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Stochastic Models

• Now we are done with the basic theory needed for studying stochastic 
models.

• There are many stochastic models that are important in many 
applications of practical interest. 

• Some examples are Bernoulli processes, Markov processes, Poisson 
processes, Wiener processes etc. 

• In this course we will study on Markov Processes.

• Your project is based on the processes based on Markov processes 
which has applications in many areas. 
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Stochastic Models: Markov Processes

• Markov processes or Markov chains are characterized by the 
dynamical property that they never look back.

• That is  as long as we know the present value of a Markov process, the 
future behavior of the process does not change if additional information 
about past recordings of the process is provided.                                                                                         

• Based on the nature of the index set, Markov processes are of two 
types, Discrete time Markov chains and Continuous time Markov 
chains.

• Some examples of discrete time Markov chains are random walks and 
branching processes.

• Some examples of continuous time Markov chains are birth–death 
processes such as  queueing theory.
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Stochastic Models: Markov Processes

• In general, the index set does not have to describe time but is also 
commonly used to describe spatial location. 


• The state space can be finite, countably infinite, or uncountable, 
depending on the application.


• Now recall that in order to be able to analyze a stochastic process, 
we need to make assumptions on the dependence between the 
random variables.


• Markov processes are based on the most common dependence 
structure, called Markov property. This property says “conditioned 
on the present, the future is independent of the past.”


• First we will do discrete time Markov chains and then continuous 
time Markov chains.
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Stochastic Models: Markov Processes
Discrete time Markov chains 

• Markov property: 


Let               be  a sequence of discrete random variables, 
taking values in some set     The sequence satisfies the 
Markov property if  the probability of any given state        
only depends on its immediate previous state       
Formally        


• Such a sequence      is called a discrete time Markov 
chain.

P(Xn+1 = j |X1 = i1, X2 = i2, ⋯, Xn−1 = in−1, Xn = i) = P(Xn+1 = j |Xn = i)
∀i, j, i1, ⋯, in−1 ∈ 𝒮 and ∀n .

X1, X2, ⋯
𝒮 .

Xn+1

Xn .

Xn
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• In general, the probability                         depends on  


• But is  often the case that there is no dependence on    .  We 
call such chains time-homogeneous and we will restrict our 
attention to these chains only. 


• Since the conditional probability in the definition thus 
depends only on        we use the notation,


• These probabilities are called the transition probabilities of 
the Markov chain.

P(Xn+1 = j |Xn = i) i, j, n .

n

i, j

pij = P(Xn+1 = j |Xn = i), i, j ∈ 𝒮 .
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Thus, if the chain is in state    , the probabilities       
describe how the chain chooses which state to jump to 
next. 


• Obviously the transition probabilities have to satisfy the 
following two criteria:


1. For all 


2. For all 


• Next we will consider some examples.

i pij

i, j ∈ 𝒮, pij > 0

i ∈ 𝒮, ∑
j∈𝒮

pij = 1
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Stochastic Models: Markov Processes
Discrete time Markov chains 

• Examples


1.Gambler Ruin Problem:  


Suppose a gambler has Rs.100.  He bets Rs.1 each game, 
and wins with probability  say p. He stops playing once he 
becomes broke. 


•   Here the state space is                      and is countably infinite.                                   


•   If the chain is in state         , it can jump to either       or           
according to the transition probabilities  


𝒮 = {0,1,2,⋯},

i ≥ 1 i − 1 i + 1

pi,i+1 = p, pi,i−1 = 1 − p = q .
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Stochastic Models
Discrete time Markov chains 

• When           , this means that you are ruined and cannot play 
anymore. Thus, you can jump to 0 but not from it.


• It is customary to describe this by letting              , thus imagining 
that the chain performs an eternal sequence of jumps from 0  to 
itself.


• We need a method visualize the dynamics of a Markov chain 
whenever possible.


• This will be done using transition graphs with nodes (or vertices) 
representing the states of the Markov chains and edges  
representing transitions.


• Usually  ovals/circles are used to represent the states and arrows 
show the possible transitions and their corresponding probabilities.

i = 0

p00 = 1
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• This graphical way of describing a Markov chain is called 
a transition diagram or process diagram.


• For this example the transition diagram is given below.   


• Note that the sum of the numbers on the arrows going out  
from each state is 1. This is the criterion 2 stated earlier.
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• If we modify the problem by adding the condition that 
the gambler wins if he earns say Rs N. Then this will be 
a finite state Markov chain with state space 


• Then with                  the transition diagram is as 
follows.                                        


                               

𝒮 = {0,1,⋯, N} .

p = q = 1/2
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Stochastic Models: Markov Processes

Discrete time Markov chains 


2. ON/OFF System:


Consider a system that alternates between the two states OFF(r or 
0)  and ON(s or 1) and that is checked at discrete time points. If the 
system is OFF at one time point, the probability that it has switched 
to ON at the next time point is p, and if it is ON, the probability that it 
switches to OFF is q.   


•  State space


•  The transition diagram is


                                                               

𝒮 = {0,1} = {r, s} .
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Stochastic Models: Markov Processes
Discrete time Markov chains 

• Examples


3.  Problem in Genetics: 


 A certain gene in a plant has two alleles, A  and a. Thus, its genotype with respect 
to this gene can be AA , Aa , or aa . Now suppose that a plant is crossed with itself 
and one offspring selected that is crossed with itself and so on and so forth. 


• The state space is                                   The Markov property is clear, since the 
offspring’s genotype depends only on the parent plant, not the grandparent.


•Clearly, genotypes AA and aa can have only themselves as offspring and for the 
type Aa, using  Punnett square

                                                


𝒮 = {AA, Aa, aa} .

1 = Aa, 2 = AA, 3 = aa .

p22 = p33 = 1, p12 = p13 = 1/4, p22 = 1/2.
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Stochastic Models: Markov Processes

Discrete time Markov chains 

Transition matrix


It is convenient to summarize the transition probabilities in a matrix.


Define a matrix P which has         as its              entry.  The matrix P is 
called a  transition matrix. 


Depending on the state space, the transition matrix may be finite or infinite. 


For example 1, the  transition matrix is


For example 2, the transition matrix is


pij (i, j)th

P =

1 0 0 ⋯
q 0 p ⋯
0 q 0 ⋯
⋮ ⋮ ⋮

.

P = (1 − p p
1 1 − q) .
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Stochastic Models: Markov Processes
Discrete time Markov chains  

• Time Dynamics of a Markov Chain 

• The most fundamental aspect of a Markov is how it develops 
over time. 


• The transition matrix provides us with a description of the 
stepwise behavior.


• But suppose that we want to compute the distribution of the 
chain two steps ahead. 


• Define the n-step transition probabilities as 


        

p(n)
ij = P(Xn = j |X0 = i) .

Dr. Rathnamali Palamakumbura, University of Peradeniya, Sri Lanka [rpalam@pdn.ac.lk]



Stochastic Models: Markov Processes

Discrete time Markov chains 

• Time Dynamics of a Markov Chain  

• Consider n=2, 


• The law of total probability gives 


• In the second equation above we have used the Markov property.


• The  last expression says in order to go from i  to j  in two steps, we 
need to visit some  intermediate step k and jump from there to j .

p(2)
ij = P(X2 = j |X0 = i) .

p(2)
ij = ∑

k∈𝒮

P(X2 = j |X1 = k, X0 = i)P(X1 = k |X0 = i)

= ∑
k∈𝒮

P(X2 = j |X1 = k)P(X1 = k |X0 = i)

= ∑
k∈𝒮

pik pkj

.
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Stochastic Models: Markov Processes

Discrete time Markov chains


• Time Dynamics of a Markov Chain 


• Now by the definition of matrix multiplication we see that          
is the (i, j)th entry of          


• Thus, in order to get the two-step transition probabilities, we 
square the transition matrix.


• Repeating the argument above gives n-step transition 
probabilities by nth power of the transition matrix,


• Thus if      denotes the n-step transition matrix,  

p(n)
ij

P2 .

Pn .

P(n) P(n) = Pn .
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Time Dynamics of a Markov Chain 

• This gives the relation


• This relation is called  Chapman–Kolmogorov equations.


• Element wise, they become 


• This says, to go from i  to j  in n + m  steps, we need to visit 
some intermediate step k  after n  steps.

P(n+m) = P(n)P(m) ∀m, n with P(0) = I .

p(n+m)
ij = ∑

k∈𝒮

p(n)
ik p(m)

kj , ∀m, n and ∀i, j ∈ 𝒮 .
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Stochastic Models: Markov Processes
Discrete time Markov chains 

• Time Dynamics of a Markov Chain                           


Examples:  


1.Refer to the ON/OFF system example


(a) Find the n-step transition matrix.


It is convenient to use diagonalization. The eigenvalues of                                                  
Thus we get 


(b) If p =3/4 and q =1/2  and the system starts being OFF, what is the probability that it is 
ON at time n = 3?

This probability is given by the (0,1) entry of


            

P; λ1 = 1, λ2 = 1 − p − q .

Pn =
1

p + q (q p
q p) +

λn
2

p + q ( p −p
−q q ) .

P(n) :

p(3)
01 =

3/4
5/4

+
(−3/4)(−1/4)3

5/4
≈ 0.61.
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Time Dynamics of a Markov Chain                           


2. Refer to the genetics example:  Find the n -step transition matrix.                                               


                            


• The 0s and 1s remain unchanged; the types AA and aa can have 
offspring only of their own type. 


• The probability to find the type Aa declines rapidly with n, 
indicating that eventually this genotype will disappear. 


P = (
1 0 0

1/4 1/2 1/4
0 0 1 ); Pn =

1 0 0
(1 − (1/2)n)/2 (1/2)n (1 − (1/2)n)/2

0 0 1
.
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Stochastic Models: Markov Processes
Discrete time Markov chains 

• Time Dynamics of a Markov Chain                           


Note: One interesting aspect of a Markov chain is its long term behavior and for example 
we will consider the above two examples.


• Genetic example: 


Thus, if we start in state AA or aa, we stay there, and if we start in state Aa, we 
eventually end up in either AA or aa with equal probabilities.


• ON/OFF example:


The rows of this matrix are identical and thus, at a later time point, the probabilities 
that the system is OFF and ON are approximately q/(p + q)  and p/(p + q)  
respectively, regardless of the initial state. 


lim
n→∞

P(n) = (
1 0 0

1/2 0 1/2
0 0 1 )

lim
n→∞

P(n) =
1

p + q (q p
q p)
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Time Dynamics of a Markov Chain                           


• In the ON/OFF example, the asymptotic probabilities do not depend on 
how the chain was started.

• We call the distribution                               on the state space {0, 1}  a 
limit distribution .

• Compare this with the genetics example where no limit distribution 
exists, since the asymptotic probabilities depend on the initial state. 

• A question of general interest is when a Markov chain has a limit 
distribution. 

• To be able to answer this, we need to introduce some criteria that 
enables us to classify Markov chains.     

(q/(p + q), p/(p + q))
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Classification of States 

1. If               for some n , we say that state j  is accessible  from state i 
, written i → j . If i → j  and j → i , we say that i  and j communicate 
and write this i ↔ j .


• If j is accessible from i, means that it is possible to reach j from i 
but not that this necessarily happens. 


In gambler’s ruin example, since                          , but if the chain 
starts in 1, it may jump directly to 0 , and thus it will never be able 
to visit state 2 . 


In this example, all nonzero states communicate with each other 
and 0  communicates only with itself.        

p(n)
ij > 0

p12 > 0, 1 → 2
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Classification of States 

• In general, if we fix a state i in the state space , we can find all states that 
communicate with i and form the communicating class containing i. In this 
class  not only does i communicate with all states but they all communicate 
with each other.


• By convention, every state communicates with itself (it can “reach itself in 0 
steps”) so every state belongs to a class. 


• More precisely relation “↔” is an equivalence relation and thus divides the 
state space into equivalence classes that are precisely the communicating 
classes. 


In the gambler’s ruin example, there are two classes 


In the ON/OFF example, there is only one class, the entire state space.             

C0 = {0}, C1 = {1,2,⋯} .
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Classification of States 

2. If all states in    communicate with each other, the 
Markov chain is said to be irreducible.


3. Consider a state          and let      be the number of steps 
it takes for the chain to first visit the state. Thus


If            the state is never visited.                                      
If the probability                  , then the state is said to be 
recurrent and if                     , it is said to be transient.

𝒮

i ∈ 𝒮 τi

τi = min{n ≥ 1 |Xn = i} .
τi = ∞,

P(τi < ∞) = 1
P(τi < ∞) < 1
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Classification of States 

• A recurrent state thus has the property that if the chain starts in 
it, the time until it returns is finite. 


• For a transient state, there is a positive probability that the time 
until return is infinite, meaning that the state is never revisited. 


• This means that a recurrent state is visited over and over but a 
transient state is eventually never revisited.


• In an irreducible Markov chain, either all states are transient or 
all states are recurrent. Thus we can classify the entire Markov 
chain as transient or recurrent by checking only one state.
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Classification of States 

• If state space is finite, state i is transient iff there exists state j s.t. j is 
accessible from i but not other way. That is                               . 


• If a Markov chain has finite state space, there is at least one recurrent state.


• A state that with the property that once the chain is there, it can never leave 
is called an absorbing state.


• For example in the gambler’s ruin problem state 0 is trivially recurrent since 
if we start there, we are stuck there forever.  That is              Also it is an 
absorbing state.


For state 1 , if we start there and the first jump is to 0 , we never return to1.  
Thus                                                Thus state 1  is transient and since it   
communicates with the states 2, 3, ... , they are all transient. 

i → j, but i ↛ j

τ0 ≡ 1.

τ1 = ∞ and P(τ1 < ∞) < 1.
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Classification of States 

4. The period  of state i  is defined as the greatest common divisor of 
lengths of cycles through which it is possible to return to i . That is 


If               is called aperiodic otherwise it is called periodic . 


For example consider  the ON/OFF example, with


For state                  whenever n  is even and 0  otherwise. Thus 
the set of n s.t               is                


Thus, the period of state 0 is 2, which means that the only possible 
return paths to state 0 have lengths that are multiples of 2. State 1 
is also of period 2.              

d(i) = gcd {n ≥ 1 : p(n)
ii > 0} .

d(i) = 1, i

p = q = 1.

0, p(n)
00 > 0

p(n)
00 > 0 {2,4,6,⋯} .

Dr. Rathnamali Palamakumbura, University of Peradeniya, Sri Lanka [rpalam@pdn.ac.lk]



Stochastic Models: Markov Processes

Discrete time Markov chains 

• Stationary Distributions


• Let      be the transition matrix of a Markov chain with state 
space      . A probability distribution                           on     
satisfying              is called a stationary distribution  of the 
chain.


• The entries of     thus satisfy


• The intuition behind the probability      is that it describes 
what proportion of time that is spent in state j in the long run.

P
𝒮 𝒮π = (π1, π2, ⋯)

πP = P

π

πj = ∑
i∈𝒮

pijπi ∀ j ∈ 𝒮, ∑
i∈𝒮

= 1.

πj
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Stochastic Models: Markov Processes

Discrete time Markov chains 

• Stationary Distributions


• Note that  a stationary distribution may not always exist and  there 
may be more than one.


• For an irreducible Markov chain if a stationary distribution exists then 
it is unique.


• If the state space is finite and the Markov chain is irreducible, then a 
unique stationary distribution exists.


• In the ON/OFF example, let                     Then              gives 


Solving these with                   we get 

π = (π0π1) . πP = π
(1 − p)π0 + qπ1 = π0

pπ0 + (1 − q)π1 = π1
.

π0 + π1 = 1 π = (q/(p + q), p/(p + q)) .

Dr. Rathnamali Palamakumbura, University of Peradeniya, Sri Lanka [rpalam@pdn.ac.lk]



Stochastic Models: Markov Processes

Discrete time Markov chains 

• Stationary Distributions 

• I mainly illustrated the concept presented in this lecture 
notes only for ON/OFF example. For home work do the 
same for other two examples considered in this lecture 
note.
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