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Introduction

Let {X(t) ; t ≥ 0} be a continuous-time Markov chain with state space {0, 1, 2, . . .}. If one interprets X(t) as
the size of a randomly varying population, and the only possible transitions within an infinitesimal interval are
limited to either a ‘birth’ (which increases the population size by 1) or a ‘death’ (which decreases the population
size by 1), then the process {X(t)} is called a (finite) birth-death (BD) process.

∗ Note that, a continuous-time BD Markov chain X(t) can have either a finite state space {0, 1, 2, . . . , N} or an
infinite state space {0, 1, 2, . . .}. In this text, I have considered the case where the state space is infinite.

The transition rate λi is viewed as the birth rate while the transition rate µi is viewed as the death rate when
the process is in state i. When a birth occurs, the process goes from state i to state i + 1. Similarly, when
a death occurs, the process goes from state i to state i − 1. It is assumed that all births and deaths occur
independently.

Figure 1: State diagram for a BD process. Note that in one time step, the chain may move at most one unit to
the left or to the right (i.e. {X(t)} can only jump to adjacent states).

Markov Property. As mentioned, BD processes are characterized by the property that whenever a transition
occurs from one state to another, then this transition (which represents a birth or death) can only be to a
neighbouring state. Further, it is assumed that all births and deaths occur independently. Suppose that the
state space S = {0, 1, 2, . . . , i, . . .}, if the current state (at time instance t) is X(t) = i, then the state at the next
instance can only be i+1 or i−1. This means that the current value X(t) suffices to determine the distribution
of the future value X(t+ s) for all s > 0. Therefore, the BD process {X(t)} is Markovian in continuous time.

A BD process is characterized by the birth rate {λn}∞n=0 and death rate {µn}∞n=0 which vary according to state
i of the system. If λi and µi are independent of i, it is known as a homogeneous BD process. If the state space
has a minimum element i, then we must have µi = 0. In addition, if λi = 0 as well, then the boundary point i
is absorbing. Similarly, if the state space has a maximum element i, then we must have λi = 0. In addition, if
µi = 0 as well, then the boundary point i is absorbing. If some state i is not a boundary point, then typically
we have λi + µi > 0, so that i is stable.

Further, we can define a pure birth process as a BD process with µi = 0 for all i. Similarly, a pure death process
corresponds to a BD process with λi = 0 for all i. Thus, it can be observed that the Poisson process is a special
case of the BD process, as it is a pure birth process, where the birth rate is homogeneous (i.e. λi = λ for all
i ≥ 0), and no deaths occur (i.e. µi = 0 for all i ≥ 0).

1. Construction of a General BD Process

Assume X(t) = i ≥ 1 at time t ≥ 0. Let B(i) and D(i) denote two exponentially distributed random variables
with parameters λi and µi respectively. These random variables describe the holding time in the state i.
Intuitively, we can think of B(i) as the time until a birth and D(i) as the time until a death (when a population
size is i). The population increases by one if the birth occurs prior to death and decreases by one otherwise. If
B(i) and D(i) are independent, exponentially distributed random variables, then their minimum is exponentially
distributed with parameter (λi + µi)

1. Once the process enters state i, it holds (sojourns) in the given state for

1Check Appendix: Section A for the corresponding proof.
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some random length of time, exponentially distributed with parameter (λi + µi). A transition from i to i+ 1 is
made if B(i) < D(i), which occurs with probability,

P [B(i) < D(i)] =
λi

λi + µi

Similarly, a transition from i to i− 1 is made if B(i) > D(i), which occurs with probability,

P [B(i) > D(i)] =
µi

λi + µi

where λi, µi+1 > 0 for all i. Note that we set µ0 = 0 so that there is a reflecting boundary at the origin and the
chain remains on the positive integers at all times.

Thus, we look at the two exponential random variables and decide for a jump to the left or to the right depending
on which random variable occurs first. If the next state is chosen to be i+ 1, then the process sojourns in this
state according to the exponential distribution with parameter (λi+1 + µi+1). Iterating this procedure gives a
construction of a continuous-time BD process. The motion is analogous to that of a random walk except that
transitions occur at random times rather than at fixed time periods. Note that, the number of visits back to
the same state is ignored since in a continuous-time process, transitions from state i back to i would not be
identifiable.

Definition. The infinitesimal transition probabilities of a BD process with birth and death rates λi and µi,
respectively, have the following properties,

pi,j(∆t) =


λi∆t+ o(∆t), j = i+ 1
µi∆t+ o(∆t), j = i− 1
1− (λi + µi) ∆t+ o(∆t), j = i
o(∆t), |j − i| ≥ 2

for a sufficiently small ∆t, µ0 = 0, and λi, µi+1 > 0 for i = 0, 1, 2, . . . Here, o(∆t) designate higher-order terms

in ∆t such that lim∆t→∞
o(∆t)

∆t = 0. This indicates that the probability of two or more events occurring within
the same ∆t interval is negligible. That is, in a small interval of time ∆t, at most only one change in a state
can occur; either a birth or a death.

The forward Kolmogorov differential equations for pi,j(t) can be derived directly from the above properties2

and can be expressed as,

dpi,0(t)

dt
= −λ0pi,0(t) + µ1pi,1(t)

dpi,j(t)

dt
= λj−1pi,j−1(t)− (λj + µj) pi,j(t) + µj+1pi,j+1(t), for j ≥ 1

(1)

with initial conditions,

pi,j(0) = δi,j =

{
1, i = j
0, i 6= j

The forward Kolmogorov differential equations can be written in matrix notation as follows,

d

dt
(P (t)) = P (t)Q

where Q is the transition rate matrix or infinitesimal generator matrix (for an infinite state space) given by,

Q =


−λ0 λ0 0 0 · · ·
µ1 −λ1 − µ1 λ1 0 · · ·
0 µ2 −λ2 − µ2 λ2 · · ·
0 0 µ3 −λ3 − µ3 · · ·
...

...
...

...
. . .


The transition matrix P for the associated embedded Markov chain {Y (n)} is easily defined from Q.

P =



0 1 0 0 · · ·
µ1

λ1+µ1
0 λ1

λ1+µ1
0 · · ·

0 µ2

λ2+µ2
0 λ2

λ2+µ2
· · ·

0 0 µ3

λ3+µ3
0

. . .

...
...

. . .
. . .


2Check Appendix: Section B for the complete derivation
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It is easy to see that {Y (n)} is a discrete-time BD chain. Note that {X(t)} and {Y (n)} start in the same state
and visit the same states in the same order. The difference between the two processes is that the time between
two jumps is random for {X(t)} while it is always one for {Y (n)}. In both cases, it is assumed that λi +µi > 0
for i = 0, 1, 2, . . . If, for any i, λi + µi = 0, then state i is absorbing.

2. Irreducibility

A continuous-time Markov chain is irreducible if and only if its embedded discrete-time Markov chain is irre-
ducible. Thus, it can be verified easily from the transition matrix P that the chain is irreducible if and only if

λi > 0 and µi+1 > 0 for i = 0, 1, 2, . . .. If any λi = 0, then p
(n)
i,i+1 = 0 for all n, and if any µi = 0, then p

(n)
i,i−1 = 0

for all n. Alternatively, we can use the following definition to determine the irreducibility of a given BD process.

Definition. A chain is said to be irreducible if its transition probabilities pi,j(t) are strictly positive for all
t > 0 and all states i and j.

That is, an irreducible chain can go from any given state to another state in some fixed time. Note that, for a
BD process with µ0 = 0 and λi, µi+1 > 0 for i = 0, 1, 2, . . ., this condition holds. That is, for any two states i
and j, exactly one of the following two conditions holds,

1. pi,j(t) = 0 for all t > 0, or

2. pi,j(t) > 0 for all t > 0

3. Limiting Behaviour and Stationary Probability Distribution

For a general BD process with an infinite state space, a unique positive stationary probability distribution
π = (π0, π1, π2, . . .)

>
exists if,

µ0 = 0 and µi+1, λi > 0 for i = 0, 1, 2, . . .

and
∞∑
i=1

i−1∏
j=0

λj
µj+1

<∞

The stationary probability distribution satisfies3,

πi = π0

i−1∏
j=0

λj
µj+1

for i = 1, 2, . . .

and π0 =
1

1 +
∑∞
i=1

∏i−1
j=0

λj

µj+1

Further, from the above equations we can deduce,

µiπi = λi−1πi−1, for all i = 1, 2, 3, . . . (2)

The left-hand side of equation (2) represents the rate of transition from state i to state i− 1 and the right-hand
side is the transition rate from state i − 1 to state i, and these two quantities should balance out each other
in the steady state. The equations (2) are called detailed balance equations, which hold between every pair of
adjacent states; i− 1 and i of the BD process for all i = 1, 2, 3 . . .

4. Classification of States

Definition. An irreducible continuous-time Markov chain is recurrent (or transient, respectively) if and only
if its embedded discrete-time Markov chain is recurrent (or transient). Note that an absorbing state will always
be recurrent.

We introduce the following notation,

A =
∞∑
i=1

i−1∏
j=0

µj+1

λj+1
B =

∞∑
i=1

i−1∏
j=0

λj
µj+1

A BD process {X(t)} is recurrent if and only if A =∞. Equivalently, {X(t)} is transient if and only if A <∞.
Further, when {X(t)} is recurrent, it is positive recurrent if and only if B < ∞ and null recurrent if and only
if B = 0.

3Check Appendix: Section C for the corresponding proof
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5. Application of BD processes in Queueing Theory (M/M/1 Queue)

A BD process can be viewed as a generalization of the M/M/1 queuing system, which is one of the most basic
queueing models in queueing theory. A canonical example is a single processor system where the jobs are
processed in order of arrival (i.e. on a first-come-first-served basis). Jobs that arrive to a non-empty system
will line up in a queue (waiting buffer) for service. After a job is processed (i.e. the job completes its service)
it leaves the system. The jobs are assumed to arrive at the processor according to a Poisson process with some
rate λ > 0. Equivalently, the inter-arrival times of succeeding jobs follow an i.i.d. exponential distribution with
parameter λ. The service times of jobs are i.i.d exponential random variables with some rate µ > 0. It is also
implicitly assumed that the service times are independent of the arrival process. Further, the capacity of the
queue is considered to be infinite. With these assumptions we have,

E[inter-arrival time] =
1

arrival rate
=

1

λ
E[service time] =

1

service rate
=

1

µ

In queueing theory, the ratio of arrival rate to service rate plays a significant role in measuring the performance
of queueing systems. Therefore, we define,

Average utilization of the system = ρ =
λ

µ

We are interested in the behavior of X(t), the number of jobs in the system at time t, t ≥ 0. As the inter-
arrival times and the service times are all independent, exponentially distributed random variables, the process
{X(t) : t ≥ 0} is a continuous-time Markov chain with an infinite state space {0, 1, 2, . . .}. The notation
“M/M/1” is the standardized Kendall’s notation used to describe the underlying queueing model as a Markov
input and Markov output with a single server (processor).

Clearly M/M/1 queue is equivalent to a homogeneous BD process with birth rates λi = λ for i ≥ 0, and
death rates µi = µ for i ≥ 1 and µ0 = 0. A birth or a death may be considered as an arrival or departure
respectively, in a queueing system. However, even for this relatively simple queueing system, the distribution
of the time-dependent Markov process is quite complicated. Therefore, we restrict ourselves to the stationary
(limiting) distribution. It is easily seen that the Markov process is irreducible as all states can be reached from
each other. Following the discussion in Section 3, the condition for the stationary distribution to exist becomes,

∞∑
i=1

(
λ

µ

)i
<∞

The sum on the left-hand side is simply a geometric series, and thus, converges if and only if ρ = λ
µ < 1. This

condition for the stationary distribution to exist is equivalent to λ < µ, and has the intuitive interpretation
that the arrival rate to the system (λ) must be less than the service rate of the processor (µ). If λ > µ, then
jobs are arriving to the system at a faster rate than the processor can serve them, and thus, the length of the
queue grows infinitely. Such a system is said to be unstable. Thus, ρ < 1 is necessary and sufficient for the
steady-state solution. Alternatively, it can be said that the Markov process is positive recurrent if and only if
ρ < 1. This is intuitively obvious as every finite state i (i jobs) will be visited infinitely often, with finite mean
inter-visit times, as long as the processor is offered less jobs per time unit than it can handle. Thus, given ρ < 1,
the stationary probability distributions can be expressed as follows,

π0 =
1

1 +
∑∞
i=1

(
λ
µ

)i =
1

1 +
(
λ
µ

)
+
(
λ
µ

)2

+ . . .

= 1− λ

µ
= 1− ρ

π0 = 1− ρ

and πi =

(
λ

µ

)i
π0 = ρi (1− ρ) for i = 1, 2, 3, . . .

which is the probability function of a geometric distribution. Thus, π = (π0, π1, . . . πi, . . .)
>

forms the stationary
distribution, where πi represents the probability that there are i jobs in the system when the system is in
operation for a long period of time and the transient behaviour subsides and the conditions for stationarity are
satisfied. In other words, as t → ∞, the probability that the system is in a particular state, does not depend
on t nor on the initial state.
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Appendix

• Section A

Proposition: Let T1, T2, . . . , Tn be random variables having independent exponential distributions with rates
α1, α2, . . . , αn. The random variable: min (T1, T2, . . . , Tn) is also exponentially distributed with a rate (α1 +
α2 + · · ·+ αn). Moreover, the probability,

P (min (T1, T2, . . . , Tn) = Tk) =
αk

α1 + α2 + · · ·+ αn

Proof: Note that,
P (min (T1, T2, . . . , Tn) > t) = P (T1 > t;T2 > t; . . . ;Tn > t)

and by independence we get,

P (min (T1, T2, . . . , Tn) > t) = P (T1 > t)P (T2 > t) . . . P (Tn > t)

= e−α1te−α2t . . . e−αnt

= e−(α1+α2+...αn)t

This is sufficient to prove that min (T1, T2, . . . , Tn) is exponentially distributed with a rate (α1 +α2 + · · ·+αn).

Let Sk = minj 6=k Tj). Recall that the probability that two continuous and independent random variables being
equal, is zero. Thus,

P (min (T1, T2, . . . , Tn) = Tk) = P (Tk < Sk)

However, according to the computation above, Sk is exponentially distributed with rate βk =
∑
j 6=k αj and Sk

and Tk are independent. Thus,

P (Tk < Sk) =

∫∫
0<t<s

αke
−αktβke

−βksdtds

=
αk

αk + βk

=
αk

α1 + α2 + · · ·+ αn

• Section B

Proposition: The transition probabilities of a BD process satisfy a system of differential equations known as
the backward Kolmogorov differential equations given by,

dpi,j(t)

dt
= µipi−1,j(t)− (λi + µi) pi,j(t) + λipi+1,j(t) for i ≥ 1 and j ≥ 0

and
dp0,j(t)

dt
= −λ0p0,j(t) + λ0p1,j(t) for j ≥ 0

together with the initial conditions,

pi,j(0) = δi,j =

{
1, i = j
0, i 6= j

Proof: Assume ∆t > 0 is an infinitesimal time interval and consider the transition probability pi,j(t + ∆t).
Applying the Chapman-Kolmogorov equation we have,

pi,j(t+ ∆t) =
∞∑
k=0

pi,k(∆t)pk,j(t)

= pi,i−1(∆t)pi−1,j(t) + pi,i+1(∆t)pi+1,j(t) + pi,i(∆t)pi,j(t) +
∑
k/∈I

pi,k(∆t)pk,j(t)

However, the transition probability pi,j(t+ ∆t) can be expressed in terms of the transition probabilities at time
t as follows,

pi,j(t+ ∆t) = [µi∆t+ o(∆t)] pi−1,j(t) + [λi∆t+ o(∆t)] pi+1,j(t) + [1− (λi + µi) ∆t+ o(∆t)] pi,j(t)

+
∑
k/∈I

pi,k(∆t)pk,j(t)
(3)
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where I = {i− 1, i, i+ 1}.

Consider the final term in equation (3),∑
k/∈I

pi,k(∆t)pk,j(t) ≤
∑
k/∈I

pi,k(∆t) = 1−
∑
k∈I

pi,k(∆t)

1−
∑
k∈I

pi,k(∆t) = 1− [1− (λi + µi) ∆t+ o(∆t) + λi∆t+ o(∆t) + µi∆t+ o(∆t)]

= o(∆t)

Therefore, equation (3) reduces to,

pi,j(t+ ∆t) = [µi∆t+ o(∆t)] pi−1,j(t) + [λi∆t+ o(∆t)] pi+1,j(t) + [1− (λi + µi) ∆t+ o(∆t)] pi,j(t) + o(∆t)

By re-arranging the terms, we obtain,

pi,j(t+ ∆t)− pi,j(t)
∆t

=
µipi−1,j(t)∆t+ λipi+1,j(t)∆t− pi,j(t)∆t (λi + µi) + o(∆t)

∆t

= µipi−1,j(t) + λipi+1,j(t)− pi,j(t) (λi + µi) +
o(∆t)

∆t

Taking the limit on both sides as ∆t→ 0, the above equation reduces to,

dpi,j(t)

dt
= µipi−1,j(t) + λipi+1,j(t)− pi,j(t) (λi + µi)

The equation corresponding to i = 0 is a special case of this derivation with µ0 = 0,

dp0,j(t)

dt
= µ0pi−1,j(t) + λ0p0+1,j(t)− p0,j(t) (λ0 + µ0)

= λ0p1,j(t)− λ0p0,j(t)

Thus, the backward Kolmogorov differential equations for a general BD process can be expressed as,

dpi,j(t)

dt
= µipi−1,j(t)− (λi + µi) pi,j(t) + λipi+1,j(t) for i ≥ 1 and j ≥ 0

and
dp0,j(t)

dt
= −λ0p0,j(t) + λ0p1,j(t) for j ≥ 0

The backward Kolmogorov differential equations are deduced by decomposing the time interval (0, t + ∆t),
where ∆t > 0 is sufficiently small, into two sub-intervals (0,∆t) and (∆t, t+ ∆t) and examining the transition
in each period separately. In this sense, the backward equations result from a ‘first-step analysis’, the first step
being over the short time interval of duration ∆t. Another set of equations arises from a ‘last-step analysis’
which proceeds by splitting the time interval (0, t+∆t) into two sub-intervals (0, t) and (t, t+∆t) and adapting
the preceding reasoning. From this viewpoint, under more stringent conditions, we can derive a further system
of differential equations known as the forward Kolmogorov differential equations given by,

dpi,j(t)

dt
= λj−1pi,j−1(t)− (λj + µj) pi,j(t) + µj+1pi,j+1(t) for i ≥ 0 and j ≥ 1

and
dpi,0(t)

dt
= −λ0pi,0(t) + µ1pi,1(t) for i ≥ 0

together with the initial conditions,

pi,j(0) = δi,j =

{
1, i = j
0, i 6= j
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• Section C

If for a general BD process, a stationary probability distribution π = (π0, π1, π2, . . .)
>

exists, it is unique, and
for each state j,

lim
t→∞

pi,j(t) = πj ≥ 0 (4)

exist and are independent of the initial state i.

To determine if a limiting distribution exists and to determine its corresponding values, we consider the forward
Kolmogorov differential equations,

dpi,0(t)

dt
= −λ0pi,0(t) + µ1pi,1(t) (5)

dpi,j(t)

dt
= λj−1pi,j−1(t)− (λj + µj) pi,j(t) + µj+1pi,j+1(t), for j ≥ 1 (6)

with initial conditions,

pi,j(0) =

{
1, i = j
0, i 6= j

Since we are interested only in the statistical equilibrium properties of the system, we take the limits as t→∞
in both equations (5) and (6). The limits on the right-hand side exists according to equation (4). The limits

on the left-hand side; the derivatives
dpi,j(t)
dt , also exist as the probabilities converge to a constant. Thus,

lim
t→∞

dpi,j(t)

dt
= 0

Taking the corresponding limits of equation (5),

lim
t→∞

dpi,0(t)

dt
= −λ0 lim

t→∞
pi,0(t) + µ1 lim

t→∞
pi,1(t)

0 = −λ0π0 + µ1π1

π1 =
λ0

µ1
π0 (7)

Subsequently, taking the limits of equation (6),

lim
t→∞

dpi,j(t)

dt
= λj−1 lim

t→∞
pi,j−1(t)− (λj + µj) lim

t→∞
pi,j(t) + µj+1 lim

t→∞
pi,j+1(t)

0 = λj−1πj−1 − (λj + µj)πj + µj+1πj+1 (8)

Equations (7) and (8) can be solved recursively.

π2 =
λ1

µ2
π1 =

λ1λ0

µ2µ1
π0

π3 =
λ2

µ3
π2 =

λ2λ1λ0

µ3µ2µ1
π0

Thus, the general formula for πj can be proved by induction. Assume πj has been defined for j = 1, 2, . . ..

πj =
λj−1

µj
πj−1 =

λj−1 . . . λ1λ0

µj . . . µ2µ1
π0

By re-arranging the terms in the above equation, we obtain,

πj =
λj−1

µj
πj−1 = π0

j−1∏
i=0

λi
µi+1

Thus, if π0 is known, the remaining values πj for j = 1, 2, . . . may be determined recursively. π0 can be
determined using the law of total probability,

∞∑
j=0

πj = 1

π0

1 +
∞∑
j=1

πj
π0

 = 1
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It follows that,

π0 =
1

1 +
∑∞
j=1

∏j−1
i=0

λi

µi+1

A unique positive stationary distribution exists if and only if the summation is positive and finite,

0 <
∞∑
j=1

j−1∏
i=0

λi
µi+1

<∞

Note that if λi = 0 for some i and µi > 0 for i ≥ 1, a stationary distribution still exists, but it is not positive.
If λ0 = 0 and µi > 0 for i ≥ 1, then π0 = 1 and πi = 0 for i ≥ 1
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