
Meeting link :
https://learn.zoom.us/j/61854223791?pwd=MG
9vUFpqSU0zTCs3TXk4OE9yTEszdz09

Meeting ID: 618 5422 3791
Passcode: Xtreme15.0

https://learn.zoom.us/j/61854223791?pwd=MG9vUFpqSU0zTCs3TXk4OE9yTEszdz09
https://learn.zoom.us/j/61854223791?pwd=MG9vUFpqSU0zTCs3TXk4OE9yTEszdz09

Algorithmic Programming
Competitions
2021-Jul-11
IEEEXtreme 15.0 Awareness Session
University of Vocational Technology

Gihan Jayatilaka

Acknowledgement: These slides are derivative from Suren Sritharan’s slides.

https://gihan.me/people/#suren

WHAT is algorithmic programming

Algorithmic + Programming

WHAT is algorithmic programming

Solving particular problem using an algorithm which is
implemented through a computer program

Algorithmic Programming (Broad meaning)

Algorithmic programming

● Almost ever programming task could be identified as algorithmic
programming. However, what we are interested in is algorithm intensive
programming.

● Major considerations are correctness, efficiency (space and time) and
scalability.

● Examples
○ Decision/planning/scheduling/optimization
○ ML/AI/DL
○ Vision /signal-processing

Algorithmic programming

● Almost ever programming task could be identified as algorithmic
programming. However, what we are interested in is algorithm intensive
programming.

● Major considerations are correctness, efficiency (space and time) and
scalability.

● Examples
○ Decision/planning/scheduling/optimization
○ ML/AI/DL
○ Vision /signal-processing

Algorithmic programming

● Almost ever programming task could be identified as algorithmic
programming. However, what we are interested in is algorithm intensive
programming.

● Major considerations are correctness, efficiency (space and time) and
scalability.

● Examples
○ Decision/planning/scheduling/optimization
○ ML/AI/DL
○ Vision /signal-processing

Competitive Algorithmic Programming

● Very well defined problems (input/output format)
● Constraints on inputs and outputs.
● Marking scheme.
● Resource limits (CPU time, RAM megabytes)
● Held on a platform (eg: HackerRank, codeforces)
● Rules, regulations and awards.
● Limitations on programming languages and libraries.

Constraints and resource limitations

Problem

Resource
limits

If you
complete
the task
you get
points

Examples

Constraints

Competitive Algorithmic Programming

● Very well defined problems (input/output format)
● Constraints on inputs and outputs.
● Marking scheme.
● Resource limits (CPU time, RAM megabytes)
● Held on a platform (eg: HackerRank, codeforces)
● Rules, regulations and awards.
● Limitations on programming languages and libraries.

Competitive Algorithmic Programming

● Very well defined problems (input/output format)
● Constraints on inputs and outputs.
● Marking scheme.
● Resource limits (CPU time, RAM megabytes)
● Held on a platform (eg: HackerRank, codeforces)
● Rules, regulations and awards.
● Limitations on programming languages and libraries.

Competitive Algorithmic Programming

● Very well defined problems (input/output format)
● Constraints on inputs and outputs.
● Marking scheme.
● Resource limits (CPU time, RAM megabytes)
● Held on a platform (eg: HackerRank, codeforces)
● Rules, regulations and awards.
● Limitations on programming languages and libraries.

Popular platforms HackerRank.com

CodeForces.com

CSacademy.com

ProjectEuler.com

CodeChef.com

TopCoder.com

Competitive Algorithmic Programming

● Very well defined problems (input/output format)
● Constraints on inputs and outputs.
● Marking scheme.
● Resource limits (CPU time, RAM megabytes)
● Held on a platform (eg: HackerRank, codeforces)
● Rules, regulations and awards.
● Limitations on programming languages and libraries.

Competitive Algorithmic Programming

● Very well defined problems (input/output format)
● Constraints on inputs and outputs.
● Marking scheme.
● Resource limits (CPU time, RAM megabytes)
● Held on a platform (eg: HackerRank, codeforces)
● Rules, regulations and awards.
● Limitations on programming languages and libraries.

What does it take to
win?

Expectation

Programming 50%

Mathematics 30%

Creativity 20%

What does it take to
win?

REALITY

Programming 25%

Mathematics 15%

Creativity 10%

Practice 50%

What should beginners do?

● Pick any programming language and learn the basics (input,
output, if/for/else, functions..)
○ C++, Python, Java are popular choices.

● Practise standard questions on a platform like HackerRank or
CSacademy.

● Learn basic data structures and algorithms.

What should beginners do?

● Pick any programming language and learn the basics (input,
output, if/for/else, functions..)
○ C++, Python, Java are popular choices.

● Practise standard questions on a platform like HackerRank or
CSacademy.

● Learn basic data structures and algorithms.

What should beginners do?

● Pick any programming language and learn the basics (input,
output, if/for/else, functions..)
○ C++, Python, Java are popular choices.

● Practise standard questions on a platform like HackerRank or
CSacademy.

● Learn basic data structures and algorithms.

What should intermediates do?

● Go to local competitions (IEEExtreme, ACEScoders, MoraXtreme…)
● When you get a difficult question, try it for at least a few hours.
● Learn advanced algorithms.
● Start developing your own library.

○ You are allowed to take this code to competitions.
● Ask for solutions from competitions you attend to.
● Practise as a team.

○ You need to develop a way to communicate fast.
○ Co-dependent skills.

Local competitions ACES coders

MoraExtreme

What should intermediates do?

● Go to local competitions (IEEExtreme, ACEScoders, MoraXtreme…)
● When you get a difficult question, try it for at least a few hours.
● Learn advanced algorithms.
● Start developing your own library.

○ You are allowed to take this code to competitions.
● Ask for solutions from competitions you attend to.
● Practise as a team

○ You need to develop a way to communicate fast.
○ Co-dependent skills.

What should intermediates do?

● Go to local competitions (IEEExtreme, ACEScoders, MoraXtreme…)
● When you get a difficult question, try it for at least a few hours.
● Learn advanced algorithms.
● Start developing your own library.

○ You are allowed to take this code to competitions.
● Ask for solutions from competitions you attend to.
● Practise as a team

○ You need to develop a way to communicate fast.
○ Co-dependent skills.

What should intermediates do?

● Go to local competitions (IEEExtreme, ACEScoders, MoraXtreme…)
● When you get a difficult question, try it for at least a few hours.
● Learn advanced algorithms.
● Start developing your own library.

○ You are allowed to take this code to competitions.
● Ask for solutions from competitions you attend to.
● Practise as a team.

○ You need to develop a way to communicate fast.
○ Co-dependent skills.

What should experts do?

● Learn C++ to the depth.
● Do weekly competitions on codeforces.
● Take part in global competitions (Google CodeJam, Facebook

HackerCup)
● Upsolve competition problems after the end of the competition.

What should experts do?

● Learn C++ to the depth.
● Do weekly competitions on codeforces.
● Take part in global competitions (Google CodeJam, Facebook

HackerCup)
● Upsolve competition problems after the end of the competition.

What should experts do?

● Learn C++ to the depth.
● Do weekly competitions on codeforces.
● Take part in global competitions (Google CodeJam, Facebook

HackerCup)
● Upsolve competition problems after the end of the competition.

Worldwide
competitions

IEEEExtreme

Google codeJam

FaceBook HackerCup

ACM ICPC

What should experts do?

● Learn C++ to the depth.
● Do weekly competitions on codeforces.
● Take part in global competitions (Google CodeJam, Facebook

HackerCup)
● Upsolve competition problems after the end of the competition.

Why do competitive programming?

● Algorithms are the most beautiful/elegant/pure part of CS.

● Looks very good on your profile
○ Analytical / problem solving / communication skills.
○ because this is a straightforward comparison between

participants.
● Algorithm knowledge is tested on interviews by major companies (eg:

this is the only thing tested by FAANG).
● You can work on “interesting roles” beyond generic software

engineering.

Why do competitive programming?

● Algorithms are the most beautiful/elegant/pure part of CS.

● Looks very good on your profile
○ Analytical / problem solving / communication skills.
○ because this is a straightforward comparison between

participants.
● Algorithm knowledge is tested on interviews by major companies (eg:

this is the only thing tested by FAANG).
● You can work on “interesting roles” beyond generic software

engineering.

Why do competitive programming?

● Algorithms are the most beautiful/elegant/pure part of CS.

● Looks very good on your profile
○ Analytical / problem solving / communication skills.
○ because this is a straightforward comparison between

participants.
● Algorithm knowledge is tested on interviews by major companies (eg:

this is the only thing tested by FAANG).
● You can work on “interesting roles” beyond generic software

engineering.

Why do competitive programming?

● Algorithms are the most beautiful/elegant/pure part of CS.

● Looks very good on your profile
○ Analytical / problem solving / communication skills.
○ because this is a straightforward comparison between

participants.
● Algorithm knowledge is tested on interviews by major companies (eg:

this is the only thing tested by FAANG).
● You can work on “interesting roles” beyond generic software

engineering.

What can I do next with the knowledge?

● Get a software engineering job in a top company.

● Go into algorithm intensive fields.
○ Highly scalable system design.
○ OS design, compiler design.
○ Graphics/vision/signal processing.
○ ML/AI

● Go into algorithms research by going for MS/PhD.

What can I do next with the knowledge?

● Get a software engineering job in a top company.

● Go into algorithm intensive fields.
○ Highly scalable system design.
○ OS design, compiler design.
○ Graphics/vision/signal processing.
○ ML/AI

● Go into algorithms research by going for MS/PhD.

What can I do next with the knowledge?

● Get a software engineering job in a top company.

● Go into algorithm intensive fields.
○ Highly scalable system design.
○ OS design, compiler design.
○ Graphics/vision/signal processing.
○ ML/AI

● Go into algorithms research by going for MS/PhD.

Some issues

● Some mid range companies doesn’t value algorithmic skills. They seek
people who are good in different technologies/frameworks.

● Even though you get into a top company through algorithms knowledge
and start working as a software engineer, your work will not be primarily
on algorithm development.

● Reaching the world top in this field is extremely competitive (however, this
is true for any field)

Some issues

● Some mid range companies doesn’t value algorithmic skills. They seek
people who are good in different technologies/frameworks.

● Even though you get into a top company through algorithms knowledge
and start working as a software engineer, your work will not be primarily
on algorithm development.

● Reaching the world top in this field is extremely competitive (however, this
is true for any field)

Some issues

● Some mid range companies doesn’t value algorithmic skills. They seek
people who are good in different technologies/frameworks.

● Even though you get into a top company through algorithms knowledge
and start working as a software engineer, your work will not be primarily
on algorithm development.

● Reaching the world top in this field is extremely competitive (however, this
is true for any field)

IEEEXtreme

● 3 person group.

● 24 questions per 24 hours. Usually 5:30am - 5:30 am. [some tips]

● Held on CSacademy.com

○ Create a profile and familiarize with the platform now.

● You need a mentor (typically this an academic staff member).

○ Student teams can reach out to individual mentors or the student

branch will collect the team information and find mentors for them.

● All 3 students need to have IEEE student memberships.

IEEEXtreme

● 3 person group.

● 24 questions per 24 hours. Usually 5:30am - 5:30 am.

● Held on CSacademy.com

○ Create a profile and familiarize with the platform now.

● You need a mentor (typically this an academic staff member).

○ Student teams can reach out to individual mentors or the student

branch will collect the team information and find mentors for them.

● All 3 students need to have IEEE student memberships.

IEEEXtreme

● 3 person group.

● 24 questions per 24 hours. Usually 5:30am - 5:30 am.

● Held on CSacademy.com

○ Create a profile and familiarize with the platform now.

● You need a mentor (typically this an academic staff member).

○ Student teams can reach out to individual mentors or the student

branch will collect the team information and find mentors for them.

● All 3 students need to have IEEE student memberships.

IEEEXtreme

● 3 person group.

● 24 questions per 24 hours. Usually 5:30am - 5:30 am.

● Held on CSacademy.com

○ Create a profile and familiarize with the platform now.

● You need a mentor (typically this an academic staff member).

○ Student teams can reach out to individual mentors or the student

branch will collect the team information and find mentors for them.

● All 3 students need to have IEEE student memberships.

IEEE Student membership

● Costs 27 USD per year. (In my opinion, this is on the expensive end).
● Some tips to overcome this issue.

○ Register late for the year (close to the competition). You get one of
these two advantages (ask the student branch about this).
■ Half rate 13.50 USD registration fee for the remaining few

months of the year.
■ Two years registration for 27 USD.

○ Finding sponsors, organizing an internal event and giving free
memberships to top 1/2/3/5 teams.

IEEE Student membership

● Costs 27 USD per year. (In my opinion, this is on the expensive end).
● Some tips to overcome this issue.

○ Register late for the year (close to the competition). You get one of
these two advantages (ask the student branch about this).
■ Half rate 13.50 USD registration fee for the remaining few

months of the year.
■ Two years registration for 27 USD.

○ Finding sponsors, organizing an internal event and giving free
memberships to top 1/2/3/5 teams.

IEEE Student membership

● Costs 27 USD per year. (In my opinion, this is on the expensive end).
● Some tips to overcome this issue.

○ Register late for the year (close to the competition). You get one of
these two advantages (ask the student branch about this).
■ Half rate 13.50 USD registration fee for the remaining few

months of the year.
■ Two years registration for 27 USD.

○ Finding sponsors, organizing an internal event and giving free
memberships to top 1/2/3/5 teams.

FAQ

● Expert in programming ?
○ NO

● Expert in algorithms and datastructures?
○ NO

● Advanced mathematical knowledge?
○ NO (Preliminary knowledge)

● What do you need?
○ Problem solving skills and practice

Thanks!

● Indrajith Ekanayake from IEEE, SL for inviting me.
● Heshan Jayasinghe from IEEE, Univotec for inviting me.
● IEEE Univotec for organizing the event.
● All other speakers and moderators.
● All attendees (dean, academic staff and students) for listening.

Apology: to IEEE Univotec if I was not enthusiastic about the whole poster stuff.

Summary | Thanks for listening! Q+A

● Algorithmic/competitive programming.
● Programming+Math+Creativity+Practise.
● Correctness, efficiency and solving in time.
● Resource limitations (RAM,CPU), constraints.
● Team competitions ---> communicating complicated logic.
● Advantages for the future (jobs, research, higher education)
● Some issues
● UPSOLVE after the competitions!!!!!

Some additional resources: https://gihan.me/resources
If you have any questions: https://gihan.me/contact (email preferred)

https://gihan.me/resources
https://gihan.me/contact

