (laura, pay):;
System.out.println(laura) ;
/* Returning reference to current object */ }
return this; }

}

public void addCall (String newCall) {

calls.append (newCall) ;
}

public String toString() {
return name + ", $" + salary + ", " + calls;

}

task

main

\[

p

newSal
salary
friend
laura
pay

args

Stack

Heap

4100

4000

null

4000

Static Area

MINIMUM SALARY

1000.00

Sample Memory Maps

Please use the format described by the examples below when asked to draw memory maps / diagrams. Each example below covers
typical diagrams we will ask you to draw. Regarding the diagrams:

i

8.

When asking to draw a map, we need to set a stop point, so you can draw the contents of the stack, heap, and static area up to
that point in the execution (otherwise the stack would be empty as the program would have finished execution). We will
represent that stop point with the comment /* HERE */.

. When drawing an object, we draw the instance variables associated with the object. For arrays, we draw the length property

and a row of entries representing the array entries.

. For non-static methods, the “this™ current object reference will be drawn as the first entry in the stack (it can be seen as an

implicit parameter).

Although the name “static method” may imply that static methods live in the static area, that is not the case. The code for both
static and non-static methods resides in the code area. Both static and non-static methods use the stack for execution. The only
difference between static and non-static methods, is that a static method does not require an object in order to be executed.
Any entry in the stack that has not been assigned a value will be left blank.

You should draw variables in the stack as you encounter them during code execution. This will allow you to verify your work
easily.

You will see that args is always the first entry in the main method’s frame. The args parameter represents command line
arguments. We will not provide any command line arguments in our examples, so we will always draw args as a reference to
an array of length 0. You will get points for drawing this args entry.

For simplicity, loop variables defined inside of a loop (e.g., for (int 1 =0 ...)) will not be drawn unless the /* HERE */ marker
is within the scope of the variable.

10. We will use the following symbol to represent a stack frame.

CMSC132: Week 04, Lab 1

17-Feb-2025,Gihan

e Project 2 questions

e Snow day content
o Comparator, Comparable
o Lists
m Vector
m ArrayList
m Stack

CMSC132: Week 05, Lab 1

24-Feb-2025,Gihan

Outline

Proj 1, Proj 2
How is project 3 going?
Tying some loose ends from last week.

o Difference between final and immutable.
o Exceptions (Checked and unchecked)
o Autoboxing and unboxing

Enhanced switch
Enums
Annotations
Varargs

Checked and unchecked Exceptions

Examples of Checked Exceptions: Examples of Unchecked Exceptions:
e TOException e NullPointerException
* SQLException e ArrayIndexOutOfBoundsException
e FileNotFoundException e ArithmeticException

e InterruptedException e TIllegalArgumentException

Autoboxing and Unboxing

public class AutoboxingExample {
public static void main(String[] args) {
int primitiveInt = 10;
Integer wrapperInt = primitiveInt; // Autoboxing

System.out.println(wrapperInt); // Output: 10

public class UnboxingExample {
public static void main(String[] args) {
Integer wrapperInt = 20,

int primitivelInt = wrapperInt; // Unboxing

J

J
O}

System.out.println(primitivelInt); // Output:

Autoboxing and Unboxing continued

e Autoboxing in ArrayList
e Unboxing in primitive operations

Considerations

Autoboxing Unboxing
Memory usage? Increase Decreases
Equality checks? Method calls ==
Null initialization? Null 0

Slow Fast

Other presentation and code

Enhanced switch
Enums
Annotations
Varargs

CMSC132: Week 05, Lab 2

26-Feb-2025,Gihan

CMSC132: Week 07, Lab 1

10-Mar-2025,Gihan

Outline

e Project3
e Search
o Linear
o Binary
o Sort
o Bubble

o Selection

CMSC132: Week 07, Lab 2

12-Mar-2025,Gihan

Outline

e Recap : LinkedList

e Java Collections Framework
o LinkedList<E>
o Deque<E>
o lterator<kE>
o Listlterator<E>

CMSC132: Week 08, Lab 1

24-Mar-2025,Gihan

Outline

e How is Project 5 going?
e \Week 7>>> LListRecursion >>>

o delete()

o findMax()
e Insertion sort
e Cloning

o Copy constructor?
o Cloneable interface
o clone()

m Deep/shallow?

CMSC132: Week 08, Lab 2

26-Mar-2025,Gihan

Outline

Clone — code
Kahoot
Wildcards

Functional interfaces

Wildcard Usage Summary
Wildcard Type Can Accept

? (Unbounded) Any type (List<?>)

> extends Type (Upper Type or any subclass

Bounded)
? super Type (Lower Type Or any
Bounded) superclass

When to Use Which Wildcard?

Can Read
as Object

as Type

© Only as
Object

Use ? extends T when you need to read data (e.g., process numbers).

Use 2 super T when you need to write data (e.g., add numbers).

Can Write
© Cannot add (except null)

© Cannot add (except null)

Can add Type and its
subtypes

Use ? (Unbounded) when you don't care about the specific type but just need to iterate or print.

Step 1: Define a Functional Interface

@FunctionalInterface
interface Greeting {

void sayHello(String name);

@ Copy 2 Edit

« The @FunctionalInterface annotation ensures that only one abstract method is defined.

Step 2: Implementing with an Anonymous Class

Before Java 8, you would implement the interface using an anonymous class like this:

java @ Cop;
public class AnonymousClassExample {
public static void main(String[] args) {
Greeting greeting = new Greeting() {
@verride
public void sayHello(String name) {

System.out.println("Hello, ™ + name + "!");
¥

greeting.sayHello("Alice");

-

Works fine but involves boilerplate code.

<

Step 3: Implementing with a Lambda Expression (Java 8+)

Lambda expressions provide a more concise way to implement functional interfaces.

© Edit java @ Copy
public class LambdaExample {
public static void main(String[] args) {
Greeting greeting = (name) -> System.out.println("Hello, " + name + "!");

greeting.sayHello("Bob");

+ Shorter and cleaner compared to an anonymous class.

0 Edit

CMSC132: Week 09, Lab 1

26-Mar-2025,Gihan

Outline

e Stability of Sorting Algorithms (from last week)
e How is project 5 going?
e 1:00PM - 1:30PM

o You have to implement the following,
m public static String mostFrequentWord(List<String> words)
m public Set<T> removelnRange(boolean ordered, T lowerBound, T upperBound)
m private Node removelnRangeAux(Node headAux, T lowerBound, T upperBound, Set<T>
newSet)

e 1:30PM - 1:500M

o We will go through the solution

Stability of Sorting Algorithms

Sorting Algorithms Gl Stable
Bubble Sort Yes Yes
Selection Sort Yes No
Insertion Sort Yes Yes
Quick Sort Yes No
No
Merge Sort (because it requires an extra array to Yes
merge the sorted subarrays)
Heap Sort Yes No

CMSC132: Week 09, Lab 2

2-Apr-2025,Gihan

https://www.cs.umd.edu/~qgihan/resources/cmsci132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

Outline

e Quick look at mostFrequentWord() from the previous class.

e Questions about Project 5? — (Deadline Thurs, 03-Apr-2025 11:30 pm)
o DoublyLinkedList, Deque, Stack, Queue

e Binary Files

e TextFiles
o File
o FileReader, BufferedReader
o FileWriter, BufferedWriter
o PrintWriter

Difference between binary files and text files

CMSC132: Week 10, Lab 1

7-Apr-2025,Gihan

https://www.cs.umd.edu/~qgihan/resources/cmsci132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

Outline

e How is Project 6 going?
e Logarithms (might be on the exam)
e Quiz 03

Logarithms

G x -— Logarithmic Properties
Product Rule log,, (xy)=1log, x+log, ¥
X
t >< Quotient Rule loga[;J =log,x—log, ¥
: — Power Rule log, x? = plog, x
log oy)=x
Change of Base Rule log,, x= log, *
log, a
Equality Rule If log,x=log,y thenx=y
-1
-2

Images from https://oercommons.org/ and Wikipedia

https://oercommons.org/

CMSC132: Week 10, Lab 2

9-Apr-2025,Gihan

https://www.cs.umd.edu/~qgihan/resources/cmsci132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

Outline

e Did you prove the logarithm rules?

e How is Proj 6, HashTables going?
o Chained hash tables, Open addressed hash tables, HashMaps, HashSets

e Java Input/Output - Binary Files

FileInputStream FileOutputStream
BufferedInputStream BufferedOutputStream
DatalnputStream DataOutputStream

e Standard streams in JAVA

o System.in, System.out, System.err
e (Prove the logarithm rules if time permits)

e

\mowwm

l !\ 0\‘2} ! %'s Da "-_
3
| b A
r __;l)‘z’{‘
=% |

EEEEy

=,

<)

CMSC132: Week 11, Lab 1

14-Apr-2025,Gihan

https://www.cs.umd.edu/~qgihan/resources/cmsci132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

Outline

e How is Project 6 going?
e Quicksort

o Divide and conquer — partitioning, subproblems
o Time complexity
o Memory complexity

Conceptual example

= i *‘k Mo
> AN

o8) —
Revs [0 \sF T /?‘ \\%J 2 S‘?l W lL(ﬂ
N i y e R

| EHDTEEE ™™ gy O ey

& WilS s

miG Plowo,) 2)
o'\ 5 CK&(W S
\,13 ¢ A (y’\\j“ﬁ(w\hﬂ

g ArYL
]

.
Example from sample code

CMSC132: Week 11, Lab 2

16-Apr-2025,Gihan

https://www.cs.umd.edu/~qgihan/resources/cmsci132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

Outline

e How is the lectures going? Do you have any questions to discuss in this
class?

e Recap — quick sort

e Merge sort - slides

e Merge sort - code

CMSC132: Week 11, Lab 2
(additional)

16-Apr-2025,Gihan

https://www.cs.umd.edu/~qgihan/resources/cmsci132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

Outline

e Implementing mergesort and quicksort to work with Comparable data types.
e | am not going through this material in the discussion. Therefore, please

watch the video on the following link:
o https://www.cs.umd.edu/~qgihan/resources/cmsc132/

https://www.cs.umd.edu/~gihan/resources/cmsc132/

