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Stochastic Models

• In part 1 of the lecture note we studied Markov chains 
in discrete time.


• In this part 2 of the lecture notes we will study 
continuous time Markov chains. 


• This means that the chains stays in each state a 
random time, that is a continuous random variable 
with a distribution that may depend on the state. 


• The state of the chain at time t is denoted X(t), where t 
ranges over the nonnegative real numbers. 
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Stochastic Models: Markov Processes
Continuous time Markov chains 

• Markov Property: 


If 


• We say that the process                     is a continuous-time Markov chain  
if the process satisfies the above Markov property.


• That is, a continuous-time Markov chain is a stochastic process having 
the Markovian property that the conditional distribution of the future     
X(t + s) given the present X(s) and the past X(u), 0  u < s, depends only on 
the present and is independent of the past.


• In addition to having the Markov property for the jumps, we also want the 
jumps to be independent of the duration of time that is spent in a specific 
state.

∀s, t ≥ 0, i, j, x(u) ∈ ℤ+ s . t . 0 ≤ u < s,
P{X(t + s) = j |X(s) = i, X(u) = x(u)} = P{X(t + s) = j |X(s) = i}

{X(t), t ≥ 0}
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Stochastic Models: Markov Processes

Continuous time Markov chains 

• For example suppose that a continuous-time Markov chain enters state i at 
some time, say, time 0 and suppose that the process does not leave state i 
(that is, a transition does not occur) during the next ten minutes. What is 
the probability that the process will not leave state i during the following five 
minutes?


• Since the process is in state i at time 10 , by the Markovian property, the 
probability that it remains in that state during the interval [10, 15] is the 
(unconditional) probability that it stays in state i for at least five minutes. 


• That is, if      denotes the amount of time that the process stays in state i 
before making a transition  into a different state, then


               


• In general, by the same reasoning,                                                           
Hence, the random variable      is memoryless.

Ti

P{Ti > 15 |Ti > 10} = P{Ti > 5} .

P{Ti > s + t |Ti > s} = P{Ti > t}∀s, t ≥ 0.
Ti
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Stochastic Models: Markov Processes

Continuous time Markov chains

• In order to achieve this, the exponential distribution is used  
since it is the only continuous distribution that would ensure 
this property.


(Read Chapter 5 of Introduction to probability models by 
Ross, which I have already uploaded for details.)


• That is a continuous-time Markov chain is a stochastic process: 


• that moves from state to state in accordance with a discrete-
time Markov chain. That is when the state i is left, a new 
state           is chosen according to the transition probabilities 
of a discrete time Markov chain.

j ≠ i
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Stochastic Models: Markov Processes
Continuous time Markov chains 

• the amount of time it spends in each state, before 
proceeding to the next state, is exponentially distributed. 
That is if the current state is i, the time until the state is 
changed has an exponential distribution with parameter 
say


and


• the amount of time the process spends in state i, and the 
next state visited, must be independent random variables 
since otherwise the information as to how long the 
process has already been in state i would be relevant to 
the prediction of the next state contradicting the Markov 
property.             

λ(i) .
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Stochastic Models: Markov Processes

Continuous time Markov chains 

• Thus, a continuous-time Markov chain          is composed of a:


1.discrete-time Markov chain         , the jump chain  for the  
transitions and 


2.exponential random variables for the holding times . 


• The        s  are called the holding-time parameters . 


• Note that  the state space is still finite or countably infinite. The 
discrete/continuous distinction refers to how the time is measured.


• Sometimes the term, Markov process  is used in continuous time 
only and  for discrete time the term Markov chain is used. But here 
we will use Markov process or Markov chain for both cases. 

{X(t)}

{Xn}

λ(i)′�
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Stochastic Models: Markov Processes
Continuous time Markov chains 

• If,                                           is independent of     , then the continuous 
time Markov chain is said to have time homogeneous transition 
probabilities.


• That is the probability                                            depends only on time 
through the difference 


• All Markov chains considered here will be assumed to have time 
homogeneous transition probabilities.


• We can define the transition probabilities, the probability that the chain is 
in state j, t  time units after having been in state i as 


• For each t, we then get a transition matrix         with entries                        , 
which has the following properties.

P{X(t + s) = j |X(s) = i} s

P{X(t + s) = j |X(s) = i}
(s + t) − s = t .

pij(t) = P(X(t) = j |X(0) = i) .

P(t) pij(t), i, j ∈ 𝒮
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Stochastic Models: Markov Processes

Continuous time Markov chain 

• Let        be the transition matrix for a continuous-time Markov 
chain with state space       Then


1. At


2.  For all


3.  Chapman–Kolmogorov equations: 


     With k  an intermediate state at time s,

                                     which is the         entry in the matrix 

𝒮 .
P(t)

t = 0, P(0) = I .

i ∈ 𝒮, t ≥ 0, ∑
j∈𝒮

pij = 1

P(s + t) = P(s)P(t)

pij(s + t) = ∑
k∈𝒮

Pi(X(s + t) = j |X(s) = k)Pi(X(s) = k |X(0) = i)

= ∑
k∈𝒮

pik(s)pkj(t)

P(s)P(t) .(i, j)th
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Stochastic Models: Markov Processes
Continuous time Markov chains 

Note:


• Usually        is difficult or impossible to compute.  


• In the discrete case it was convenient since              , so all the 
information needed is contained in the one-step transition matrix  


• In the continuous case there is no analog of “one step,” so we 
need to proceed differently in search of a more compact 
description.


• Let the jump chain have transition probabilities                  and 
consider the chain in a state i . 


• The holding time is  exp(λ(i)) and when it leaves, the chain jumps to 
state j  with probability 

P(t)

P(n) = Pn

P .

pij, i ≠ j

pij .
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Stochastic Models
Continuous time Markov chains 

• Now, if we consider the chain, only when it is in state i  and disregard 
everything else, we can view the jumps from i  as a Poisson process 
with rate         

(Read Chapter 5 of Introduction to probability models by Ross, 
which I have already uploaded for more details.) 


• For any other state j , the jumps from i  to j  is then a thinned Poisson 
process with rate             

• Thus, for any pair of states i  and j , we can define the transition rate  
between i  and j  as                                   


•  Let                         and define  the generator as the matrix 


 

λ(i) .

λ(i)pij .

γij = λ(i)pij .

γii = − ∑
i≠j

γij

G, with (i, j)th entry is γij .
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Stochastic Models: Markov Processes

Continuous time Markov chains 

• Note that once the       have been inserted, the diagonal elements      
are chosen such that G has row sums equal to 0. 


• The generator completely describes the Markov chain, since if we are 
given G, we can retrieve the holding-time parameters as


             


and the jump probabilities as 


• Note that                    since the           give the probability distribution 
when the chain leaves a state and there can be no jumps from a state 
to itself.

pii ∀i ∈ 𝒮

γij γii

p′�ijs

λ(i) = − γii, i ∈ 𝒮

pij = −
γij

γii
, j ≠ i .
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Stochastic Models: Markov Processes

Continuous time Markov chains 


 Examples: 


1. An ON/OFF system stays OFF for a time that is exp(λ) and  OFF for a time 
exp(μ) (μ does not denote the mean here). Describe the system as a 
continuous time Markov chain. 


• The holding-time parameters are λ and μ, and the only possible jumps are 
from 0(OFF) to 1 (ON) and vice versa. Note that 


• Thus we have                    


• The generator


  


                                                             

G = (−λ λ
μ −μ) .

pij = 1,i ≠ j .

γ01 = λ, γ10 = μ, γ00 = − λ, γ11 = − μ .

Dr. Rathnamali Palamakumbura, University of Peradeniya, Sri Lanka [rpalam@pdn.ac.lk]



Stochastic Models: Markov Processes
Discrete time Markov chains 

• We can also describe the system in a graph as follows:


  


• This is similar to how we described discrete-time Markov chains 
but the numbers on the arrows are now rates, not probabilities.


• The jump chain has transition matrix


P = (0 1
1 0) .
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Stochastic Models: Markov Processes

Discrete time Markov chains 

2. A continuous-time Markov chain on state space {1, 2, 3}  has 
generator


Suppose that the chain is in state 1. What is the expected time until 
it leaves, and what is the probability that it next jumps to state 2? 


• The holding-time parameter in state 1 is                          , so the 
expected holding time is 1/6(mean of the exponential 
distribution).  


• The probability to jump to state 2  is                                                       


                               

G = (
−6 2 4
1 −2 1
3 1 −4) .

λ(1) = − γ11 = 6

p12 = −
γ12

γ11
= −

2
−6

=
1
3

.
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Stochastic Models: Markov Processes
Discrete time Markov chains 

• The generator now plays the role that the transition matrix did in the 
discrete case, and a logical question is how       relates to 


• The following  gives the relationship, where         denotes the matrix of the 
derivatives 


• The transition matrix         and generator      satisfy the backward equations 


   and forward equations  


• It is usually difficult to solve the backward and forward equations and only 
in simple cases can we easily find the explicit form of 


• Since               , the backward and forward equations also suggest a way 
to obtain the generator from          according to           

P′�(t)
p′ �ij (t) .

P(t) .G

P(t) G

P′�(t) = GP(t), t ≥ 0

P′�(t) = P(t)G, t ≥ 0.

P(t) .

P(0) = I
P(t) G = P′�(0) .
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Stochastic Models: Markov Processes
Continuous time Markov chains  

• Stationary Distributions 

• Consider a continuous time Markov chain with transition matrix             
A probability distribution      which is such that


           


is called a stationary distribution of the chain.


• The intuition is the same as in the discrete case; the probability      is the 
proportion of time spent in state j in the long run. 


• Since we have pointed out how difficult it typically is to find             the 
definition does not give a computational recipe. 


• Instead, first differentiate with respect to t on both sides in the definition.

πP(t) = π ∀t ≥ 0

P(t) .
π

π

P(t),
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Stochastic Models: Markov Processes

Continuous time Markov chains 

• Stationary Distributions  

• Since      does not depend on t we have  


• In particular, with                         and we have             and as in 
the discrete case, we have the additional condition that the 
entries in     sum to 1.


• Example: In the ON/OFF system 


    With this and                    gives 


π

d
dt

(πP(t)) = πP′�(t) =
d
dt

(π) = 0, t ≥ 0.

t = 0, P′�(0) = G πG = 0

π

πG = 0 ⟹ − π0λ + π1μ = 0.

π0 + π1 = 1 (π0 , π1) = ( μ
μ + λ

,
λ

μ + λ ) .
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Stochastic Models: Markov Processes

Continuous time Markov chains


• The existence of a stationary distribution is again closely related to the 
concepts of irreducibility and recurrence. 


• Irreducibility is only a property of how the  states communicate and has 
nothing to do with holding times, so we call a continuous time Markov chain 
irreducible if its jump chain is irreducible. 


• As for recurrence and transience, they are defined in the analogous way.          


Let                               and if               then i  is never visited. 


The only difference from the discrete case is that       is now a continuous 
random variable.


If                         , state i  is called recurrent  and if                        , state i  is 
called transient .

Si = inf{t |X(t) = i} Si = ∞

Si

Pi(Si < ∞) = 1 Pi(Si < ∞) < 1

Dr. Rathnamali Palamakumbura, University of Peradeniya, Sri Lanka [rpalam@pdn.ac.lk]



Stochastic Models: Markov Processes
Continuous time Markov chains


• Here we use the notation S for “sum,” since      is the sum of the holding 
times in all states visited before reaching i. 


• We will keep the notation     (                                      ) for the return times in 
the jump chain. 


• Thus, if the holding time in state k is      , then            are  related by 


• Now suppose that the  state i is recurrent  (                          )  in the jump 
chain       

• This means that      is finite, and since also the                    are finite,        must be 
finite and the state i is also recurrent in 


• Thus, if the jump chain is recurrent, so is the continuous-time chain 

Si

τi

Tk Si, τi

Si =
τi−1

∑
n=0

TXn
.

{Xn} .

τi

τi = min{n ≥ 1 |Xn = i}

P(τi < ∞) = 1

T′�k s S′ �i s
{X(t)} .

{X(t)} .
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