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Branching process is a stochastic model used to describe the a population
growth. In general it is assumed that the individuals reproduce and die indepen-
dently according to some predefined probability distribution. This model is used
to find quantities such as the number of off-springs produced, the total number of
individuals in a particular generation, and the total number of individuals up to
a certain generation. Furthermore, it is specifically used to answer an interesting
question regarding the life time of a branching process and the probability that it
may die off. The model was introduced by F. Galton, in late 1870s to study the
disappearance of family names.

Branching processes can be divided in many ways

• Discrete time / Continuous time

• Single type / Multi-type

• Identical reproduction / Varying reproduction

• Effects of environment

For simplicity let us consider the simplest form of branching process : Gal-
ton–Watson process. This is a discrete time, single type process, with identically
distributed reproduction probability and infinite state space.

The Galton-Watson branching process

The Galton-Watson(GW) branching process can be identified using the following
characteristics.

• Discrete time process, where each time steps n represents a generation.

• Each individual has a life time of one unit at the end of which it may or
may not reproduce.

• Each individual produces a random number of offspring in the next genera-
tion, independently of other individuals.
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• The probability mass function for the number of offspring is known as the
offspring distribution. The offspring distribution is denoted by the ran-
dom variable ξ and is given by,

pk = P [ξi = k] , k ≥ 0 (1)

where k is a non-negative integer.

In general, it is assumed that p0 < 1 and p1 < 1 to eliminate the trivial case.
Figure 1 depicts a GW branching process with one individual at generation 0. As
mentioned before, there are certain questions of interest in respect to branching
process. Let us consider them next.

Figure 1: Galton-Watson(GW) branching process.

1. Population size

The random variable Xn, denotes the number of individuals at generation n. This
is called the population size at generation n and it given by,

Xn =
Xn−1∑
i=0

ξi , n ≥ 1 (2)

where ξi is the number of offsprings of individual i from the previous generation.
Note that ξ1, ξ2, . . . , ξXn−1 area the i.i.d copies of ξ from Eq. (1).

Now let us consider a branching process in which the tree starts with one
individual. i.e. X0 = 1. Consider the following probability.

P [Xn+1 = k] =
∑

P (Xn+1 = k|Xn = i,Xn−1 = j, . . . , X0 = 1)

However, it was initially assumed that each individual reproduces independently
and the reproduction is not affected by any external factors (including prior genera-
tions). Thus intuitively, it is evident that the population size of the next generation
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would only depend on the population size of the current generation (and not any
prior generations). i.e.:

P [Xn+1 = k] =
∞∑
i=1

P (Xn+1 = k|Xn = i)

Therefore, the stochastic process defined satisfies the Markov property. Further-
more, note that since the reproduction rate is independent of the generation,
the chain is also time-homogeneous. Thus, the process Xn is a discrete time
Markov chain on a state space of S = {0, 1, 2, . . .} with countably infinite
non-negative integers. For example, Figure 1 shows a branching process with
X0 = 1, X1 = 3, X2 = 3, and X3 = 4. Let us look at the properties of these states.

• If p0 = 0, then the branching process will continuously expand and never
die.

• If p0 ≥ 0, then there is always a non-zero probability that the process may
die at any generation. i.e.

P (Xn+1 = 0 |Xn = k) ≥ 0, ∀n, k

• If Xn reaches zero, then it stays there. i.e

P (Xn+1 = k |Xn = 0) = 0, ∀n, k

• Therefore, from these properties, we can deduce that 0 is an absorbing
state, and all other states are transient states.

Let us define the transition probability between two states as follows.

pij = P (Xn+1 = i |Xn = j), i, j ∈ S

Figure 2: State transition.

Figure 2 shows a graphical representation of the states, and the transition
probabilities for branching process with a subset of the state space containing
{0, 1, 2, 3}. Note that as shown in the diagram, 0 is both recurrent and absorb-
ing, while all other states are transient. Thus, branching process in reducible.
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2. Mean and Variance

Let µ and σ2 be the mean and the variance of the offspring distribution: ξ. Since
X0 = 1, the distribution of X1 and ξ correspond to each other, and the mean and
variance can be given as,

E[X1] = E[ξ] = µ

V ar(X1) = V ar(ξ) = σ

where

µ =
∞∑
k=0

k P (ξ = k) =
∞∑
k=0

k pk (3)

Now, from Eq. (2) we observe that the population size Xn+1 can be written as a
summation of Xn number of i.i.d offspring distributions : ξ. Thus, from theorem
1, the mean and variance of the population size can be given as,

E[Xn + 1] = E[Xn]µ

V ar(Xn + 1) = E[Xn]σ2 + V ar(Xn)µ2

However, E[X0] = 1 and V ar(X0) = 0. Therefore, by considering these initial
conditions, the mean and variance can be derived recursively as follows (Refer
theorem 2 for proof).

E[Xn] = µn (4)

V ar(Xn) =

{
σ2 µn−1(1−µn)

1−µ if µ 6= 1

nσ2 if µ = 1
(5)

3. Probability generating function of branching process.

Consider the transition probability for this Markov chain (branching process).

pij = P (Xn+1 = i|Xn = k) = P (
k∑
j=1

ξj = i)

This has a rather complicated form. Therefore,let us consider the probability
generating function (p.g.f) of the branching process to analyze the properties of
the transition probability.

The p.g.f can be given as,

ΦZ(s) = E[sZ ] =
∞∑
z=0

P (Z = z) sz (6)

Let Φ be the p.g.f of the offspring distribution : ξ.

Φ(s) = E
[
sξ
]

=
∞∑
k=0

P (ξ = k) sk =
∞∑
k=0

pk s
k (7)
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Note that, if X0 = 1, then the p.g.f of X1 corresponds to ξ. Thus, by comparing
terms, the p.g.f of X1 and Xn can be given as,

ΦX1(s) = Φ(s) =
∞∑
k=0

P (X1 = k) sk

ΦXn(s) =
∞∑
k=0

P (Xn = k) sk (8)

We will assume that 0 ≤ s ≤ 1, and observe that for such s this power series
converges. Next let us derive a recursive equation for the p.g.f in Eq. (8) as,

ΦXn(s) = E[sXn ]

=
∞∑
k=0

E[sXn |Xn−1 = k]P (Xn−1 = k)

=
∞∑
k=0

E[sξ1+ξ2+...+ξk ]P (Xn−1 = k)

=
∞∑
k=0

E(sξ1)E(sξ2) . . . E(sξk)P (Xn−1 = k) (ξi : i.i.d)

=
∞∑
k=0

Φξ(s)
k P (Xn−1 = k) (from Eq. (7))

= ΦXn−1(Φ(s)) (from Eq. (8))

By analyzing this further, we can see that this is a recursive function which can
be written as,

ΦX2(s) = ΦX1(Φ(s)) = Φ(Φ(s))

ΦX3(s) = Φ(Φ(Φ(s)))

...

ΦXn(s) = Φ(Φ(. . .Φ︸ ︷︷ ︸
n times

(s)))

which can also be written as,

ΦXn(s) = Φ(ΦXn−1(s)) (9)

Now, let us investigate the properties of the p.g.f. Φ in Eq. (7).

Φ(0) = p0 ≥ 0

Φ(1) =
∞∑
k=0

pk = 1
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Furthermore,

Φ′(s) =
∞∑
k=0

k pk s
k−1 ≥ 0 (10)

Φ′(1) =
∞∑
k=0

k pk = µ (11)

and,

Φ′′(s) =
∞∑
k=0

k(k − 1) pks
k−2 ≥ 0 (12)

Therefore, since the second derivative in Eq. (12) is non-negative, Φ(s) is convex.

4. Extinction probability

The next important analysis in a branching process is to find whether the popula-
tion would become extinct (the process would die out) at a particular generation.
i.e: Xn = 0. Let δn be the probability that the population is extinct by generation
n where,

δn = P (Xn = 0)

Then the probability that the branching process dies out is given by,

γ = lim
n→∞

P (Xn = 0) = lim
n→∞

δn

4..1 Mean and variance analysis

By analyzing the mean and variance, an important observation from Eq. (4) is
that if µ < 1, then,

lim
n→∞

E[Xn] = lim
n→∞

µn = 0

thus,
γ = lim

n→∞
δn = 1

Intuitively this can be viewed that on average if an individual produces less than
one offspring, then the population will definitely be extinct.

On the other hand if µ > 1, the infinite limit of the expected value goes to
infinity. Therefore, extinction is not guaranteed since the offspring distribution
may vary depending on the variance σ2.

4..2 p.g.f analysis

Section 3. lists certain important properties of the p.g.f of the offspring distribution.
In addition to these, another crucial observation of the p.g.f of the population size
Xn is,

δn = ΦXn(0)
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Thus, the extinction probability at generation n can be calculated iteratively, by
starting at n = 0 and computing the nth iteration of Φ. Furthermore, it is also
evident that δ is a non-decreasing sequence (since Xn = 0 implies that Xn−1 = 0).

Next, substituting in Eq. (9) with s = 0,

ΦXn(0) = Φ(ΦXn−1(0))

δn = Φ(δn−1)

and then considering the infinite convergence,

lim
n→0

δn = lim
n→0

Φ(δn−1)

γ = Φ(γ)

Thus, we arrive at the following lemma.

The extinction probability γ is the minimal non-negative solution
of the fixed point equation s = Φ(s)

In practice s = Φ(s) cannot be solved explicitly. The extinction probability
γ is obtained by solving δn = ΦXn(0) iteratively based on Eq. (9). However, for
this analysis let us consider the following 2 cases.

(a) µ ≤ 1 (b) µ > 1

Figure 3: Extinction probability.

• µ ≤ 1 : From Eq. (11), in this case, Φ(1) ≤ 1. This occurs only if Φ is above
the diagonal as shown in Figure 3a. i.e : Φ(s) ≥ s, ∀s ∈ [0, 1]. In this case
δn converges to 1, so γ = 1.

• µ > 1 : From Eq. (11), Φ(1) > 1. In this case, Φ is not always above the
diagonal as shown in Figure 3b. There exists exactly one point s < 1 which
solves s = Φ(s). As δn converges to this solution, we observe that γ < 1 and
is given by the intersection point : s = Φ(s).
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Therefore, we arrive at the following conclusion.

1. If µ ≤ 1, extinction is definite.

2. If µ > 1, extinction in uncertain. If extinction doesn’t occur, the process
grows infinitely.

5. Stationary distribution

From the properties of the transition probability, we can construct the following
transition matrix.

P =


1 0 0 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...

. . .


Note that the first row corresponds to p0i = P (Xn+1 = i|Xn = 0) which has
zero for i > 0 since 0 is an absorbing state. Furthermore, we initially considered
0 < p0 < 1, to make the problem non-trivial. Thus, the elements pi0 in the matrix
P must be non-zero.

By definition. the stationary distribution (denoted by π) of the markov chain
(branching process) is a probability distribution that remains unchanged. i.e.

π = πP

where π is a row vector whose entries are the probabilities summing to 1. Let
π = [π0, π1, π2, . . .] such that

∑∞
i=0 πi = 1. Since this is a matrix multiplication

operation, let us consider the first element π0.

π0 =
∞∑
i=0

πipi0

π0 = π0 +
∞∑
i=1

πipi0

0 =
∞∑
i=1

πipi0

Note that 0 < pi0 < 1 (non-trivial) and 0 ≤ πi ≤ 1 (π is a probability vector).
Therefore, the only solution for this problem is πi = 0, ∀ i > 0 and thus, π0 = 1.
i.e.

π = [1, 0, 0, . . .]

However, this is the trivial case where the process is always dead and this contra-
dicts with a crucial assumption of the GW branching process (X0 = 1). Thus, the
only solution is trivial.

There exists no (non-trivial) stationary distribution for a GW
branching process.
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6. Total number of individuals

Another important property of branching process is the total number of individuals
up to a particular generation. The total number of individual up to generation n
is denoted by the random variable Tn where,

Tn =
n∑
i=0

Xi

The mean of this random variable can be derived as follows.

E[Tn] = E[X0 +X1 +X2 + . . .+Xn]

= E[X0] + E[X1] + E[X2] + . . .+ E[Xn]

= 1 + µ+ µ2 + . . .+ µn

=

{
µn+1−1
µ−1 if µ 6= 1

n+ 1 if µ = 1

The infinite convergence can be given as,

lim
n→∞

E[Tn] =

{
∞ if µ ≥ 1
1

1−µ if µ < 1

7. Applications

Branching processes have many application in a wide variety of field including
computer science, economics, biology, humanitarian studies, etc. In this report 2
of the major applications of branching process within the field of computer science
is discussed briefly.

7..1 Tree algorithms

It is self explanatory that the branching process itself takes the form of a tree.
As such, it is used in many algorithms based on different tree structures such as
binary tree, tree searching, etc. A few such use cases are listed below.

1. Binary search tree: A binary tree is a tree structure in which each node
has at most two children. A binary search tree (BST) is a data structure
which has the form of a binary tree in which the elements are arranged in
a certain order which makes searching efficient. The efficiency of searching
would depend on the depth of the tree. Since the depth of the tree varies
depending on the elements inserted and the order of insertion, the branching
model is used to estimate the bounds on parameters such as the depth of the
tree, the time for insertion, and the time for search.
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2. Heuristic search: While the operations related to the binary trees are bounded
by its depth, trees with infinite depths may not have such bounds. Algo-
rithms such as depth first search (DFS) and breadth first search (BFS) which
are used for search on trees (or connected graphs with recursive paths) use
the branching process to estimate the bounds of the search efficiency. Fur-
thermore, the bounds algorithms such as backtracking which make heuristic
look-ahead decisions can also be estimated through the branching model.

In addition the branching process can be used to model algorithms such as
quad tree search, branching random walk, etc. and find their corresponding search
bounds [2].

7..2 Could computing

Cloud computing is a model which allows multiple remote users to access a pool
of shared resources such as storage, network, application, devices, etc. There are 5
main characteristics of cloud model: on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service. In order to ensure that
these requirements are satisfied, the underlying network requires a robust and
reliable model. One of the important components for this is the traffic prediction
model which focuses on identifying the dynamic demand for specific resources
which vary depend on time.

To design effective and efficient network solutions for cloud environment and
to understand the bottlenecks and solve performance problems arising in commu-
nication networks providers require accurate models to describe network traffic.
Unfortunately, it is extremely difficult to predict the exact performance character-
istics and demands on the network at any particular time. The main problem is
that it is hard to forecast the number of queries that are going to appear. How-
ever, this can be modeled using branching model [3]. The proposed model assumes
that resources queries come in independently. However, it is fair to assume that
the primary request would be accompanied by multiple following requests which
request access to certain resources which would be related to the primary resource.
As such it is possible to create a branching model in which the number of queries
branch with time and thus, the network traffic can be estimated. This stochas-
tic model helps the service providers to estimate the dynamic demand for cloud
services and thus avoid any bottlenecks and improve the service quality.
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Appendices

Theorem 1

Assume that X,X1, X2, . . . is an i.i.d sequence of random variables with a finite
mean E[X] = µ and V ar(X) = σ2. Let N be a non-negative integer random
variable, independent of all Xi , and let

S =
N∑
i=1

Xi

Then

E[S] = µE[N ]

V ar(S) = σ2E[N ] + µ2V ar(N)

Proof

Let Sn = X1 +X2 + . . .+Xn. Then,

E[S |N = n] = E[Sn] = nµ

V ar(S |N = n) = V ar(Sn) = nσ2

Therefore the mean of S is given by,

E[S] =
N∑
n=0

E[S |N = n]P (N = n)

=
N∑
n=0

nµP (N = n)

= µ

N∑
n=0

nP (N = n)

= µE[N ]

The variance can be derived as,

V ar(S) = E[S2]− E[S]2
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where,

E[S2] =
N∑
n=0

E[S2 |N = n]P (N = n)

=
N∑
n=0

E(S2
n)P (N = n)

=
N∑
n=0

(
V ar(S2

n) + E[Sn]2
)
P (N = n)

=
N∑
n=0

(nσ2 + n2 µ2)P (N = n)

= σ2E[N ] + µ2E[N2]

Therefore,

V ar(S) = E[S2]− (E[S])2

= σ2E[N ] + µ2E[N2] + µ2E[N ]2

= σ2E[N ] + µ2V ar(N)

Theorem 2

The mean E[Xn] and variance V ar(Xn) of population size can be given as,

E[Xn] = µn

V ar(Xn) =

{
σ2 µn−1(1−µn)

1−µ if µ 6= 1

nσ2 if µ = 1

Proof

The mean and variance can be given by the recursive equation,

E[Xn + 1] = E[Xn]µ

V ar(Xn + 1) = E[Xn]σ2 + V ar(Xn)µ2

In addition, for GW branching process, E[X0] = 0 and V ar(X0) = 0. Thus the
mean can be immediately derived as,

E[X1] = E[X0]µ = µ

E[X2] = E[X1]µ = µ2

...

E[Xn] = E[Xn−1]µ = µn
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If µ = 1, E[Xn] = 1 and recursively, the variance can be given as,

V ar(X1) = E[X0]σ
2 + V ar(X0)µ

2 = σ2

V ar(X2) = E[X1]σ
2 + V ar(X1)µ

2 = 2σ2

...

V ar(Xn) = E[Xn−1]σ
2 + V ar(Xn−1)µ

2 = nσ2

When µ 6= 1, the solution has a general form of V ar(Xn) = Aµn + Bµ2n. Substi-
tuting in the variance equation,

Aµn+1 = σ2µn + Aµn+2

A =
σ2

µ (1− µ)

From the initial point V (X0) = 0, we obtain A + B = 0. Thus the variance can
be derived as,

V ar(Xn) =
σ2 µn−1(1− µn)

1− µ
, if µ 6= 1
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