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Introduction 

Queueing theory is the mathematical study of waiting lines, or queues. It focuses on a class of 

models in which customers arrive in some random manner at a service facility. Upon arrival they 

are made to wait in queue until it is their turn to be served. Once served, they are generally 

assumed to leave the system. 

Classification of Queueing Systems 

The simplest form of Kendall’s notation consists of 3 letters: a/b/c where 

a represents the probability distribution of customer’s arrivals 

b represents the probability distribution of service time 

c is the number of servers 

Commonly used letters for a or b are, 

 M to indicate Poisson process (Poisson distribution for arrival and Exponential 

distribution for service time). M represents Markovian. 

 E to indicate Erlang distribution 

 D to indicate Deterministic or constant distribution 

 G to indicate General probability distribution with known mean and variance 

Here the capacity for waiting and servicing in the system is assumed to be infinite in this study. 

Some fundamental quantities of interest for queueing models are 

L - the average number of customers in the system 

LQ - the average number of customers waiting in queue 

W - the average amount of time a customer spends in the system 

WQ - the average amount of time a customer spends waiting in queue 
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In a general sense, the main interest in any queuing model is the number of customers in the 

system as a function of time, and in particular, whether the servers can adequately handle the 

flow of customers. 

In this text, only the Discrete-time Queueing chains are focused upon. The distinction 

between the discrete-time Markov chain (DTMC) and CTMC is that in DTMC there is a “jump” 

to a new state at times, but in CTMC the “jump” to a new state may occur at any time. 

Our main assumptions are as follows: 

a. If the queue is empty at a given time, then a random number of new customers arrive at 

the next time. 

b. If the queue is nonempty at a given time, then one customer is served and a random 

number of new customers arrive at the next time. 

c. The number of customers who arrive at each time period forms an independent, 

identically distributed sequence. 

 

Thus, let Xn denote the number of customers in the system at time n ∈ N, and let Un denote the 

number of new customers who arrive at time n ∈ N+. Then U = (U1, U2,…) is a sequence of 

independent random variables, with common probability density function f on N, and 

 

 

X = (X0, X1, X2 …) is a discrete-time Markov chain with state space N and transition probability 

matrix P given by 

P(0,y) = f(y),  y ∈ N 

P(x,y) = f(y−x+1), x∈N+, y∈{x−1,x,x+1,…} 

The chain X is the queueing chain with arrival distribution defined by f. 
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The Markov property and the form of the transition matrix follow from the construction of the 

state process X in term of the IID sequence U. Starting in state 0 (an empty queue), a random 

number of new customers arrive at the next time unit, governed by the Probability Distribution 

Function f. Hence the probability of going from state 0 to state y in one step is f(y). Starting in 

state x ∈ N+, one customer is served and a random number of new customers arrive by the next 

time unit, again governed by the PDF f. Hence the probability of going from state x to 

state y∈{x−1,x,x+1,…} is f[y−(x−1)]. The current value is enough to determine the distribution 

of the next state. I.e. The state only depends on whether a customer has entered / left the queue 

from the immediate previous state and not the conditions of the earlier states. Therefore the 

Markovian property of Queueing models is justified. 

Using the birth (arrival)–death (departure) terminology, when the population size is n, let λn and 

µn be the infinitesimal transition rates (generators) of birth and death, respectively. When the 

population is the number of customers in the system, λn and µn indicate that the arrival and 

service rates depend on the number in the system. Based on the properties of the Poisson process, 

i.e., when arrivals are in a Poisson process and service times are exponential, we can make the 

following probability statements for a transition during (t, t + Dt]: 

birth (n ≥ 0):  

P (one birth) = λnDt + o(Dt),  

P (no birth) = 1 − λnDt + o(Dt),  

P (more than one birth) = o(Dt),  

 

death (n > 0):  

P (one death) = µnDt + o(Dt),  

P (no death) = 1 − µnDt + o(Dt),  

P (more than one death) = o(Dt), 

where o(Dt) is such that 
     

  
  → 0 as Dt  → 0. 

 

Let Q(t) be the number of customers in the system at time t.  
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Define  

Pn(t) = P[Q(t) = n |Q(0) = i 

 

Incorporating the probabilities for transitions during (t, t +Dt], as stated above, we get  

 

Pn,n+1(Dt) = λnDt + o(Dt),    n = 0, 1, 2,...,  

Pn,n−1(Dt) = µnDt + o(Dt),    n = 1, 2, 3,...,  

Pnn(Dt) = 1 − λnDt − µnDt + o(Dt),   n = 1, 2, 3,...,  

Pnj (Dt) = o(Dt),      j   n − 1, n, n + 1. 

 

The infinitesimal transition rates above lead to the following generator matrix for the birth-and-

death process model of the queueing system:  

 

The generator matrix A leads to the following forward Kolmogorov equations for Pn(t) 

 

Unfortunately, even in simple cases such as λn = λ and µn = µ, that is when the arrivals are 

Poisson and service times are exponential (M/M/1 queue), deriving Pn(t) explicitly is an arduous 

process. Furthermore in most of the applications the need for knowing the time-dependent 

behaviour is not all that critical. The most widely used result, therefore, is the limiting result, 

determined from by letting t → ∞. 
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Figure 1: State transition diagram for M/M/1 queue 

 

 

Figure 2: State transition diagram for M/M/s queue 

Irreducibility  

Consider X = (X0, X1, X2 …) defined above. Let m be the average number of new customers who 

arrive during a time period. 

We can say that the chain X is irreducible and aperiodic. 

Proof: 

In a positive state, the chain can move at least one unit to the right and can move one unit to the 

left at the next step. From state 0, the chain can move two or more units to the right or can stay in 

0 at the next step. Thus, every state leads to every other state so the chain is irreducible. Since 

0 leads back to 0, the chain is aperiodic. 
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Recurrent and Transient states 

Let m denote the mean of the arrival distribution, so that 

   ∑      

 

   

 

Thus m is the average number of new customers who arrive during a time period 

Let q be the probability that the queue eventually empties, starting with a single customer. 

The parameter q satisfies the equation: 

   ∑      

 

   

 

 

Consider the equation Φ(q) = q where Φ is the probability generating function of the 

distribution that governs the number of new customers that arrive during each period. 

q is the smallest solution in (0,1] of the equation Φ(t) = t. Moreover 

a. If m ≤ 1 then q = 1 and the chain is recurrent. 

b. If m > 1 then 0 < q < 1 and the chain is transient. 

Note that the condition in (a) means that on average, one or fewer new customers arrive for each 

customer served. The condition in (b) means that on average, more than one new customer 

arrives for each customer served. 

Also if m = 1 then the queueing chain is null recurrent. Since m is the expected number of new 

customers who arrive during a service period, the results are certainly reasonable. 
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Stationary distribution 

Theorem 

The limiting distribution of a positive recurrent irreducible Markov process is also stationary. 

A process is said to be stationary if the state distribution is independent of time; 

i.e., if  

Pn(0) = pn, n = 0, 1, 2,..., 

then 

 Pn(t) = pn for all t. 

Since we deal with transition distributions conditional on the initial state in stochastic processes, 

the stationarity means that if we use the stationary distribution as the initial state distribution, 

from then on all time-dependent distributions will be the same as the one we started with. 

In an irreducible, aperiodic, and positive recurrent Markov chain, the limiting probabilities 

{πi, i = 0, 1, 2,...} satisfy the equations  

    ∑      

 

   

 

 for j = 0, 1, 2,...,  

∑     

 

   

 

The limiting distribution is stationary. 
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Applications 

Real-life applications of queuing theory cover a wide range of applications, such as how to 

provide faster customer service, improve traffic flow, efficiently ship orders from a warehouse, 

and design of telecommunications systems, from data networks to call centers. Some of the 

applications of queueing theory are listed below. 

1) Decision making in service facilities 

Typically operation of a queuing system typically involves the following decisions. 

I. No. of  servers at a service facility 

II. Efficiency of the servers 

III. No. of service facilities 

All the decisions above generally lead to the question of appropriate level of service to provide in 

a queueing system. This level of service generally depends on two considerations  

1) the cost incurred by providing the service 

2) the amount of waiting for that service 

These two considerations create conflicting pressures on the decision maker. The objective of 

reducing service costs recommends a minimal level of service. On the other hand, long waiting 

times are undesirable, which recommends a high level of service. Therefore, it is necessary to 

strive for some type of compromise. 

Given that the cost of waiting has been evaluated explicitly, the remainder of the analysis is 

conceptually straightforward. The objective is to determine the level of service that minimizes 

the total of the expected cost of service and the expected cost of waiting for that service. This 

concept is depicted in Fig. 3, where WC denotes waiting cost, SC denotes service cost, and TC 

denotes total cost. Thus, the mathematical statement of the objective is to  
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Minimize E(TC) = E(SC) + E(WC). 

 

Figure 3: Level of service vs. Expected cost 

 

2) Application of queueing theory in health care 

The rising cost of health care can be attributed not only to ageing population and new expensive 

and advanced treatment modalities but also to inefficiencies in health delivery. Queueing theory 

application is an attempt to minimise the cost through minimisation of inefficiencies and delays 

in the system. There are many problems in health care system which can be solved using 

queueing theory in operational research. Queuing models can be useful in gaining insights on the 

appropriate degree of specialisation or flexibility to use in organising resources, or on the impact 

of various priority schemes for determining service order among patients. 
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