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The field of artificial consciousness (AC) has largely developed outside of mainstream artificial 
intelligence (AI), with separate goals and criteria for success and with only a minimal exchange of 
ideas. This is unfortunate as the two fields appear to be synergistic. For example, here we consider 
the question of how concepts developed in AC research might contribute to more effective future AI 
systems. We first briefly discuss several past hypotheses about the function(s) of human 
consciousness, and present our own hypothesis that short-term working memory and very rapid 
learning should be a central concern in such matters. In this context we then present ideas about how 
integrating concepts from AC into AI systems to develop an artificial conscious intelligence (ACI) 
could both produce more effective AI technology and contribute to a deeper scientific understanding 
of the fundamental nature of consciousness and intelligence. 
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 Machine Intelligence versus Machine Consciousness  1.

In his foundational paper on machine intelligence, Alan Turing [1950] did the emerging 
field of artificial intelligence (AI) a great service. At the time, just a few years after the 
construction of the first electronic digital computers, there was a lot of discussion about 
whether or not a machine could think or have a mind. Turing found questions like these 
to be “too meaningless to deserve discussion”, and instead proposed what we today call 
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the Turing Test as the criterion for machine intelligence. While this specific criterion has 
faced well-deserved criticism in contemporary AI, Turing’s basic notion that we should 
judge whether a machine is intelligent based on its behavior, rather than on vaguely 
defined concepts such as the existence of an underlying mind, was liberating and persists 
as the dominant paradigm in AI to this day. In a very real sense Turing’s approach made 
research into AI respectable. This is because the idea of machine intelligence per Turing 
only refers to whether a machine can exhibit intelligent behavior, and does not represent 
a claim to having created a machine that has subjective mental experiences, can think, or 
have a mind. Avoiding these latter difficult issues has to a great extent enabled the pursuit 
of and substantial successes of AI as a technology.  

On the other hand, an additional consequence of this dominant viewpoint is that, 
with very few exceptions, it has largely side-lined work in AI on challenging issues 
surrounding the possibility of an artificial mind or a conscious machine. Many AI 
researchers find such issues to be uninteresting or insufficiently well defined to be of any 
relevance to AI [Bringsjord, 2007; McDermott, 2007]. As a result, the field of artificial 
consciousness (AC) has largely developed outside of mainstream AI [Reggia, 2013]. In 
our opinion this is regrettable because there is substantial room for synergistic work in 
these two fields.  

We have previously considered the issue of how work in AI might contribute to 
advancing AC [Reggia et al., 2014, 2017]. Our central point in this regard is that a 
computational explanatory gap currently limits our ability to advance work in AC. The 
computational explanatory gap is our lack of understanding of how consciously 
accessible high-level cognitive information processing can be mapped onto low-level 
neural computations. The computational explanatory gap is a purely computational issue 
and not a mind-brain problem - it is a gap in our understanding of how cognitive 
algorithms (executive control, goal-directed problem solving, planning, etc.) can be 
mapped into the sub-symbolic computations supported by neural networks that use a 
distributed representation of information. This issue is clearly relevant to AI in general, 
and encouragingly increasing attention is being paid to it in studying “programmable 
neural networks”, for example [Devlin et al., 2017; Graves et al., 2016]. The 
computational explanatory gap also makes cognitively-oriented models in AI much more 
relevant to AC than is often recognized, especially given the philosophical concept of 
cognitive phenomenology.1 

Having previously considered how work in AI may contribute to AC, here we 
address the converse question: How might concepts developed via work in AC and 
consciousness studies in general enhance the functionality of AI systems? To answer this 
question, we first summarize some past ideas about what the function of consciousness is 
in people (Sect. 2). We next present our own hypothesis that working memory and very 
fast learning/unlearning of its contents should be a central concern in such matters (Sect. 
                                                             
1 Cognitive phenomenology asserts that parts of our cognitive processes are consciously accessible above and 

beyond their sensory representations [Bayne and Montague, 2011]. Our other points about the significance 
of the computational explanatory gap hold regardless of the validity of cognitive phenomenology. 
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3), summarizing the results of some recent work we have done studying this issue (Sect. 
4). With these considerations about the function of biological consciousness in hand, we 
then return to the question of how work in AC is relevant to the development of future AI 
systems (Sect. 5) and provide a summary of our conclusions on these matters (Sect. 6).  

 What is the Function of Human Consciousness? 2.

We approach the question of what consciousness might contribute to AI systems by first 
asking what its function is in human cognition, and then exploring whether such 
functionality might provide/improve similar, currently-absent/limited functionality in 
machine intelligence. This of course presumes that consciousness does have a biological 
function, an assumption that we make here. While this assumption is controversial, with 
some arguing that consciousness is just an epiphenomenon, we note that the evolution of 
consciousness in at least humans and some animal species supports the idea that it 
contributes to survivability and reproductive fitness, and we explore the consequences. 

There is no shortage of past hypotheses concerning the function(s) of human 
consciousness. Here we take asserting that something is a function of consciousness to 
implicitly indicate that a causal relationship is involved: that consciousness causes and is 
in large part necessary for that function. Many AC investigators have hesitated to make 
such causal claims and have instead proposed neural or computational correlates of 
consciousness. A neural correlate of consciousness is a minimal neurobiological state 
whose presence is sufficient for the occurrence of a corresponding state of consciousness 
[Metzinger, 2000]. A computational correlate of consciousness is a minimal 
computational mechanism that is specifically associated with conscious aspects of 
cognition but not with unconscious aspects [Cleeremans, 2005; Reggia et al., 2014]. 
Being a function of consciousness implies being a correlate of consciousness, but not vice 
versa.2 With this understanding we now give a non-exhaustive listing of functions of 
consciousness previously proposed in the literature, ordered arbitrarily: 

 global access to and integration of information [Baars, 1997; Tononi, 2008] 
 symbol grounding [Chella, 2008; Kuipers, 2008; Haikonen, 2019]  
 high-level symbolic cognition [Sun, Franklin, 2007; Pasquali et al., 2010] 
 supports executive functions [Shanon, 1998; Rosenthal, 2008] 
 error detection and correction [Baars, 1997; Taylor, 2007] 
 novelty detection and generation [Baars, 1997; Mudrik et al., 2012] 
 self-awareness/modeling [Perlis, 1997; Holland, 2007; Chella, 2008; Takeno, 2013] 
 source of intrinsic motivation [DeLancey, 1996; Sanz et al., 2012] 
 evoking/informing volitional actions [Earl, 2014; Pierson, Trout, 2017] 
 attention mechanisms, control [Taylor, 2007; Haikonen, 2019] 

                                                             
2 A neural/computational correlate of consciousness could be something caused by consciousness, something 

that causes consciousness, or neither (for example, there might be a separate underlying cause of both 
consciousness and the correlate). 
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The large number of these past hypotheses is remarkable, but is consistent with the 
sizable number of theories about the nature of consciousness [Katz, 2013]. This is 
ameliorated somewhat by the fact that these hypotheses are generally not mutually 
exclusive or independent (e.g., symbol grounding and inference [Brody et al., 2016]), and 
it could be that consciousness has multiple functions. Our point here is that, at the present 
time, there is no clear consensus on an identifiable function of consciousness that 
provides an adaptive advantage. For example, several of the potential functions of 
consciousness listed above have been criticized on various grounds due to inconsistency 
with empirical data or theoretical considerations [Manzotti, 2012; Mudrick et al., 2012; 
Rosenthal, 2008; Seth, 2009].  

 Memory, Learning and Consciousness 3.

Contemporary AI recognizes that intelligent agents can be composed of multiple 
functional components, some of which deal with the processing of information  (reflexive 
condition-action rules, symbolic reasoning, executive decision making, taking actions, 
etc.) and some of which deal with the memory and learning of information [Russell and 
Norvig, 2010]. From this AI perspective, it is striking that the diverse list of previously 
proposed functions of consciousness in the preceding section generally have one thing in 
common:  They largely deal with some facet of the processing of information (its 
integration, manipulation, use for inference or decision making, etc.). In contrast, here we 
propose an alternative, complementary possibility that the adaptive function of human 
consciousness is to be found in its contribution to memory and learning rather than to the 
subsequent processing of that information. Specifically, we hypothesize that the 
fundamental function of consciousness and its contribution to intelligence will most likely 
be found in its role in supporting short-term working memory and its associated learning 
and control mechanisms.  

Psychologists distinguish different memory systems in explaining various 
neuroscientific and behavioral data [Squire and Dede, 2015]. Human memory at the top 
level is typically characterized in terms of long-term memory versus short-term memory. 
Long-term memory is often sub-divided into distinguishable types, such as semantic, 
episodic, and procedural memory, and we do not consider these further. Short-term 
memory is also sub-divided into types, one of which is working memory and that serves 
as our focus here. Working memory stores recently experienced information, typically for 
a period of seconds to minutes, that is being used in problem solving or other cognitive 
activities. In contrast to long-term memory with its enormous storage capacity, short-term 
memory is characterized by a very limited capacity, and is able to retain just a few 
independent items at any one time [Cowan et al., 2005]. 

Why focus on working memory as a function of consciousness? One reason is that 
working memory is widely recognized in philosophy and psychology to involve 
conscious, reportable cognitive activity [Baars and Franklin, 2003; Baddeley, 2012; 
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Carruthers, 2015; Persuh et al., 2018]. Our view of this relationship is that what 
psychologists refer to as “working memory” is mostly the same as what some 
philosophers would characterize as the state of a conscious mind. For information to be 
consciously accessible and reportable essentially requires that information to be actively 
represented in working memory. Whether there are also things that are in working 
memory that are not conscious, or there are things that are conscious but not in working 
memory, are open questions at present. 

Another reason for focusing on working memory is that it is a fundamental 
underlying element of cognition that provides a unifying perspective for the multiple 
possible functions of consciousness that have been proposed in the past (listed in the 
previous Section). For example, the neurobiological mechanisms that underlie working 
memory appear to be fairly widespread throughout cerebral cortex [Lara and Wallis, 
2015], consistent with the hypothesis that consciousness supports global access to and 
integration of information. The representation of symbolic information in working 
memory supports the importance of symbol processing and grounding in human 
consciousness. The top-down, goal-directed control of working memory that 
distinguishes it from low-level sensorimotor processes is consistent with past proposals 
that high-level cognition, executive functions, and attention mechanisms are all key 
aspects of conscious mind. In other words, what makes working memory “working” is 
that its contents are actively manipulated by cognitive processes: it is at the intersection 
of algorithms and data structures. Working memory may turn out to be a common 
underlying factor in all of these previously proposed functions of consciousness since it is 
such a foundational aspect of cognition. 

 Working Memory and Computational Correlates of Consciousness 4.

Can computational models of working memory suggest any specific computational 
correlates of consciousness that might ultimately be used to enhance AI systems? We 
have recently been examining this issue. Our initial work focused on application-specific 
models based on standard psychological tests of working memory such as the n-back task 
[Sylvester et al., 2013] and on solving problems involving card matching tasks [Sylvester 
& Reggia, 2016]. Recently we greatly generalized our computational models of working 
memory in the context of developing a neural virtual machine (NVM) that is capable of 
universal computation [Katz et al., 2019].3 The NVM is a purely neurocomputational, 
application-independent software environment that allows one to instantiate cognitive-
level algorithms in neural networks. Such algorithms are currently readily implemented 
                                                             
3 The NVM is only capable of universal computation in the limit as the number of neurons goes to infinity. 

While none of our neurocomputational working memory models described here are intended to capture 
biologically-realistic neural circuitry, they all incorporate separate modules for working memory proper 
(stores ongoing problem solving information; believed to be widely distributed across human cerebral 
cortex) and other modules for representing executive-level control of working memory functionality (store 
action sequences; most closely associated with human prefrontal cortex) [Lara and Wallis, 2015]. 



6       Authors’ Names 

via mainstream symbolic AI methods, but much less so via existing programmable neural 
networks. Importantly, the NVM’s modeled knowledge and cognitive processes are 
acquired through a learning process and represented by distributed patterns of activity 
over an underlying neural substrate. From a user’s perspective, to model a cognitive 
process using the NVM one writes an assembly language level program for a virtual 
machine that is emulated by the NVM (see Figure 1a). However, in actuality, the NVM 
converts that given program into a region-and-pathway system of recurrently-connected 
neural networks that perform the indicated computations on distributed activity patterns 
representing symbols, based on the network’s dynamics and synaptic weight changes. In 
short, the NVM can be viewed as a step towards bridging the computational explanatory 
gap: unlike hybrid systems it is purely neurocomputational. A detailed description of the 
NVM with a link to an open-source implementation is available [Katz et al., 2019]. 

a.    b. 

 
 
 
 

Figure 1: a. The virtual machine supported by the NVM. b. A toy example of an underlying recurrent neural 
network supported by the NVM that uses gating connections to modulate activation and learning in other 
pathways. Each block arrow represents many individual connections (not shown) that are being gated. 
 

How can we use these models of working memory to develop a better understanding 
of consciousness? Much past work in AC considering computational correlates has 
started from the premise that some underlying mechanism is a key aspect of 
consciousness (global processing, attention, self-modeling, etc.) and then explored the 
implications of that premise via computational modeling. In contrast, our recent work has 
taken the opposite approach: Start with a model of working memory and ask what core, 
distinguishing neurocomputational mechanisms were needed to implement that model.  
The idea is that such distinguishing mechanisms suggest new candidates for 
computational correlates of consciousness, based on the fact that working memory is 
tightly associated with conscious mind. Such correlates might be useful in AI systems. 
This approach has led us to suggest three new correlates, all of which are incorporated 
into the NVM’s implementation of working memory, as follows. 

The first potential computational correlate of consciousness that we identified is 
learned itinerant attractor sequences, i.e., sequences of learned attractor states of the 
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underlying recurrent neural network’s activity, where each sequence element represents a 
cognitive state of working memory. Each learned attractor state corresponds to an action 
or “instruction” that is currently active in working memory as a task is being performed. 
In contrast to previous proposals that individual attractor states or activity trajectories in 
general may be computational correlates of consciousness, we specifically mean that (i) 
the trajectory is composed of a sequence of attractors, (ii) this sequence contributes to 
control of agent behavior and working memory processes, (iii) it involves learned states 
rather than pre-wired genetically-determined circuitry, and (iv) it involves cognitive 
states used in high-level problem solving and reasoning. Such sequences can represent 
not only arbitrary procedures, but also arbitrary sequences of items in general such as list 
data structures. This computational correlate supports past suggestions that the functions 
of consciousness include symbol processing (each attractor can be viewed as representing 
a symbol in working memory) and error detection/correction (the transitions between 
working memory states need only be approximate as the system’s dynamics will correct 
for errors by converging on the nearest attractor state). 

 The second possible computational correlate of consciousness suggested by our 
modeling work is the top-down gating of working memory by which high-level cognitive 
processes control what is stored, manipulated and learned by working memory. For 
example, as illustrated in Figure 1b, the underlying neural networks that the NVM uses to 
implement given algorithms make heavy use of multiplicative gating to turn on/off the 
flow of information through a network’s pathways and to enable/disable learning on 
network connections. Each action/instruction in a procedural attractor sequence is 
performed by using multiple coordinated gating operations. We postulate that these 
gating operations, driven by the sequences of attractor states in the executive component 
of our working memory models, represent consciously reportable cognitive activities in 
working memory, and for that reason we take them to be possible computational 
correlates of consciousness that may contribute to a sense of agency and mental 
causation. This computational correlate supports past suggestions that the functions of 
consciousness include top-down executive processes, attention mechanisms, and the 
evoking/controlling of actions. 

Finally, the third computational correlate is very fast weight changes that provide for 
immediate, simultaneous one-step learning and unlearning in working memory. Human 
short-term working memory is remarkable in its ability to reliably learn new information 
immediately from just a single presentation of that information. For example, if one is 
verbally told  “add 16 to 17”, the numbers involved are immediately retained in working 
memory as the computation is done – there is generally no need for a person to hear the 
problem stated several times to learn what the problem is. Such learning is very different 
from what is done in many neural network learning systems, including those based on 
gradient descent methods that require numerous iterative presentations of material to be 
learned. Our recent modeling work with the NVM implements very fast 
additions/deletions to working memory contents via synaptic weight changes that involve 
simultaneously using (1) one-step Hebbian learning to retain new information in working 
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memory, and (2) one-step anti-Hebbian unlearning that actively removes old information 
that is no longer needed in working memory [Katz et al., 2019]. This fast store-erase 
Hebbian learning mechanism introduced in the NVM is responsible for its ability to 
control dynamically what is retained and what is removed from working memory during 
problem solving. Further, it has proven effective for both representing information about 
the state of a problem being solved (temporally symmetric weight changes) and 
information about the behavioral action sequences that control problem-solving 
(temporally asymmetric weight changes). This third computational correlate suggests, for 
the first time to our knowledge, that the very fast learning/unlearning of information in 
working memory may be an important function of consciousness. 

 ACI = AI + AC 5.

We will refer to AI systems that incorporate concepts from AC as artificial 
conscious intelligence (ACI).4  Put simply, ACI = AI + AC. Having considered above 
what the function(s) of consciousness might be, we now return to our central question: 
How might work done in AC enhance the functionality of future AI systems? There are at 
least two distinct answers to this question about ACI depending on whether one considers 
simulated or instantiated machine consciousness.5 By simulated consciousness, we mean 
simulations that attempt to capture some aspect of consciousness or its neural or 
behavioral correlates in a computational model. Most work in AC falls in this category 
and thus involves nothing truly mysterious. Just as a computational model of any real-
world phenomenon does not imply that the model is actually that phenomenon (e.g., 
simulating a rain storm does not make a computer wet [Searle, 1980]), simulating aspects 
of consciousness does not imply that the machine involved actually becomes conscious. 
In contrast, by instantiated consciousness we mean efforts to produce an artificial system 
that actually is phenomenally conscious, i.e., that experiences qualia and has subjective 
experiences and thus represents “synthetic phenomenology” [Chrisley, 2009]. Currently 
no existing work in AC has produced a generally-accepted demonstration of instantiated 
machine consciousness, or even compelling evidence that instantiated machine 
consciousness is possible. Conversely there is currently no compelling theoretical or 
experimental proof that this will not be possible in the future. With this distinction 
between simulated and instantiated machine consciousness in hand, we can now return to 
the question about how work in AC may contribute to improving future AI systems.  

A first answer to this question is that work on simulated consciousness is directly 
and immediately relevant to enhancing existing practical AI technology. For example, 
many existing AI systems are very brittle in the context of novel situations, including 

                                                             
4 This is analogous to distinguishing artificial general intelligence (AGI) systems that study general purpose AI 

from the more common practice of creating application-specific AI systems. 
5 Our simulated consciousness corresponds to MC1 – MC3 and our instantiated consciousness to MC4 in the 

taxonomy of machine consciousness given in [Gamez, 2018]. 
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both AI systems based on traditional symbol processing methods and those based on 
contemporary deep learning methods (e.g., adversarial images for deep convolution 
networks). This is especially a problem with autonomous physical systems where a lack 
of trustworthiness, both in general but especially in the face of unanticipated novel 
situations, can be dangerous, and it has significantly limited the practical use of AI in 
such systems. There is substantial evidence that people, when confronted with novel 
situations, evoke conscious reasoning and learning to deal with these situations [Mudrik 
et al., 2012]. This is true regardless of whether the situation is unexpected (e.g., a person 
driving a familiar highway route suddenly sees two cars collide up ahead) or simply a 
pre-planned novel experience (e.g., learning to ride a bike or play a game). Current AI 
systems also generally do not reflect on their internal models to reason about the causes 
of failure or difficulties. All of this suggests that AC studies relating consciousness to 
functions such as executive decision making, novelty detection, attention mechanisms, 
working memory, metacognition, motivations, and informing volitional activities appear 
promising avenues to explore in creating more effective ACI systems.  

Another example of how AC work on simulated consciousness may contribute to 
practical AI systems relates to the latter’s interactions with people. Current human-
computer interactions involving AI systems are quite limited. For example, there is no 
existing AI system that can consistently pass the Turing Test. Conscious self-monitoring 
would be expected to improve human-robot interactions because of the intimate 
relationship between self-awareness and the awareness of roles and perspectives [Trafton 
et al., 2005]. In other words, understanding of roles in various situations is valuable in 
anticipating the behavior of others, and arguably this understanding relates to self-
consciousness. These considerations suggest that simulated AC studies relating 
consciousness to functions such as working memory with its rapid one-step learning, self-
awareness, self-modeling, source of motivations, and symbol grounding would be 
promising avenues to explore in developing ACI. 

A second answer to the question about how work in AC may contribute to creating 
future AI systems relates to instantiated consciousness. While there is no generally-
accepted proof that instantiated machine conscious can or cannot be created, we speculate 
here about what it would mean for AI if a phenomenally conscious machine is someday 
possible. From a technological perspective, an ACI system based on instantiated 
consciousness would be anticipated to provide many of the same benefits of robustness, 
improved human-computer interactions, etc. as would an ACI system involving simulated 
consciousness. Further, Haikonen [2019] has compellingly argued that for an AI system 
to truly understand the outside world, its symbols must be grounded in qualia because 
qualia are self-explanatory forms of sensory information. Perhaps even more significant 
would be how an instantiated machine consciousness would relate to the scientific study 
of consciousness rather than technology. If we can successfully create and confirm an 
instantiated ACI, something that would effectively be the first artificial mind, we will 
have made a fundamental advance in consciousness studies in general. Such an ACI 
would permit the study of consciousness at a much deeper level than is currently 
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possible. For example, it would be expected to shed light not only on the core underlying 
mechanisms of consciousness, but also on improved criteria for rationally determining 
the presence/absence of consciousness in machines and animals, and the possibility of 
mind uploading. It might also lead to major advances in our understanding of psychiatric 
and neurocognitive disorders, such as schizophrenia, amnesia, and dementia. 

 Discussion 6.

In this paper we have asked the question of how concepts developed via 
computational models in AC might contribute to advancing the creation of more effective 
intelligent agents, or ACI, than can currently be supported by contemporary AI 
technology. We approached this question by reviewing past hypotheses about what the 
functions of consciousness are, most of which focus on the processing of information. In 
contrast, we hypothesized that short-term working memory and the associated very fast 
learning/unlearning of working memory’s contents may also be considered as a function 
of consciousness, and one that complements/unifies previously suggested functions. In 
this context we reached three conclusions from our analysis.  

First, work on simulated consciousness is immediately relevant to advancing the 
technology of AI, most prominently in terms of improving robustness and human-
computer interactions. Particularly promising avenues for future ACI research can 
literally be read off from the list of previously hypothesized functions of consciousness in 
Section 2: detecting and managing novelty, symbol grounding and its impact on AI 
effectiveness, top-down executive control of behavior, the role of a self-model and 
motivations in machine intelligence, etc. 

Second, the development of instantiated machine consciousness (or MC4 [Gamez, 
2018]), when combined with AI methodologies, would be a major technological and 
scientific advance that enables communicating with and studying in depth a conscious 
mind in ways that are currently not possible. Particularly exciting is the possibility of 
gaining insights into neurocognitive disorders. The critical direction for future ACI 
research in this case is how to create an artifact that experiences qualia. At the current 
time there is no consensus on how this might be done, or even if it is possible. 

Third, short-term working memory and especially the rapid learning/unlearning of its 
contents have been a largely overlooked possible function of consciousness. For the 
future, our own research is examining whether or not the three computational correlates 
of consciousness that have been suggested by AC models of working memory will be 
sufficient to support compositional working memory in general.6 To examine this issue, 
we are currently applying the NVM to challenging imitation learning tasks involving 

                                                             
6 By “compositional” working memory, we mean that working memory supports computational mechanisms 

that are sufficiently powerful to dynamically build high-level structured solutions (tree-like data structures, 
cause-effect networks, etc.) during problem solving, decision making, planning, and learning. 
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cause-effect reasoning where symbolic AI methods, but not neurocomputational methods, 
have been shown to work effectively [Katz et al., 2018]. 
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