Circular Motion

The basic requirements for an object to complete a cycle while traveling in circular motion are as follows;

- 1. Velocity_{min} > 0
- 2. Tension_{min.} \geq 0 (equals only and if $u^2 \geq$ 5ga, where u= initial velocity, g= gravitational acceleration, a= radius of circle)
- ➤ When the rope is considered to be threaded through a ring, the tensions of the rope beside the ring are considered as equal.
- When an object is attached to the rope, the tensions beside the attached objects are not unequal.
- When an object leaves from the circular motion, the tension is supposed as zero.

Let us consider an object going through circular motion;

- 1. Acceleration along the tangent = aΘ
- 2. Acceleration towards the center = $a\dot{O}^2$

To find the inclination angle of descend, apply as T=0, and to find the velocity while descending, substitute the inclination angle.

The difference of circular motions differing on the initial velocity

1. $0 < u^2 < 2ga$

$$\cos \Theta 1 = (2ga-u^2)/2ga$$

Cos
$$\Theta$$
2= (2ga-u²)/3ga

According to the above derivation, the value of Cos $\Theta1$ and Cos $\Theta2$ remains between 0 and 1. Therefore, $\Theta1$ and $\Theta2$ are acute angles.

Hence the velocity becomes initialy zero and the object begins to swing to and fro in acute angles.

2. $u^2 = 2ga$

$$\cos \Theta 1 = 0$$
, $\cos \Theta 2 = 0$.

Therefore, , $\Theta1$ and $\Theta2$ are right angles.

Hence, the object swings to and fro in right angles (swings beside point A in a semi circle)

3. $2ga < u^2 < 5ga$

The object travels in a wider angle and passes point B. The object leaves the circular motion between point C and Point B

$$\cos \Theta 1 = (2ga-u^2)/2ga$$

Cos
$$\Theta$$
2= (2ga-u²)/3ga

Cos Θ 1 < Cos Θ 2

 $\Theta1 > \Theta2$

Hence, even though the tension becomes zero, the object will continue to have a velocity, and will leave the circular motion as a projectile.

4.
$$u^2 = 5ga$$

$$\cos \Theta 1 = (2ga-u^2)/2ga < 0$$

Cos
$$\Theta 2 = (2ga-u^2)/3ga < 0$$
,

Therefore, $\cos \Theta 2 = \cos \pi$

Hence, the tension becomes zero at the highest point of it's motion, however the object shall still have a velocity and as a result the object will complete it's cycle and journey through circular motion.