
Compositional Memory in Attractor Neural Networks with One-Step Learning

Gregory P. Davisa,∗, Garrett E. Katzb, Rodolphe J. Gentilic, James A. Reggiaa

aDepartment of Computer Science, University of Maryland, College Park, MD, USA
bDepartment of Elec. Engr. and Comp. Sci., Syracuse University, Syracuse, NY, USA

cDepartment of Kinesiology, University of Maryland, College Park, MD, USA

Abstract

Compositionality refers to the ability of an intelligent system to construct models out of reusable parts. This
is critical for the productivity and generalization of human reasoning, and is considered a necessary ingredient for
human-level artificial intelligence. While traditional symbolic methods have proven effective for modeling compo-
sitionality, artificial neural networks struggle to learn systematic rules for encoding generalizable structured models.
We suggest that this is due in part to short-term memory that is based on persistent maintenance of activity patterns
without fast weight changes. We present a recurrent neural network that encodes structured representations as systems
of contextually-gated dynamical attractors called attractor graphs. This network implements a functionally composi-
tional working memory that is manipulated using top-down gating and fast local learning. We evaluate this approach
with empirical experiments on storage and retrieval of graph-based data structures, as well as an automated hierarchi-
cal planning task. Our results demonstrate that compositional structures can be stored in and retrieved from neural
working memory without persistent maintenance of multiple activity patterns. Further, memory capacity is improved
by the use of a fast store-erase learning rule that permits controlled erasure and mutation of previously learned asso-
ciations. We conclude that the combination of top-down gating and fast associative learning provides recurrent neural
networks with a robust functional mechanism for compositional working memory.

Keywords: Compositionality, Working memory, Itinerant attractor dynamics, Multiplicative gating, One-step
learning, Programmable neural networks

1

1. Introduction2

Compositionality refers to the ability of an intelligent system to construct representations out of reusable parts.3

The principle of compositionality states that “the meaning of a complex expression is determined by its structure4

and the meanings of its constituents” (Fodor and Pylyshyn, 1988; Nefdt, 2020; Szabó, 2012). Despite widespread5

debate over the precise definition and interpretation of compositionality, there is substantial evidence that structured6

representation plays a critical role in human reasoning. Compositional representations are useful because they can be7

systematically generalized and reorganized to facilitate rapid comprehension in novel circumstances. For example, a8

person who knows how to prepare tea can learn to prepare coffee with minimal difficulty by decomposing the process9

and recognizing familiar behaviors (e.g., boiling water). Compositional reasoning is considered crucial in domains as10

diverse as language comprehension (Baayen, 1994; Pelletier, 1994; Aizawa, 2003), behavioral planning and imitation11

(Baayen, 1994; Reverberi et al., 2012; Botvinick, 2008), visual perception (Riesenhuber and Poggio, 1999; Witkin12

and Tenenbaum, 1983; Bienenstock et al., 1997), and concept learning (Kamp and Partee, 1995; Barsalou, 1993;13

Piantadosi et al., 2016).14

∗Corresponding author.
Email addresses: grpdavis@umd.edu (Gregory P. Davis), gkatz01@syr.edu (Garrett E. Katz), rodolphe@umd.edu (Rodolphe J.

Gentili), reggia@umd.edu (James A. Reggia)

©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Published journal article available at https://doi.org/10.1016/j.neunet.2021.01.031

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neunet.2021.01.031

Compositionality is readily achieved in cognitive systems capable of symbolic manipulation, but is much more15

challenging for sub-symbolic systems such as artificial neural networks. This has fueled a long-standing controversy16

over whether neural networks can represent compositional structures (Fodor and Pylyshyn, 1988; Marcus, 2018; Lake17

et al., 2017). Recent advances in neural machine translation and sequence-to-sequence modeling have demonstrated18

remarkable progress toward compositional learning in neural systems. This is due to several innovations that improve19

short term memory in neural networks, including recurrent processing units (Hochreiter and Schmidhuber, 1997;20

Chung et al., 2014), attention mechanisms (Vaswani et al., 2017; Hupkes et al., 2018), and external memory resources21

(Graves et al., 2014; Sukhbaatar et al., 2015; Pham et al., 2018). These techniques are often combined because22

they provide complementary benefits, allowing neural networks to maintain activation states over time and model23

dependencies between distant representations (Bahdanau et al., 2014; Lake, 2019).24

Despite this progress, and although there are disagreements about how compositionality should be evaluated in25

neural models (Hupkes et al., 2020; Nefdt, 2020), empirical studies demonstrate that state-of-the-art deep neural26

networks struggle to learn systematic rules that permit generalization beyond training data (Lake and Baroni, 2018;27

Loula et al., 2018; Hupkes et al., 2020). This is in stark contrast to the ease with which such rules can be implemented28

in symbolic programs. In our view, this discrepancy is due to a lack of compositional working memory in neural29

networks and an inability to encode structured representations. Working memory is a form of short term memory30

containing information that is actively manipulated by cognitive processes (Baars, 2007; Oberauer, 2009). Although31

its capacity is limited, working memory is capable of storing structured or “chunked” representations that provide32

access to a broad range of information (Cowan, 2010; Campitelli et al., 2007).33

One way to provide neural networks with compositional working memory is to integrate them into hybrid sys-34

tems with non-neural symbolic algorithms that manipulate compositional data structures (Besold et al., 2015; Marcus,35

2020; Kipf et al., 2019; Burke et al., 2019; Andreas et al., 2016). For example, some neural-guided search algorithms36

maintain compositional data structures in non-neural symbolic memory and use neural processing to inform their37

construction (Bunel et al., 2018; Silver et al., 2016; Kalyan et al., 2018). From an engineering standpoint, this is a38

reasonable and effective approach, but it does not address how compositional structures can be encoded in purely neu-39

ral models. An alternative approach is to develop purely neural computers with general-purpose memory arrays that40

incorporate key aspects of symbolic computation (Graves et al., 2016, 2014). While these systems have an impressive41

ability to learn algorithmic procedures from data, they require unconstrained access to large sets of activation patterns42

maintained in external memory, which is considered highly implausible from a biological perspective.43

Many purely neural models of working memory employ spatially localized representations, such as localized44

attractors of Dynamic Field Theory (Sandamirskaya et al., 2013; Erlhagen and Schöner, 2002), and minimally over-45

lapping cell assemblies in neural blackboard architectures (Van der Velde and Kamps, 2006). Localist representations46

introduce an undesirable correspondence between memory and architecture that limits representational flexibility, and47

often requires task-specific circuitry. In contrast, vector-space approaches employ fully distributed representations that48

can be composed using superposition and binding operations (Gayler, 2003; Plate, 1995). For example, the Seman-49

tic Pointer Architecture uses symbol-like vector representations that can be recursively composed to store structured50

information (Blouw et al., 2016; Eliasmith et al., 2012). Notably, operations for composing semantic pointers can51

be learned using biologically-plausible learning rules in spiking neural networks (Stewart et al., 2011). However, a52

significant disadvantage to this approach is that the encodings of structured representations are semantically related to53

their constituent elements. This means that additions to a compositional data structure involve changes to the seman-54

tic pointer that encodes it, as well as any semantic pointers for super-structures that it is contained in. For example,55

adding a leaf node to a tree would require reconstruction of the semantic pointers for each ancestor of the new node.56

This makes semantic pointer encodings of data structures effectively immutable, as modifications involve constructing57

new encodings.58

Performance on working memory tasks is correlated with measures of general intelligence (Conway et al., 2003;59

Colom et al., 2004; Jaeggi et al., 2008), and working memory operations are considered to be consciously reportable60

(Baars and Franklin, 2003; Baddeley, 1993). For these reasons, biologically-plausible models of compositional work-61

ing memory may lead to significant advances in AI systems and contribute to a deeper understanding of consciousness62

and cognition (Reggia et al., 2020, 2019), including cognitive-motor control (Hauge et al., 2020, 2019). Substantial63

evidence indicates that activity-silent mechanisms such as rapid synaptic plasticity play a critical role in working64

memory (Manohar et al., 2019; Mongillo et al., 2008; Rose et al., 2016; Stokes, 2015; Barbosa et al., 2019). This65

suggests that persistent activity maintenance alone is not sufficient for modeling the complexities of human working66

2

memory, and may explain in part why compositional learning is difficult for artificial neural networks.67

Contemporary neural networks typically undergo a training phase during which weights are updated via iterative68

gradient descent and fixed during task performance. Recent exceptions to this demonstrate that fast associative learn-69

ing greatly improves short-term memory in neural networks because it permits storage without active maintenance70

(Ba et al., 2016; Danihelka et al., 2016; Miconi et al., 2018). Furthermore, models based entirely on fast associative71

learning and itinerant dynamical attractors can learn to perform complex working memory tasks (Sylvester and Reg-72

gia, 2016; Sylvester et al., 2013), and can simulate Turing machines without the need for consistent maintenance of73

memory activation (Katz et al., 2019). However, such models have focused on storage of individual memories and74

temporal sequences of memories. To our knowledge, fast associative learning has not yet been applied to explicit75

encoding of hierarchical compositional structures (e.g., trees) in working memory as we do here.76

In this paper, we introduce a neural model of compositional memory based on context-dependent itinerant attrac-77

tors in recurrent neural networks. We refer to such models as attractor graph networks or AGNs. Attractor graphs78

are composed of fixed-point dynamical attractors (vertices) and transitions between attractors (edges) that are learned79

using a combination of multiplicative gating and one-step associative learning. The use of multiplicative gating is80

motivated by evidence that it contributes to functional grouping in neural populations (Baan et al., 2019; Vecoven81

et al., 2020; Masse et al., 2018; Chabuk and Reggia, 2013; Rikhye et al., 2018). In an AGN, contextual gating signals82

select learned associations to govern the dynamics of the network over time, directing a traversal through the attractor83

graph that is analogous to the operation of a finite state machine. We show how compositional data structures such84

as associative arrays (i.e., dictionaries or maps), linked lists, and trees can be encoded in AGNs and retrieved by pro-85

grammatic procedures that control sequential iteration through attractor graphs. In contrast to semantic pointers and86

other vector space representations, structured representations in AGNs are made up of learned associations between87

activity states, and can therefore be freely modified by changing synaptic weights without changing activity states.88

AGNs are inspired by neurobiological studies of working memory and are based on several biologically-inspired89

principles. Representations in attractor graphs are composed of distributed activation patterns (dynamical attractors)90

that are supported by learned connection weights, and can be reactivated as needed without persistent activity mainte-91

nance. This means that the capacity of working memory is not directly limited by network architecture, and is instead92

determined by the organization of both the underlying attractor model and the control signals used for memory re-93

trieval. We propose that the phenomenon of “chunking” is supported by compositional structuring, which organizes94

the contents of working memory according to systematic procedures for top-down control.95

2. Methods96

In this section we describe our method for representing compositional data structures as systems of dynamical97

attractors in recurrent neural networks. We illustrate this with a small multi-region model shown in Figure 1. The98

core memory region (mem) is a recurrent neural network with attractor states that represent general-purpose elements99

in short-term working memory. We refer to these elements as memory states. Memory states are linked together with100

context-dependent transitions that are controlled by inputs from the context region (ctx). Patterns of activity in the101

lexicon region (lex) represent symbolic tokens that can be “stored” in memory states and used as names for variable102

pointers to memory states.103

Compositional data structures are encoded in the mem region as systems of itinerant dynamical attractors called104

attractor graphs. Vertices in these graphs are fixed-point dynamical attractors, and edges are context-dependent105

transitions between attractor states. We refer to recurrent networks with attractor graph dynamics as attractor graph106

networks, or AGNs. Section 2.1 describes the structure and dynamics of AGNs in detail. Section 2.2 shows how107

compositional data structures can be represented as attractor graphs, and describes the interactions between the mem,108

ctx, and lex regions of the model. Section 2.3 shows how the model shown in Figure 1 can be embedded into a larger109

programmable neural network that constructs and manipulates data structures according to learned programmatic110

procedures.111

2.1. Attractor Graph Networks112

Attractor graphs are systems of itinerant dynamical attractors with context-dependent transitions. Attractor itiner-113

ancy refers to a temporal process in which a dynamical system undergoes transitions through a sequence of attractor114

3

mem ctx

autohetero

lex

Figure 1: Neural model with compositional memory. Each box is a neural region and solid lines indicate connectivity between regions. Each
connection is controlled by a binary gate (not shown) that determines whether it contributes to neural dynamics during each timestep. The memory
region (mem, bottom left) is an attractor graph network with dense hetero-associative and auto-associative connectivity (bold looped arrows).
Patterns of activity in mem represent general-purpose memory states that “store” symbolic tokens represented by distributed activity patterns in the
lexicon region (lex, top left). Associations between memory states and symbolic tokens are learned in the pathway from mem to lex. Transitions
between attractors in mem are contextualized by activity in the context region (ctx, bottom right) via a pathway from ctx to mem. The open circle at
the end of this pathway indicates that it provides contextual gating inputs to mem. Activity patterns in ctx may be derived from mem or lex patterns,
and serve as labels for relations between memory states that are used to construct compositional data structures. Finally, lex patterns can represent
variable names that point to memory states via the pathway from lex to mem.

states, settling momentarily at each state before rapidly transitioning to its successor (Miller, 2016; Hoshino et al.,115

1997). In an AGN, each attractor state (vertex of graph) may have multiple outgoing transitions (edges of graph) with116

unique successors, and activity evolves according to contextual inputs (edge labels) that select which learned transi-117

tion governs dynamics at each timestep. In the model shown in Figure 1, the mem region is an AGN that receives118

contextual inputs from the ctx region.119

The branched organization of sequential attractors in AGNs makes it possible to represent a broad range of graph-120

based data structures, including compositional data structures such as linked lists, associative arrays (dictionaries,121

maps), and trees. Because attractor transitions depend on contextual inputs, data structures represented in the net-122

work’s memory can be accessed via top-down control of contextual inputs over time (as shown in Section 2.2.1). This123

makes AGNs effective general-purpose models of compositional working memory that may be integrated into larger124

neural systems, such as the one shown in Figure 5.125

Let r denote a particular region in a neural architecture, such as mem or ctx in Figure 1. A region r is used as126

an AGN by equipping it with two types of recurrent connectivity that play distinct roles in attractor itinerancy. A127

dense auto-associative weight matrix Ar encodes patterns of activation as fixed-point attractor states that represent128

retrievable memories, as in a Hopfield network. Each learned attractor resides in a unique orthant of activation space.129

Transitions between attractor states are encoded in a dense hetero-associative weight matrix Hr. Errors introduced by130

transition dynamics are corrected by auto-associative dynamics, which bring activity into the target orthant. Errors in131

attractor convergence are corrected by self-connectivity that saturates activation within the current orthant. Thus, as132

long as the transition brings activity into the correct orthant, the target pattern can be perfectly recalled.133

The dynamics of the model are controlled by a set of binary gates that determine which connections are active134

at each timestep. For example, when gate gA
r = 1, activity evolves according to the auto-associative matrix Ar,135

which causes convergence to the nearest attractor state. A temporal sequence of connection gate values implements136

the multi-step procedure of attractor itinerancy described above (i.e., hetero-associative transition, auto-associative137

convergence, saturation). These gate values may be provided by a dedicated region of binary threshold neurons, such138

as a controller in a programmable neural network (Sylvester and Reggia, 2016; Katz et al., 2019), as discussed in139

Section 2.3.140

In addition to recurrent connectivity, AGNs receive two types of extrinsic inputs: additive and multiplicative.141

Additive inputs Ir contribute to the summation of synaptic inputs and can be used to initialize the activity state of142

the network. In contrast, multiplicative inputs c are binary signals that enable or disable specific neurons by gating143

4

cumulative synaptic activity. These signals enable functional branching in attractor transitions by modulating hetero-144

associative dynamics, as described below, and are distinct from connection gates (e.g., gA
r).145

The following equations describe the dynamics of an AGN region such as mem over time. In Section 2.2, we146

return to the neural circuit shown in Figure 1 to explain how these dynamics contribute to compositional working147

memory. Here we use subscript r to refer to a generic region. First, synaptic input is aggregated from gated recurrent148

connectivity and external inputs:149

sr(t) = gS
r (t) ωr vr(t)︸ ︷︷ ︸

saturation

+ gA
r (t) Ar vr(t)︸ ︷︷ ︸

convergence

+ gH
r (t) Hr vr(t)︸ ︷︷ ︸

transition

+ Ir(t) (1)

where150

• sr(t) is a vector of cumulative synaptic input to region r at time t.151

• vr(t) is a vector of neural activity of region r at time t.152

• ωr is a scalar self-weight that causes saturation and maintenance of neural activity in region r when gS
r (t) = 1.153

• Ar is an auto-associative weight matrix for region r that causes convergence to a nearby fixed-point attractor154

when gA
r (t) = 1.155

• Hr is a hetero-associative weight matrix for region r that causes a transition between attractor states when156

gH
r (t) = 1.157

• Ir(t) is a vector of external (non-recurrent) synaptic input to region r at time t. This input may be provided by158

other neural regions, as described in Section 2.2, or from outside the model for initialization purposes, as shown159

in Section 2.1.1.160

Next, multiplicative activation is determined based on gated contextual input:161

xr(t) =

cr(t), if gC
r (t) = 1

1, otherwise
(2)

where162

• cr(t) is a vector containing the net multiplicative input to region r at time t. This input may be provided by other163

neural regions such as ctx in Figure 1.164

• 1 is a vector of ones of the same size as cr(t).165

• xr(t) is a vector of active multiplicative input to region r at time t. When gC
r (t) is enabled, xr(t) = cr(t).166

Otherwise, xr(t) defaults to 1, and synaptic input sr(t) passes into the activation function regardless of cr(t).167

Finally, neural activation is computed for the next timestep by combining synaptic and multiplicative input:168

vr(t + 1) = σr

(
xr(t) � sr(t)

)
(3)

where169

• σr is a sign-preserving neural activation function in region r (i.e., sgn(σr(x)) = sgn(x)). For the experiments170

reported in Section 3, we use the hyperbolic tangent activation function for the mem AGN shown in Figure 1.171

• � is the Hadamard (element-wise) product.172

5

An attractor transition is carried out in four stages, starting with an activity pattern that may be initialized by Ir(t),173

or by a previous transition. 1) The transition begins with application of a context pattern c, which disables a subset of174

neurons and “masks” the source activation pattern. This is done by enabling saturation and context gates (gC
r (t) and175

gS
r (t)) for one timestep. 2) Next, while context gate gC

r (t) remains enabled, hetero-associative gate gH
r (t) is enabled176

for one timestep, and activity transitions to a new pattern of non-zero activation in the participating neurons. 3)177

Once the initial transition is complete, gA
r (t) is enabled, causing auto-associative dynamics across the entire network.178

Over several timesteps, activity converges to the nearest fixed-point attractor. Note that because context gate gC
r (t)179

is disabled, all neurons participate in auto-associative dynamics. 4) Finally, saturation gate gS
r (t) is enabled, causing180

activity to saturate within the current orthant of activity space over several timesteps. This makes up for any errors181

in convergence, and is successful as long as auto-associative dynamics resulted in an activity pattern in the correct182

orthant. Note that saturation dynamics are only necessary for continuous models (e.g., when σr is the hyperbolic183

tangent), and can be omitted in models with a threshold activation function (e.g., the sign/signum function). The184

connection gate values for each stage of an attractor transition are shown in Table 1. Stages 1 and 2 take one timestep185

each, while Stages 3 and 4 each occur over several timesteps.186

Table 1: Connection gate values for each stage of an AGN attractor transition

Stage gS
r gC

r gH
r gA

r
1. Mask 1 1
2. Transition 1 1
3. Converge 1
4. Saturate 1

Each attractor state learned by the AGN may have multiple hetero-associative transitions to several other attractor187

states. Each of the transitions from a given state must be learned in the context of a unique multiplicative input pattern188

cr(t). During attractor transition dynamics, the choice of cr(t) determines which learned association will govern the189

transition. This process is depicted in Figure 2, which shows the activation space for an AGN with three neurons.190

Trajectories are shown for two transitions from an attractor state m(0) using unique context patterns c(1) and c(2).191

Learned attractor states are patterns in {−ρr,+ρr}
Nr , where Nr is the number of neurons in the AGN, and ρr is a192

parameter that determines the magnitude of learned activity states. These activation patterns are randomly generated193

using a Bernoulli process with equal probabilities (i.e., a fair coin toss). For models using a threshold activation194

function, activation patterns are discrete and bipolar, and ρr = 1. When the hyperbolic tangent activation function is195

used, 0 << ρr < 1 (typically 0.9999) because σ−1
r (1) = ∞. Once ρr is set, the value of the saturation self-weight ωr is196

determined according to the following relation:197

ρr = σr(ωrρr)

This ensures that ±ρr is a stable fixed-point when saturation dynamics are enabled (gS
r (t) = 1).198

Multiplicative gating patterns cr(t) that contextualize transitions are in {0, 1}N , where N is the number of neurons199

in the network. The density of these patterns is an important parameter that determines how many neurons participate200

in each transition. This parameter is referred to as λ, the probability used in the Bernoulli process that generates201

context patterns.202

The auto-associative weight matrix for a region r (Ar) is learned using traditional Hebbian learning, starting with203

an initial matrix with zero entries, and updating the weights for each learned pattern:204

∆Ar =
1

ρ2
r Nr

σ−1
r (v)v> (4)

where v is the pattern to be learned, σr is the neural activation function, ρr is the stable activation level of learned205

attractor patterns, and Nr is the number of neurons in the region. When the sign/signum activation function is used206

(σr = sgn(x)), its inverse is defined as:207

6

m(0)

m(1)

m(2)m(0)
⊙c(1)

m(0)
⊙c(2)

c(1)

c(2)

Figure 2: Visual depiction of context-dependent attractor transitions in the activation space of an AGN with three neurons. Each axis represents
the activation level of one neuron (from -1 to +1). Two transitions from state m(0) (left side) are shown, each with a distinct context pattern (c(1)

or c(2)). Each context pattern is a binary vector that selects subsets of neurons to participate in hetero-associative dynamics, and corresponds to a
subspace in activation space (shaded planes labeled c(1) and c(2)). Transitions are executed over several steps. 1) First, a context pattern is used
to “mask” the source activation pattern, disabling a subset of neurons and collapsing activity into the context-specific subspace (arrows leaving
m(0) to m(0) � c(1) or m(0) � c(2), left side). 2) Next, while the context masking remains active, hetero-associative dynamics cause activation to
transition into a new orthant of the subspace (center arrows within shaded planes). 3) Then, the context masking is disabled, and auto-associative
dynamics cause convergence to the nearest fixed-point attractor state over several timesteps (curved arrows, right side). 4) To correct any errors
in convergence, saturation dynamics push activity to the corner of the current orthant of activation space over several timesteps (straight arrows to
m(1) and m(2), right side).

sgn−1(x) =

+1, if x > 0
−1, if x < 0
0, if x = 0

The hetero-associative weight matrix for a region r (Hr) is also learned using local one-step learning. However,208

because transitions are context-dependent, they must be learned with the corresponding contextual gating pattern.209

Each transition is learned with the following update rule, starting with a zero matrix:210

∆Hr =
1

λρ2
r Nr

σ−1
r (c � v)(c � u)> (5)

where u is the source pattern, v is the target pattern, c is the context pattern, λ is the density of contextual gating211

patterns, and σr, ρr, and Nr are as defined above. Note that the normalization factor λρ2
r N is approximately equivalent212

to the squared Euclidean length of c � u.213

Other associative learning rules can be used to learn Ar and Hr. To adapt a learning rule for gated hetero-associative214

learning, it must 1) only update weights connecting neurons that participate in the transition, as determined by con-215

textual gating pattern c, and 2) renormalize weight updates according to λ, the density of c. In this paper, we consider216

both traditional Hebbian learning (Equations 4 and 5) and the fast store-erase learning rule (Katz et al., 2019):217

∆Ar =
1

ρ2
r Nr

(
σ−1

r (v) −
(
Arv

))
v> (6)

7

∆Hr =
1

λρ2
r Nr

σ−1
r (c � v) − (c � Hr (c � u))︸ ︷︷ ︸

masked target delta

 (c � u>
)︸ ︷︷ ︸

source

(7)

where c is a binary contextual gating pattern, u is the initial source activity pattern, v is the final target activity pattern,218

and λ, σr, ρr, and Nr are as defined above. The additional context masking in the target delta of Equation 7 (just219

before Hr) ensures that weights with deactivated post-synaptic neurons are not updated.220

The store-erase learning rule contains an anti-Hebbian component that erases previously stored associations. This221

makes it particularly advantageous for neural working memory, as it can be used to overwrite relations between222

memories and modify learned data structures. However, this learning rule has not been evaluated with auto-associative223

memory, and has not been systematically compared with traditional Hebbian learning. This is addressed in Section 3,224

where we present empirical results that compare memory storage and retrieval in AGNs learned with either traditional225

Hebbian or store-erase learning.226

2.1.1. Contextual Gating Supports Functional Branching227

Contextual gating signals in AGNs make it possible to store multiple transitions from an attractor state using a228

single hetero-associative weight matrix. We refer to this branching of attractor transitions as functional branching229

because it depends on functional multiplicative inputs. This is in contrast to structural branching, in which each230

branch in the attractor sequence is stored in a distinct hetero-associative weight matrix. Structural branching imposes231

an undesirable correspondence between network architecture and memory because the number of outgoing transitions232

from any given attractor state (i.e., its out-degree or branching factor) is limited by the number of hetero-associative233

weight matrices. In contrast, functional branching requires only a single hetero-associative weight matrix, and does234

not impose constraints on the structure of learned associations. This novel aspect of AGNs makes it possible to235

represent arbitrary directed graphs as systems of functionally-branched itinerant attractor sequences.236

To clarify how AGNs work, next we illustrate how contextual gating signals support functional branching with a237

simple toy example. For this example, we consider an AGN with N = 4 neurons that use the sign/signum activation238

function (ρ = 1 and ω = 1). Learned attractor states are bipolar patterns in {−1,+1}4. The network, shown in239

Figure 3a, learns two attractor transitions (Figure 3b) that make up a simple attractor graph (Figure 3c). The learning240

procedure and transition dynamics are described in detail below, with the subscript r omitted for ease of presentation.241

Three activity patterns are learned as attractors in auto-associative matrix Ar using Equation 4: v(0) = [+1,−1,+1,−1]>,242

v(1) = [+1,+1,−1,−1]>, and v(2) = [−1,+1,−1,+1]>. For simplicity, we omit the normalization term 1
ρ2N from the243

learning rule.244

A =
∑

i

v(i)v(i)> = v(0)v(0)> + v(1)v(1)> + v(2)v(2)> =

+3 −1 +1 −3
−1 +3 −3 +1
+1 −3 +3 −1
−3 +1 −1 +3

Note that these patterns were chosen for illustration purposes, and that AGNs are not restricted to learning orthogo-245

nal/complementary activation patterns.246

Two attractor transitions are learned in hetero-associative matrix H using Equation 5: v(0) to v(1), and v(0) to v(2).247

Each of these transitions is contextualized by a distinct context pattern that selects a subset of neurons in the network.248

The first transition is contextualized by c(1) = [1, 1, 0, 0]>, which enables the first and second neurons, while the249

second transition is contextualized by c(2) = [0, 0, 1, 1]>, which enables the third and fourth neurons. As above, we250

omit the renormalization term 1
λρ2N for simplicity.251

H = (c(1) � v(1))(c(1) � v(0))> + (c(2) � v(2))(c(2) � v(0))> =

+1 +1 0 0
−1 −1 0 0
0 0 −1 +1
0 0 +1 −1

8

c(t)

v(t)

I(t)

A H

v(0)

+

-

+

-

v(1)

+

+

-

-

v(2)

-

+

-

+

c(1)

�

�

c(2)

�

�

v(0)

+

-

+

-

v(0)

v(1)

v(2)

c(1)

c(2)

���

���

���

gA(t) gH(t)

Figure 3: Toy example of transitions in an AGN (see text for details). (a) AGN with four neurons (center circles). Bold looped arrows indicate
auto-associative (A) and hetero-associative (H) recurrent connectivity matrices. Dashed lines on the left indicate multiplicative gating signals (c(t))
that contextualize attractor transitions. Solid lines on the right indicate external synaptic input (I(t)) that initializes activation patterns (v(t)). Binary
gates (gA(t) and gH(t), top) determine which connections are active at each timestep (gS (t) and gC(t) not shown). (b) Two contextual transitions
learned in the network. Each transition begins with activity pattern v(0) and transitions to a unique successor (v(1) or v(2)) in the context of a
unique context pattern (c(1) or c(2)). (c) Graphical depiction of the learned attractor graph. Gating patterns (circles in left rectangle) contextualize
transitions between distributed activity states in the AGN (circles in right rectangle).

The resulting weight matrix H encodes two transitions from v(0) that are segregated to different sub-populations of252

neurons and weights. The disjoint context patterns used in this example are solely for illustrative purposes; in general,253

context patterns can be randomly generated and can enable overlapping sets of neurons, introducing interference254

9

between weight updates for different context patterns. Empirical results presented in Section 3 demonstrate successful255

transitions despite this interference.256

When a transition is executed, the corresponding context pattern (c(1) or c(2)) is presented to select the subset of257

neurons that learned the transition. Consequently, only one quadrant of H governs the first step of transition dynamics,258

updating activity in the context-specific subset of neurons associated with the transition. To complete the transition,259

auto-associative dynamics cause convergence to the nearest attractor, completing the target activity pattern. This260

process is illustrated in Table 2 for the transition from v(0) to v(1) using context signal c(1) (blank cells indicate zero261

values).262

Table 2: Timing of example attractor transition dynamics

Timestep gS (t) gC(t) gH(t) gA(t) I(t) c(t) x(t) s(t) v(t)

Initialization (t=0) v(0) 1 v(0) σr(v(0)) =

+1
−1
+1
−1

Masking (t=1) 1 1 c(1) c(1) v(0) σr(c(1) � v(0)) =

+1
−1
0
0

Transition (t=2) 1 1 c(1) c(1) Hv(1) σr(c(1) � Hv(1)) =

+1
+1
0
0

Convergence (t=3) 1 1 Av(2) σr(Av(2)) =

+1
+1
−1
−1

This procedure is carried out in an AGN using a temporal sequence of inputs and connection gate values shown263

at the top of each timestep block (e.g., I(0) = v(0)). The second transition from v(0) to v(2) can be executed by264

substituting context pattern c(2) for c(1). Note that saturation dynamics are omitted after convergence because the sign265

activation function has discrete outputs. The saturation connection is, however, necessary for activity maintenance266

during timestep 1. Although this simple example only requires one timestep of auto-associative dynamics to recover267

the final pattern, in general, several timesteps will be necessary.268

2.2. Compositional Memory269

The AGN model outlined in the previous section describes the dynamics of the mem region of the model shown in270

Figure 1. In this section, we describe the interactions between the mem, ctx, and lex regions of this model, and explain271

how they encode compositional data structures.272

Attractor states in the mem region represent discrete generic memory states, and are organized into structured273

representations with context-dependent attractor transitions. For example, a linked list is represented by a sequence of274

memory states connected by transitions with a shared list-specific context. Each memory state may be associated with275

a pattern of activity in the lexicon region (lex) via the pathway from mem to lex. Patterns in lex represent symbolic276

tokens that are “stored” in memory states using associative learning. These tokens may represent words, for example,277

and a sentence could be represented as a linked list of memory states, each associated with the lex pattern representing278

the corresponding word in the sentence.279

Transitions between memory states are contextualized by activity patterns in the context region (ctx). The ctx280

region uses the heaviside activation function, and provides the binary context signals that select subsets of mem281

neurons to participate in attractor transitions (c(t) in Equation 2). Patterns in ctx may be derived from mem and lex282

patterns via pathways from those regions to ctx. This makes it possible for memory states or symbolic tokens to283

indirectly contextualize memory transitions through an intermediate associated ctx activity pattern.284

10

While the mem region is an AGN with multiple recurrent pathways and attractor dynamics, the ctx and lex regions285

have no recurrent connectivity, and only include internal saturation dynamics that maintain activity patterns over time.286

With the exception of the pathway from ctx to mem, which provides unweighted contextual gating signals for attractor287

transitions in mem, inter-regional pathways (solid lines with arrows in Figure 1) have dense connectivity matrices that288

are learned using one-step associative learning.289

Activity in the mem region evolves according to Equations 1 - 3. External multiplicative input to the mem region290

cmem(t) comes from neural activation in the ctx region:291

cmem(t) = vctx(t)

where vctx(t) is the neural activation of the ctx region at time t. When the context gate for mem region dynamics is292

enabled (gC
mem = 1), activity in mem is contextualized by activity in ctx. All other inputs to mem from other regions293

are absorbed into the Imem(t) term:294

Imem(t) =
∑

q

gmem,q(t)Wmem,q(t)vq(t)

where vq(t) is the neural activation of region q at time t, Wmem,q(t) is the connectivity matrix from region q to mem at295

time t, and gmem,q(t) is a binary connection gate on the pathway.296

Activity in the ctx and lex regions evolves according to the following equations, which are simplified versions of297

Equations 1 and 3 that do not include contextual gating:298

sr(t) = gS
r ωrvr(t) + Ir(t) +

∑
q

gr,q(t)Wr,q(t)vq(t) (8)

vr(t + 1) = σr (sr(t)) (9)

where299

• sr(t) is a vector of cumulative synaptic input to region r at time t.300

• gS
r (t) is a binary gate that enables or disables activity saturation and maintenance in region r at time t. As in301

Equation 1, ωr is a scalar self-weight that establishes the fixed-point of saturated neural activity.302

• Ir(t) is a vector of external synaptic input to region r at time t.303

• Wr,q(t) is a weight matrix for the pathway from region q to region r at time t, which is controlled by a binary304

connection gate gr,q(t).305

• vr(t) is a vector of neural activity in region r at time t.306

• σr is the neural activation function for region r. The ctx region uses the Heaviside activation function, while the307

lex region uses the sign/signum activation function.308

Inter-regional weight matrices in the model (Wr,q) are learned with one-step associative learning. As noted in309

Section 2.1, we consider both traditional Hebbian learning (Equation 10) and the store-erase rule (Equation 11):310

∆Wr,q =
1

ρ2
qNq

σ−1
r (v)u> (10)

∆Wr,q =
1

ρ2
qNq

(
σ−1

r (v) −Wr,qu
)

u> (11)

where u is the source (initial) pattern in region q, v is the target (final) pattern in region r, Wr,q is the associative311

weight matrix for the pathway from q to r, σr is the neural activation function of r, ρq is the activation magnitude312

of neurons in q, and Nq is the number of neurons in q. The context region (ctx) must use the heaviside activation313

11

function, and learn binary patterns (ρ = 1), while the lex region may use any sign-preserving activation function such314

as the hyperbolic tangent or sign/signum function.315

The pathway from mem to lex (Wlex,mem) learns associations between memory states and lexical symbols stored in316

those states. This pathway is used to “read” the contents of the currently active state in the mem region. The pathways317

from mem and lex to ctx (Wctx,mem and Wctx,lex) learn associations with patterns that contextualize memory transitions.318

Each memory state and lexical symbol corresponds to a unique randomly generated context state. These associations319

are critical for construction of compositional data structures in attractor graphs, as described below.320

2.2.1. Representing Compositional Data Structures321

The graph-organized memory represented by the mem region attractor graph is suitable for encoding compositional322

data structures. Here we focus on associative arrays, linked lists, and trees, each of which can be represented by a323

particular organization of attractors. Several instances of these data structures may be encoded simultaneously as sub-324

graphs of a single attractor graph. Individual elements of a compositional data structure are accessed by sequences325

of attractor transitions resembling iteration through data structures in conventional computer memory. Each memory326

state can be associated with a lex activity pattern that represents the symbolic token stored in that memory state.327

Representation of associative arrays (dictionaries, maps) in attractor graphs is straightforward. A map is repre-328

sented by a dedicated memory state, and each entry in the map is represented by a transition to a target memory state329

(value) that is contextualized by a ctx pattern (key). Keys may be derived from patterns in other regions via pathways330

into ctx (e.g., lex or mem). To access the value associated with a key, the key pattern is initialized in ctx, and the331

memory pattern representing the map is initialized in mem. Then the attractor transition is executed using the ctx332

pattern as context. The resulting activity pattern in mem represents the memory state (value) associated with the key,333

which may be a complex data structure or a single memory state with a corresponding symbol that is retrieved via the334

pathway from mem to lex.335

Accessing a map with a key that has no corresponding value results in undefined behavior. When erroneous336

lookups are possible, the data structure must be modified to allow validation. One possibility is to learn self-transitions337

for each value that use the key as a context pattern. Thus, to validate a map lookup, an additional transition can be338

executed after the lookup, and the resulting activity state can be compared with the value state. If they do not match,339

the lookup was not successful.340

A linked list is encoded as a trajectory through the attractor graph, as shown in Figure 4a. The trajectory begins341

with a mem pattern that represents the list object (referred to as the head), and includes zero or more additional mem342

patterns that represent the list elements. The end of the list is marked by a self-loop transition in the final memory343

state in the sequence. Although a list cannot contain repeat memory states, two states in a list may be associated with344

the same activity pattern in lex via the pathway from mem to lex, representing storage of the same symbolic token in345

two positions of the list. Each transition in the trajectory is contextualized by a shared ctx pattern that is specific to346

the list, and is associated with the head pattern in mem via the pathway from mem to ctx. To iterate through a list,347

the head pattern is first initialized in mem and used to retrieve the list-specific pattern in ctx. This context pattern is348

then used to contextualize a sequence of attractor transitions that terminates when the post-transition state is identical349

to the pre-transition state indicating a complete traversal of the sequence. Note that an empty list is represented by350

a head pattern in mem that transitions directly to itself (i.e., a self-loop trajectory), and therefore terminates after a351

single transition.352

Because transitions in a linked list are contextualized by a list-specific context pattern, a memory state may be353

contained in several lists. In this case, the shared memory state has distinct transitions to list-specific successors. This354

means that memory states are reusable components that may be used in multiple compositional data structures. Our355

approach is similar to Borisyuk et al. (2013) in that a list-specific context signal resolves ambiguities in sequence356

recall that occur when an element is contained in more than one sequence. However, context signals in AGNs are357

multiplicative masks that select subsets of the neural population to participate in sequence transitions. As a result, the358

transitions for distinct sequences are learned in distinct but overlapping sets of connection weights.359

Trees can be encoded in attractor graphs by recursive composition of either associative arrays or linked lists, each360

with distinct advantages. Tree nodes represented by associative arrays have direct parent-child relations that are la-361

beled by ctx patterns, which must be provided during tree traversal. However, this organization permits random access362

of child nodes during traversal. Trees represented by linked lists, on the other hand, can be traversed without external363

provision of context patterns. This is because each node is associated with a unique ctx pattern that contextualizes364

12

m(head)

���

� �

m(1)

the dog chased cat

ctx

mem

lex

mem

 S VP lex

the dog chased cat

NP

m(2) m(3) m(4) m(5)

c(head)

Figure 4: Graphical depiction of compositional data structures. Each gray rectangle represents the activity space of a region of the neural model
(ctx, mem, and lex), and each circle represents a unique activity pattern (distributed representation). (a) A linked list representing the sentence “the
dog chased the cat”. The list is represented by a trajectory through memory states (middle gray rectangle) that terminates with a self-loop transition.
Each transition in the trajectory is contextualized by a list-specific context state (c(head), top left) that is associated with a list head memory state
(m(head), middle left). Each element in the list is represented by a unique memory state (m(1) through m(5), center) that is associated with a pattern
of activity in lex representing the corresponding word in the sentence (bottom). (b) A parse tree for “the dog chased the cat” represented as a list of
lists. Each internal node of the tree is represented by a memory state that serves as the head of a list containing its child nodes (trajectories in top
rectangle). The context patterns for these trajectories are omitted for clarity. Each node is associated with a pattern in lex representing its symbolic
content (S for “sentence”, NP for “noun phrase”, VP for “verb phrase”, or a word in the sentence).

the trajectory through its children and can be retrieved during traversal. However, child nodes cannot be accessed in365

arbitrary order, and parent-child relations do not have associated labels. This organization is shown in Figure 4b.366

2.3. Programmatic Control of Compositional Memory367

The compositional data structures described in the previous section can be constructed and manipulated via top-368

down control of the mem, ctx, and lex regions over time. Figure 5 shows a programmable neural network with369

additional regions that provide this control. In this section we first describe the functionality of these control mecha-370

nisms, including the representation and execution of learned programs that make use of compositional memory. Then371

13

we describe a planning task that the model learns to perform, which involves constructing and modifying complex372

hierarchical data structures in memory.373

mem ctx

autohetero

lex compare

gate

output

incr

gate

sequence

push pop

run me

stack

push pop

data

stack

incr

program

Stack

Controller

Memory

environment
input/output

regional ga!ng

Figure 5: Programmable neural network with compositional memory. Neural regions (boxes) are interconnected with gated pathways (solid lines).
The architecture of the model resembles a stack machine, and includes three subnetworks. Controller: The controller subnetwork (top right)
controls model execution based on learned programs. Neurons in the gate output region (top right) determine which pathways are active during
each timestep of model execution. This region is controlled by the gate sequence region, which encodes a sequence of gating operations that control
the flow of information through the model over time. These gate sequences correspond to instruction opcodes for programs encoded in the program
region. Instruction operands are represented in the lex region (center), which encodes a lexicon of recognized symbols as activity patterns. This
region serves as a bridge between the controller and memory subnetworks, and is used to pass symbolic information into and out of the model (left
center). Memory: The core region of the memory subnetwork is the mem region (bottom center), which is an attractor graph network with dense
hetero-associative and auto-associative connectivity (bold looped arrows). Patterns of activity in mem represent general-purpose memory states
that “store” symbolic tokens represented in lex. Associations between memory states and symbolic tokens are learned in the pathway from mem to
lex. Transitions between attractors in mem are contextualized by activity in the context region (ctx, bottom right) via a pathway from ctx to mem.
The open circle at the end of this pathway indicates that it provides multiplicative contextual gating inputs to mem. Activity patterns in ctx may be
derived from mem or lex patterns, and serve as labels for relations between memory states that are used to construct compositional data structures.
Stack: The stack subnetwork (left) contains two regions with bidirectionally associated activity patterns that represent stack frames. The runtime
stack region stores and retrieves pointers to program instructions, memory states, and context states. These are stashed when program subroutines
are called, and retrieved upon return to the caller. The data stack region stores pointers to memory states that are used for operations involving
multiple memory states, and is used to pass arguments between subroutines.

The complete model depicted in Figure 5 is a programmable neural network with program-independent circuitry374

that is based on the Neural Virtual Machine (NVM) (Katz et al., 2019), but has several key differences. Most notably,375

the sequential tape-like memory of the NVM is replaced by attractor graph memory (mem and ctx), permitting storage376

of compositional data structures via direct context-dependent associations between memory states. In addition, our377

model functions as a stack machine rather than a register machine, simplifying its instruction set and program circuitry.378

Symbols are represented in a single region (lex) rather than multiple register and operand regions as in the NVM, and379

a data stack region is used for operations with multiple operands.380

Our model includes three major subnetworks, shown as large gray rectangles in Figure 5. The memory subnetwork381

contains the mem and ctx regions, which implement compositional memory with attractor graphs, as described in382

Sections 2.1 and 2.2. The lex region is contained in the controller subnetwork, and serves as a bridge between several383

model components. Patterns in the lex region serve several functions, some of which were described in Section 2.2.384

14

They represent symbolic tokens that can:385

• be stored in memory states (mem to lex)386

• be variable names that refer to data structures in memory (lex to mem)387

• label transitions in mem attractor graphs that represent key-value relations in associative arrays (lex to ctx)388

• be used as program instruction operands (program to lex)389

• refer to program subroutines (lex to prog)390

• be printed to or read from the environment (lex to/from environment)391

The controller subnetwork also contains several regions that control connection gates based on learned programs.392

Neurons in the gate output region determine which pathways in the model are active during each timestep (one neuron393

per connection gate). This region is controlled by the gate sequence region, which encodes sequences of gating394

operations that control the flow of information through the model over time, much like in conventional computer395

architectures. These gate sequences correspond to instruction opcodes for programs encoded in the program region,396

while instruction operands are represented by lex activity patterns.397

The compare region encodes true and false patterns that are used to perform conditional jumps in programs based398

on comparisons between memory states or lexical symbols. For example, an instruction might jump to a subroutine if399

two memory states store the same symbol. If the comparison yields the true state, the model jumps to the subroutine400

specified by the jump instruction’s operand. Otherwise, it advances to the next instruction in the sequence.401

The stack subnetwork contains two regions with bidirectionally associated activity patterns that represent stack402

frames. The runtime stack region stores a call-stack that maintains pointers to program instructions, memory states,403

and context states. These are pushed when program subroutines are called, and popped upon return to the caller. The404

data stack region maintains pointers to memory states that are used for operations involving multiple memory states.405

For example, when a transition is learned, the target memory state is assumed to be currently active in mem, and a406

pointer to the source memory state is stored on the top of the data stack. These stacks are explained further in the407

following section.408

2.3.1. Program Storage and Execution409

As mentioned above, programs are represented by sequences of activity patterns in the program region. Each410

activity pattern represents an individual instruction with an opcode and optional operand. Each opcode corresponds to411

a sequence of patterns in the gate sequence region that implements the operation as a temporal sequence of connection412

gates. Each instruction is associated with the first pattern in the corresponding opcode sequence via the pathway413

from program to gate sequence. Similarly, an instruction with an operand is associated with a lex activity pattern414

representing the operand value.415

Gating operations and program sequences are established during a one-time associative learning procedure that is416

analogous to firmware “flashing” in a non-volatile microcontroller memory. The model architecture supports opera-417

tions that can be expressed as temporal sequences of active connection gates, such as the attractor transition procedure418

specified in Table 1. Each timestep of an operation is represented by a randomly generated activity pattern in the419

gate sequence region, and is associated with a gate output pattern that specifies the active connection gates. The final420

pattern of most operation sequences is associated with a common gating sequence that advances the program region421

to the next instruction, and opens the pathway from program to gate sequence, initiating the gating sequence for the422

next instruction. The exception is jump instructions, which have conditional behavior that depends on comparison423

operations (explained in Section 2.3.3).424

In addition to the above associations, the “flashing” procedure also establishes associations in the stack regions425

(runtime stack and data stack). Activity patterns in these regions represent individual stack frames that can be asso-426

ciated with activity patterns in other regions. Each stack frame is associated with the frame above and below it in the427

stack using distinct recurrent hetero-associative matrices (push and pop loops in Figure 5).428

Finally, the model is “flashed” with a lexicon of recognizable symbols in the lex region. Each symbol pattern is429

associated with a unique ctx pattern, allowing the symbol to serve as an attractor transition label (i.e., an associative430

array key).431

15

2.3.2. Online Learning432

Program execution involves online updating of connectivity matrices. These updates are determined by distinct433

gates that control plasticity:434

Wr,q(t + 1) = Wr,q(t) + g`r,q(t)∆Wr,q(t) (12)

where Wr,q(t) is a weight matrix connecting region q to region r at time t, and g`r,q(t) is a learning gate that determines435

when this matrix is updated. For pathways connecting distinct regions, ∆Wr,q(t) can be computed using the store-erase436

learning rule with the active patterns in r and q:437

∆Wr,q(t) =
1

ρ2
qNq

(
σ−1

r (vr(t)) −Wr,q(t)vq(t)
)
vq(t)> (13)

where Wr,q(t) is a weight matrix connecting region q to region r at time t, vr(t) and vq(t) are the activation patterns of438

r and q, σr is the activation function of neurons in r, ρq is the stable activation level of neurons in region q, and Nq is439

the number of neurons in region q.440

The recurrent auto-associative matrix in mem is also updated using the currently active pattern:441

∆Ar(t) =
1

ρ2
r Nr

(
σ−1

r (vr(t)) − Ar(t)vr(t)
)
vr(t)> (14)

where Ar(t) is the auto-associative weight matrix for region r at time t, and all other terms are as defined above.442

Online learning of recurrent hetero-associative matrices involves distinct source and target patterns that cannot be443

simultaneously active. To address this, we introduce an eligibility trace εr(t) that stores a target activity pattern for444

subsequent learning:445

εr(t + 1) =

cr(t) � sr(t), if gεr(t) = 1
εr(t), otherwise

(15)

where εr(t) is the eligibility trace of region r at time t, gεr(t) is a gate that determines when the eligibility trace is446

updated, and cr(t) and sr(t) are synaptic and multiplicative inputs at time t (defined in Equations 1 and 2). When447

gεr(t) = 1, the current gated inputs are stashed in the eligibility trace. To learn a transition to the stashed pattern, a448

source pattern is activated, and the hetero-associative learning gate is opened:449

∆Hr(t) =
1

λrρ2
r Nr

(
εr(t) −

(
cr(t) � Hr(t)vr(t)

))
vr(t)> (16)

where Hr(t) is the hetero-associative weight matrix for region r, εr(t) is the eligibility trace defined above, cr(t) is the450

multiplicative input to region r, λr is a context density for multiplicative gating of region r, and all other terms are as451

defined above. Note that the contextual gating is already applied to the source pattern vr(t) (Equation 1).452

2.3.3. Comparisons453

The comparison region has unique dynamics that allow it to memorize an input pattern from another region for454

subsequent recognition. When an input pattern is memorized, it is associated with a cmp activity pattern representing455

true (vtrue
cmp). Unlike other connectivity updates, this overwrites the corresponding weight matrix rather than incremen-456

tally updating it:457

∆Wcmp,q(t) =
1

ρ2
qNq

σ−1
cmp

(
vtrue

cmp

)
vq(t)> −Wcmp,q(t) (17)

16

where Wcmp,q(t) is a weight matrix connecting region q to the compare region at time t, vq(t) is the activation pattern458

of region q, σcmp is the activation function of neurons in cmp, ρq is the stable activation level of neurons in region459

q, and Nq is the number of neurons in region q. This learning rule resembles Equation 13, except that it completely460

overrides the existing weights and associates the input pattern with a fixed pattern (vtrue
cmp).461

The cmp region has an input bias toward a false activity pattern (v f alse
cmp) that can be overcome by the memorized462

input. Thus, if an input pattern is close enough to the memorized pattern, the resulting cmp activation pattern is vtrue
cmp;463

otherwise it is v f alse
cmp The following equation describes the synaptic input term for the cmp region:464

scmp(t) = gS
cmp(t) ωcmp vcmp(t)︸ ︷︷ ︸

saturation

−
(
1 − gS

cmp(t)
)
θ ωcmpv f alse

cmp︸ ︷︷ ︸
bias to false pattern

+
∑

q

(
gcmp,q(t) Wcmp,q(t) vq(t)

)
︸ ︷︷ ︸

inter-regional input

(18)

where v f alse
cmp is the false activity pattern in cmp, θ is a comparison similarity threshold (typically > 0.95), and all other465

terms are as defined for Equation 8 (with r = cmp). The synaptic input scmp(t) is transformed to neural activation466

vcmp(t) by Equation 9 (again with r = cmp). The threshold θ determines how similar an input pattern needs to be to467

the memorized input pattern in order to activate the true pattern (vtrue
cmp). Specifically, a value of θ = 0.95 means that468

an input pattern must have a cosine similarity exceeding 0.95 in order to activate vtrue
cmp.469

The true and false states in cmp are associated with distinct sequences in the gate sequence region. When a470

jump instruction is executed, the pathway from cmp to gate sequence is opened, and the program region is advanced471

according to the result of the most recent comparison. The true gate sequence activates the first instruction of the472

subroutine indicated by the jump instruction operand. This is done by opening the pathway from program to lex,473

followed by the pathway from lex back to program. The false gate sequence simply opens the recurrent hetero-474

associative connection gate in the program region, advancing it to the next instruction in the current subroutine.475

2.3.4. Generating Memory States476

The model’s instruction set includes operations that allocate memory for construction of data structures. Memory477

states are learned attractors in the mem region’s auto-associative connectivity. We include a gated noise term in the478

mem and ctx regions. When a noise gate is opened, a random pattern of activation is established in the corresponding479

region:480

vmem(t + 1) = σmem

(
xmem(t) � smem(t) + gN

memωmemnmem(t)︸ ︷︷ ︸
gated noise

)
nmem(t) ∼ Bernoulli(0.5) (19)

vctx(t + 1) = σctx

(
sctx(t) + gN

ctxωctxnctx(t)︸ ︷︷ ︸
gated noise

)
nctx(t) ∼ Bernoulli(λ) (20)

where gN
mem and gN

ctx are noise gates for the mem and ctx regions, and nmem(t) and nctx(t) are random vectors. All481

other terms are as defined in Equation 3 (for mem) and Equation 9 (for ctx). Random vectors are generated by a482

Bernoulli process with probabilities 0.5 and λ (context density, defined in Section 2.1). Random patterns in mem483

are in {−ρmem,+ρmem}
Nmem , where Nmem is the number of neurons in mem, and ρmem is the steady-state magnitude of484

saturation dynamics in mem (ρmem = σmem(ωmem)). Random patterns in ctx are binary patterns.485

2.3.5. I/O486

Environmental inputs to the model are provided to the lex region via the external input variable Ilex (Equation 8).487

The model indicates when it is ready to receive input by activating a dedicated read gate gR
lex. Environmental input is488

specified as a sequence of symbols from an alphabet that the model is pre-trained to recognize. Each alphabet symbol489

is mapped to a unique activity pattern. When the environment detects that gR
lex(t) = 1, Ilex(t) is set to the activation490

pattern corresponding to the next unread symbol in the input sequence.491

Similarly, a dedicated write gate gW
lex indicates to the environment when the model is ready to provide output.492

When gW
lex(t) = 1, the environment captures the current lex activity pattern vlex(t) and translates it into a symbol by493

identifying the closest activity pattern in the alphabet mappings.494

17

2.3.6. Planning Task495

Planning is a high-level executive task that involves reasoning about actions and organizing them to achieve goals496

(Ghallab et al., 2004; Erol, 1996). Behavioral plans are often hierarchically structured and require compositional rea-497

soning (Botvinick, 2008; Dehaene and Changeux, 1997). To further test our model’s ability to construct and maintain498

compositional data structures in memory, we trained it to perform an automated planning task using hierarchical task499

networks (HTNs) (Ghallab et al., 2004; Erol, 1996). An HTN is a tree representing the decomposition of a high-level500

compound task (root node) into concrete primitive actions (leaf nodes). Each internal node is broken down into sub-501

actions (compound or primitive) according to learned rules in a knowledge-base that may depend on environmental502

states. For example, opening a door may involve different motor behaviors depending on what type of door it is503

(e.g., pushing, pulling, sliding, etc). During planning, an agent recursively decomposes a top-level task to produce a504

sequence of primitive actions that is appropriate for the given environment.505

We implemented a version of HTN planning with the following restrictions. The environment is represented by506

an associative array of named feature bindings (e.g., “door type” = “sliding”). Each compound action is decomposed507

according to the value of a specific environmental feature (e.g., “open door” is decomposed according to the value of508

“door type”). When there is no rule for a given action and feature value, the action is treated as a primitive action, and509

is not further decomposed. The task is performed as follows. First, the model reads in the knowledge-base rules and510

environmental bindings and stores them in memory. Then, it reads in a sequence of top-level actions for planning. An511

HTN is constructed by recursively decomposing each top-level action into primitive actions based on the knowledge-512

base and environmental bindings. Once the plan is complete, the model performs a pre-order traversal of the HTN513

and prints out the action for each node.514

The knowledge-base is stored in attractor graph memory as a nested map (associative array). The keys of the515

top-level map are compound actions, and the values are inner maps containing decomposition rules for each action.516

As mentioned above, each action is decomposed according to the value of a specific environmental binding. The517

key for this binding is stored in the inner map memory state, and is used to query the environment for the binding’s518

value. This value is then used as a key for the inner map to retrieve the corresponding decomposition rule, which is519

represented as a linked list of sub-actions. During decomposition, knowledge-base lookups are validated as described520

in Section 2.2, and actions are only decomposed if a rule is successfully retrieved.521

For testing purposes, we designed a planning domain to simulate a simple repair task involving a mechanical522

assembly unit (see Appendix for details). The unit has a door on the front, an indicator for the status of the unit, and523

an interaction point for performing repairs. The full task involves opening the door according to its type, performing524

a repair according to the status indicator, and closing the door. Each stage of the task is performed based on a set of525

environmental bindings describing a specific unit, including the type of door, status indicator, and repair interaction526

point (e.g., sliding door, LED indicator, keypad interaction point).527

3. Results528

The model outlined above was implemented in Python using the NumPy scientific computing library, and was529

tested in several stages. The first three stages evaluated the memory capacity of the AGN model, and involved learning530

attractor graphs in the mem region. Specifically, we sought to empirically determine 1) the number of attractor states531

that can be learned and reliably retrieved from partial patterns, 2) the number of unique context-dependent transitions532

from a single source pattern that can be learned (i.e., the branching factor of attractor graphs), and 3) the total number533

of transitions that can be learned in an attractor graph.534

The fourth and fifth stages of testing evaluated storage and retrieval of compositional data structures, and included535

learning in the inter-regional pathways of the model. First, the model was trained with attractor graphs representing536

linked lists to determine whether errors in attractor transitions compound during traversal, and whether memory537

states can be effectively reused in multiple distinct list structures. Then, the model was trained with attractor graphs538

representing sentence parse trees. Each node in a tree was represented as a pattern of activity in mem, and each symbol539

stored in the node was represented by a pattern in lex. The associations between nodes and symbols were learned in540

the pathway from mem to lex.541

In the final stage of testing, we evaluated the model’s ability to manipulate compositional data structures using the542

HTN planning task described in Section 2.3.6. Each test involved learning a knowledge-base of decomposition rules,543

18

a set of environmental bindings, and a sequence of top-level compound actions. These top-level actions were decom-544

posed into HTNs according to the knowledge-base and environmental bindings. We evaluated runtime complexity by545

varying the top-level action sequence to vary the size of the constructed HTN. Three conditions were evaluated: 1) a546

baseline condition using a small knowledge-base (9 rules spread across 5 compound actions) and small environment547

(4 bindings), 2) an extended knowledge-base of 15 rules across 7 compound actions, and 3) an extended environment548

containing 8 bindings. We validated that the model constructed the correct HTN in each test, and measured the num-549

ber of timesteps taken to complete the task. The specific knowledge-bases, environments, and top-level sequences550

used are listed in the Appendix.551

In all stages of testing, performance was evaluated by comparing patterns of activity with learned target patterns.552

For example, to evaluate a learned attractor transition from memory pattern mA to memory pattern mB, the trained553

model would be initialized with mA in the mem region, the transition would be executed (including attractor conver-554

gence), and the resulting mem activity pattern would be compared with mB. Because saturation dynamics can correct555

any convergence errors within an orthant of activity space, two patterns are considered identical if they reside within556

the same orthant (i.e., the sign of each neuron’s activation matches). For each experiment, results are reported as the557

percentage of activity patterns that matched their corresponding targets.558

Experiments in Sections 3.1 - 3.5 evaluated the model shown in Figure 1 using either traditional Hebbian learning559

or the fast store-erase learning rule. Pathways with context-dependent dynamics were learned with the gated versions560

of these rules (Equations 4 - 7). All other pathways were learned with non-gated versions of these rules (Equations561

10 and 11. Each region of the model contained N = 1024 neurons. The mem region used the hyperbolic tangent562

activation function and learned activity patterns with magnitude ρ = 0.9999. The ctx and gate output region used563

the heaviside activation function, and learned binary patterns (ρ = 1). The lex region used the sign/signum activation564

function (ρ = 1). The experiment in Section 3.6 evaluated the full programmable network shown in Figure 5. In this565

experiment, regions were sized according to the number of patterns to be learned for the planning task described in566

Section 2.3.6. Regions not present in Figure 1 used the sign/signum activation function (ρ = 1).567

3.1. Attractor Convergence568

Attractor transitions are carried out in multiple steps, starting with contextually-gated hetero-associative dynamics,569

followed by auto-associative attractor convergence and activity saturation. Because the hetero-associative step results570

in a partial pattern of activity (some neurons have zero activation), successful transitions depend on accurate auto-571

associative pattern completion. We therefore sought to determine the number of activity patterns that can be learned572

as attractors and successfully recovered from partial patterns.573

The density of partial patterns (i.e., the number of non-zero elements) encountered during attractor transitions574

depends on the parameter λ, the probability used to generate context patterns (Section 2.1). This parameter indicates575

the number of neurons in the mem region that participate in hetero-associative dynamics, and consequently the number576

of active neurons prior to attractor convergence.577

The mem region AGN was trained with sets of randomly generated memory states, and evaluated for pattern578

completion. One trial of testing involved learning a set of M memory states generated by a Bernoulli process with579

probability 0.5 (i.e., a fair coin toss for each neuron’s activation). Each learned memory pattern was evaluated by580

initializing the network with a partial version of the pattern, running auto-associative dynamics and saturation, and581

comparing the resulting activity pattern with the original learned pattern. The number of timesteps for auto-associative582

dynamics was set to 10, which was found to be sufficient for attractor convergence in preliminary testing. Partial583

patterns were produced by randomly setting N(1 − λ) elements to zero, simulating contextual gating. This process584

was repeated 8 times for each memory state, and the value of λ was varied experimentally.585

Results are shown in Figure 6. Each plot shows results for networks trained with a common learning rule (store-586

erase or traditional Hebbian learning) and various values of λ. Each line shows accuracy of attractor convergence as587

the number of learned memory states M increases. Accuracy deteriorated as the density of the context pattern (λ) was588

decreased and the masked partial patterns became sparser. Results for the two learning rules were comparable, but the589

store-erase rule showed slightly more gradual degradation with increasing numbers of stored patterns. Perfect accu-590

racy can be achieved with the store-erase rule when M = 64 memory patterns are stored. In subsequent experiments,591

we limit the number of learned attractors to 64 to avoid errors in attractor convergence.592

19

(a) Store-Erase

16 32 64 128
256

512
1024

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

M

ac
cu

ra
cy

λ = 1/2
λ = 1/4
λ = 1/8

(b) Hebbian

16 32 64 128
256

512
1024

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

M
ac

cu
ra

cy

λ = 1/2
λ = 1/4
λ = 1/8

Figure 6: Accuracy of attractor convergence (pattern recovery/completion). Each plot shows the recall accuracy (y-axis) of an AGN with N = 1024
neurons trained with either the fast store-erase learning rule (left) or traditional Hebbian learning (right). The network was trained with sets of
memory patterns of various sizes (M, x-axis). Each learned memory pattern was tested 8 times by initializing the network with a partial version of
the pattern, running auto-associative dynamics for 10 timesteps, and comparing the resulting activity pattern with the learned pattern. The density
of the partial version was determined by the parameter λ, and each line indicates results for a single value of λ. Each data point indicates the
percentage of convergence trials resulting in perfect pattern recall, for a total of 8M trials per data point.

3.2. Transition Branching593

Functional branching is a novel aspect of AGNs that makes it possible to learn multiple transitions from a single594

attractor state using a single hetero-associative weight matrix (Section 2.1.1). We refer to the number of transitions595

from an attractor as the attractor’s branching factor. We evaluated learning of attractor graphs with various branching596

factors to determine how many transitions can be learned from a single source attractor. Specifically, we trained597

AGNs with attractor graphs organized as directed stars, where one attractor serves as an internal node with transitions598

to several leaf nodes.599

The results for attractor convergence above indicate that a network of N = 1024 neurons can reliably learn M = 64600

attractors. We therefore generated attractor graphs with M = 64 attractors and varying numbers of transitions. One601

attractor was designated as the internal node, and each transition targeted an attractor randomly chosen from the602

remaining 63 attractors. Each transition was learned with a unique context pattern generated by a Bernoulli process603

with probability λ (varied experimentally). Note that there may be multiple transitions from the internal node to the604

same leaf node.605

Results are shown in Figure 7. Each data point indicates the percentage of transitions that were successfully606

executed after learning. In contrast to the pattern recovery results, accuracy was higher with smaller λ. This is likely607

due to decreased weight sharing across contexts. The store-erase rule significantly outperformed traditional Hebbian608

learning, yielding high accuracy (over 97%) for branching factors up to 1024 for λ = 1
4 and λ = 1

8 .609

3.3. Random Graphs610

Having established that AGNs can learn attractor graphs with high branching factors, we sought to determine how611

many transitions can be stored when the transitions do not share a source node. To do so, we trained the AGN with612

randomly generated graphs of M = 64 attractors and varying numbers of transitions (T). Graphs were generated613

by randomly selecting a source attractor (vertex), target attractor (vertex), and context pattern (edge label) for each614

transition (edge). The number of available context patterns was set to the maximum branching factor of nodes in the615

20

(a) Store-Erase

2 4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

branching f actor

ac
cu

ra
cy

λ = 1/2
λ = 1/4
λ = 1/8

(b) Hebbian

2 4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

branching f actor
ac

cu
ra

cy

λ = 1/2
λ = 1/4
λ = 1/8

Figure 7: Accuracy of attractor graphs with various branching factors. Each plot shows the transition accuracy for an AGN with N = 1024 neurons
trained with either the fast store-erase learning rule (left) or traditional Hebbian learning (right). The network was trained with attractor graphs
containing M = 64 memory attractors and various numbers of transitions (x-axis). The attractor graphs were organized as directed stars, where one
internal node transitions to several leaf nodes in different contexts. Multiple transitions to the same leaf node in different contexts were allowed,
making it possible to test branching factors larger than the total number of leaf nodes. Each line indicates results for one value of λ, the density of
context patterns used for transitions. Each data point indicates the percentage of successful transitions.

graph, ensuring that no two transitions shared the same source and context patterns. Transitions from different source616

patterns were allowed to share context patterns.617

Results are shown in Figure 8. Store-erase learning was more reliable than traditional Hebbian learning, with less618

variable accuracy. With λ = 1
4 , both learning rules yielded high accuracy with T = 1024 transitions. In subsequent619

experiments, we limit the number of learned attractor transitions to 1024.620

3.4. Linked Lists621

The above results evaluate the integrity of individual attractor transitions and convergence events in an AGN.622

Iteration through attractor graphs representing compositional data structures involves sequences of transitions in which623

errors might compound. We therefore evaluated retrieval of linked lists with itinerant traversals, allowing any errors624

in transitions to compound.625

The model was trained with attractor graphs of M = 64 attractors encoding linked lists (Section 2.2). Each626

attractor served as the head of a unique list containing E elements (varied experimentally) drawn from the remaining627

63 attractors. Each list is encoded as a trajectory containing E + 1 transitions, for a total of 64(E + 1) transitions in628

the graph. Note that an attractor (memory state) may be contained in more than one list, as each list’s transitions use629

a unique list-specific context pattern. These context patterns were learned in the pathway from the mem to ctx regions630

(Figure 1), and were retrieved at the beginning of each traversal at testing time.631

Results are shown in Figure 9. Accuracy drops sharply after E = 15 elements, or a total of T = 1024 transitions.632

This corresponds to the point at which accuracy declines in Figure 8. The drop in accuracy after E = 15 is therefore633

likely due to limits in transition capacity. These results show that below this capacity, traversals through attractor634

graphs can be executed without compounding errors. In addition, large numbers of linked lists can be encoded in635

attractor graphs, and memory states can be successfully shared between lists.636

21

(a) Store-Erase

2 4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

T

ac
cu

ra
cy

λ = 1/2
λ = 1/4
λ = 1/8

(b) Hebbian

2 4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

T
ac

cu
ra

cy

λ = 1/2
λ = 1/4
λ = 1/8

Figure 8: Accuracy of randomly generated attractor graphs. Each plot shows the transition accuracy for an AGN with N = 1024 neurons trained
with either the fast store-erase learning rule (left) or traditional Hebbian learning (right). The network was trained with attractor graphs containing
M = 64 memory attractors and various numbers of transitions (x-axis). Each transition in the graph connected two randomly selected attractors
using a randomly generated context pattern. Each line indicates results for one value of λ, the density of context patterns used for transitions. Each
data point indicates the percentage of successful transitions.

3.5. Parse Trees637

The results above show that list traversals can be successfully carried out without compounding errors when the638

total number of attractors is limited to M = 64. That experiment did not evaluate storage and retrieval of symbolic639

information via the pathway from mem and lex, and did not involve retrieval of context patterns in ctx using memory640

states that may contain minor errors. To address these limitations, we evaluated the model with storage of parse trees641

with a symbol stored at each node.642

Parse trees were randomly selected from the Penn Treebank corpus1. Each tree was encoded as an attractor graph643

using lists of lists, where each node is represented as a list of its children. Each node in the tree was assigned to a644

memory attractor, and each symbol in the parse tree was assigned to a randomly generated pattern of activity in the645

lex region using a Bernoulli process with probability 0.5. Associations between nodes and symbols were learned in646

the pathway from mem to lex using either the store-erase learning rule or traditional Hebbian learning.647

The model learned one tree at a time, and weights were reset after learning and evaluating each tree. Each tree648

was evaluated with a traversal starting with initialization of mem with the root node pattern. As with list testing, errors649

were allowed to propagate during traversal, and context patterns were retrieved using the pathway from mem to lex.650

After each transition, the symbol stored in the current node was retrieved using the pathway from mem to lex, and651

results are reported as the percentage of symbol patterns in lex that were correctly recovered. An external queue was652

used to store and retrieve intermediate activity patterns and perform a breadth-first traveral. Note that this queue is not653

considered part of the model, and is only used for evaluation purposes.654

Results are shown in Figure 10. A total of 100 randomly selected trees were learned. Each mark indicates the655

percentage of perfectly recalled symbol patterns across all nodes in a single tree (y-axis), and the x-axis (log-scale)656

indicates the number of nodes in the tree. In accordance with the results in Section 3.1, accuracy begins to deteriorate657

with trees containing more than 64 nodes. Past this point, accuracy degrades more gradually with the store-erase rule658

than with traditional Hebbian learning.659

1Parse trees were retrieved from the Penn Treebank Sample dataset of the Python Natural Language Toolkit, found at
http://www.nltk.org/nltk data/

22

(a) Store-Erase

1 2 4 8 16 32 64

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

E

ac
cu

ra
cy

λ = 1/2
λ = 1/4
λ = 1/8

(b) Hebbian

1 2 4 8 16 32 64

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

E
ac

cu
ra

cy

λ = 1/2
λ = 1/4
λ = 1/8

Figure 9: Accuracy of attractor graphs encoding multiple linked lists. Each plot shows the transition accuracy for an AGN with N = 1024 neurons
trained with either the fast store-erase learning rule (left) or traditional Hebbian learning (right). The network was trained with attractor graphs
containing M = 64 memory attractors, each representing the head of a linked list containing E elements (x-axis). Each list contained a random
permutation of E attractors (not including the list’s head attractor), and was encoded as a trajectory through the attractor graph. The total number
of transitions in the attractor graph is 64(E + 1). Performance was evaluated by executing traversals through each list starting with the head pattern,
and errors in transitions were allowed to propagate during traversal. Each line corresponds to a unique context density λ, and each data point
indicates the percentage of successful transitions.

The store-erase learning rule contains an anti-Hebbian component that erases previously learned associations. To660

evaluate this unique contribution, we performed a second experiment with parse trees of at most 64 nodes each. In this661

experiment, the model weights were not reset in between learning each tree. A set of M = 64 attractors was learned662

and made available for construction of each tree, which contained a unique set of transitions between attractors, as663

well as associations between attractors and context/lexicon patterns.664

Results are shown in Figure 11 for 30 trials. The left plot shows accuracy of lex pattern recovery for the two665

learning rules with λ = 1
4 . Accuracy for Hebbian learning (dashed line) drops to zero after the first trial, as learned666

associations compound and interfere with one another. Because the store-erase rule allows overwriting of associations667

via controlled erasure, accuracy remains fairly high across the trials, but dips to as low as 75% (solid line).668

To determine the extent of pattern deterioration, patterns in lex representing stored symbols were compared with a669

fine-grained similarity metric rather than all-or-nothing comparison. This similarity metric measured the percentage670

of lex neurons with activation matching the target symbol’s activation pattern. Results are shown in the right plot of671

Figure 11 for λ = 1
4 . Each data point indicates the average similarity of lex activity patterns retrieved from tree nodes.672

The solid line shows that the average similarity with the store-erase rule is nearly perfect (average similarity of 0.9998673

across trials) despite the dips in overall accuracy in the left plot. This indicates that errors in pattern retrieval are674

minimal, and involve very small numbers of neurons with activation that did not match the target pattern. In contrast,675

the average similarity with Hebbian learning drops rapidly to around 50%, which is the expected similarity for two676

randomly generated patterns.677

3.6. Planning Task678

To evaluate autonomous construction, access, and manipulation of compositional data structures, we tested the679

model using the HTN planning task outlined in Section 2.3.6. First, the controller regions of the model were “flashed”680

using the store-erase rule with an instruction set and set of program subroutines that implement the task (Katz et al.,681

2019). During testing, the model was provided with a sequence of inputs encoding a knowledge-base, environmental682

23

(a) Store-Erase

32 64 128

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

M

ac
cu

ra
cy

λ = 1/2
λ = 1/4
λ = 1/8

(b) Hebbian

32 64 128

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

M
ac

cu
ra

cy

λ = 1/2
λ = 1/4
λ = 1/8

Figure 10: Accuracy of attractor graphs encoding parse trees. Each plot shows the accuracy for an AGN with N = 1024 neurons trained with either
the fast store-erase learning rule (left) or traditional Hebbian learning (right). The network was trained with attractor graphs representing sentence
parse trees drawn from the Penn Treebank. Each node was represented by an attractor in the mem region, and contained a symbol represented by a
pattern of activity in the lex region. Each data point indicates the percentage of lex patterns successfully retrieved (y-axis) during traversal of a tree
with M nodes (x-axis). Errors in attractor transitions were allowed to propagate during traversal, and an external queue was used to maintain and
retrieve intermediate mem activation patterns to perform a breadth-first traversal.

bindings, and top-level actions for planning. After decomposing these actions, the model performed a pre-order683

traversal, printing out the resulting HTN tree.684

The model was tested with top-level action sequences that corresponded to HTNs of various sizes. In the baseline685

condition, these tests were performed with a small knowledge-base (9 rules across 5 compound actions) and small686

environment (4 bindings). To determine the impact of these data structures on planning runtime, two additional687

conditions were considered: one with a larger knowledge-base (extended KB, 15 rules across 7 compound actions),688

and one with a larger set of environmental bindings (extended env, 8 bindings). We ensured that the constructed HTNs689

did not differ across these conditions.690

The size of each network region was set according to the number of patterns to be represented in that region. The691

mem region contained Nmem = 9216 neurons to ensure successful storage of task-relevant data structures. The context692

density λ was set to 0.5, and the store-erase rule was used for online learning (Section 2.3.2).693

The model successfully performed the task in all cases, and produced the sequence of outputs corresponding694

to the correct HTN tree. Figure 12 shows the number of timesteps taken during each test (multi-timestep attractor695

convergence events are collapsed into individual timesteps). These results show that the computational complexity696

of planning scales linearly with the size of the constructed HTN, independently of the size of the knowledge-base or697

environmental binding set. This demonstrates that associative arrays represented in attractor graph memory can be698

efficiently accessed, as lookups require a constant number of timesteps that is independent of the number of learned699

key-value pairs.700

4. Discussion701

We have presented a recurrent neural network model that represents compositional data structures as systems of702

itinerant attractors called attractor graphs. Our model learns context-dependent attractor transitions using a novel703

combination of top-down gating and one-step associative learning. Notably, this training method makes it possible to704

learn multiple outgoing transitions from a single attractor state using a single hetero-associative matrix. These tran-705

24

(a) Perfect Recall

5 10 15 20 25 30

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

trial number

ac
cu

ra
cy

Store-Erase
Hebbian

(b) Similarity

5 10 15 20 25 30

0
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8

0.9
1

trial number
ac

cu
ra

cy

Store-Erase
Hebbian

Figure 11: Learning parse trees without weight resets. The plot shows the performance an AGN with N = 1024 neurons trained with either the
fast store-erase learning rule (solid lines) or traditional Hebbian learning (dashed lines), reported as the average similarity for lex activity patterns
representing symbols stored in tree nodes. Each trial involved learning a single parse tree, and evaluating symbol recall. Attractor states were
recycled between trees, but each tree was represented by a unique set of attractor transitions and inter-regional associations (from mem to ctx and
lex). In between trials, the weights of the model were not reset. The size of randomly selected parse trees was limited to 64 nodes to prevent errors
in attractor convergence.

2 3 4 5 6 7 8 9 10
1,000

1,500

2,000

2,500

3,000

3,500

4,000

HT N actions

tim
es

te
ps

Baseline
Extended KB
Extended env

Figure 12: HTN planning runtime. The full programmable neural network was pre-trained to perform the HTN planning task, and evaluated on
inputs representing a simple repair task domain (Section 2.3.6). Each line shows the number of timesteps taken to parse the domain knowledge-base
and environment bindings, and perform decomposition of a sequence of high-level actions (y-axis). The x-axis indicates the number of actions
in the target HTN (including internal and leaf nodes). Three conditions were evaluated. The baseline condition involved a small knowledge-base
and environment. The “extended KB” condition involved a knowledge-base that was roughly twice the size of the baseline knowledge-base. The
“extended env” condition involved twice the environmental bindings as the baseline condition. The results show that the computational complexity
of the planning stage of the task is independent of the size of the knowledge-base and environmental bindings, and depends only on the resulting
HTN tree.

25

sitions are selected during model execution by multiplicative contextual gating signals that control memory retrieval706

and iteration through learned data structures. We refer to this as functional branching, as the branches in attractor707

sequences are determined by patterns of activity and are not stored in distinct connectivity matrices.708

Empirical results demonstrate that our model can reliably store and retrieve attractor graphs representing composi-709

tional data structures such as associative arrays, linked lists, and trees. While the number of learned attractor states is710

limited, our model can learn attractor graphs with large numbers of transitions (edges), and with very high branching711

factors (vertex degrees), and individual attractors may be used as components of several data structures. We evaluated712

two forms of one-step associative learning: traditional Hebbian learning and the fast store-erase learning rule (Katz713

et al., 2019). While the two learning rules yielded similar memory capacities, the store-erase rule significantly outper-714

formed Hebbian learning on attractor graphs with very high branching factors. This reflects a reduction of interference715

across contexts that is likely due to the anti-Hebbian component of the store-erase rule, which also enables controlled716

erasure of learned associations. The ability to erase and overwrite transitions permits rapid reorganization of attractor717

graphs, making the network an effective model of reusable working memory.718

We also showed that compositional data structures can be efficiently manipulated via procedural gating control in a719

programmable neural network. The network successfully performed a hierarchical planning task involving rule-based720

decomposition of action sequences. A significant limitation of this model is that it does not leverage compositional721

memory to store programmatic procedures, and instead relies upon a comparably simple assembly-like language722

with linear program sequences (Katz et al., 2019). Because attractor graphs can represent tree data structures, these723

processes may instead be represented as abstract syntax trees for programs written in a high level programming724

language. In addition, a unified program/data memory would allow implementation of homoiconic programming725

languages such as Lisp and Scheme, making it possible for the model to modify learned programs and synthesize new726

ones.727

Another significant limitation of our model is that it does not identify opportunities to reuse existing memory728

structures, and does not have a stable long-term memory. As mentioned in the Introduction, the limited capacity of729

human working memory is offset by the ability to organize and store structured representations that afford access to a730

broad range of information. We have shown how representations in working memory can be structured or “chunked”731

according to learned programmatic procedures. The capacity of working memory would be greatly enhanced by a732

long-term memory containing structures that can be integrated with the contents of working memory. Structures in733

working memory could then be replaced by pointers to existing long-term memory structures, effectively “chunking”734

them into compressed units to reduce working memory load.735

Our model differs from contemporary machine learning approaches to compositionality in several ways. Most no-736

tably, individual representations are fixed-point dynamical attractors learned with one-step associative learning rather737

than the error-based gradient descent learning methods common in deep learning. These attractor states are composed738

into complex structures with context-dependent transitions that represent relations between discrete elements in mem-739

ory. Because these relations are stored in connectivity weights, our model does not rely on persistent maintenance of740

multiple activity patterns. Instead, memories are retrieved as needed via top-down control of attractor transitions. This741

“activity-silent” form of working memory has a strong basis in neuroscientific theory (Manohar et al., 2019; Mongillo742

et al., 2008; Rose et al., 2016; Stokes, 2015; Barbosa et al., 2019), and has not previously been used for compositional743

learning in artificial neural networks.744

AGNs do not require specialized operations for compressing elements into structured representations, such as cir-745

cular convolutions. Instead of creating summary vectors, AGNs learn direct relations between elements with arbitrary746

encodings (activity patterns) using one-step associative learning. Because structure is learned in connectivity weights,747

compositional data structures can be modified without changing any activity state encodings. This is particularly748

advantageous for nested structures: modifications to a sub-structure do not require modifications to encapsulating749

structures. For example, a leaf may be added to a tree without modifying the encodings of the leaf’s ancestor nodes.750

In contrast, semantic pointers are semantically related to the content they represent, and cannot be modified without751

creation of new semantic pointers (Blouw et al., 2016).752

Attractor graphs are capable of representing any labeled directed multigraph that does not contain two edges753

with a shared source node and edge label. This represents a very general class of possible data structures, including754

associative arrays, linked lists, and trees, but also graphs with cycles that cannot be represented as semantic pointers755

due to recursive dependencies. This expressive capability exceeds that of other attractor-based models that focus on756

sequence learning (Rajan et al., 2016; Yamashita and Tani, 2008; Jensen, 2006), or that have architecturally separated757

26

representations of each hierarchical level, as in Dynamic Field Theory (Durán et al., 2012). In our model, attractor758

graphs in the mem region can represent arbitrarily nested hierarchical structures without distinct regions for each level759

of the hierarchy.760

Acknowledgements761

This work was supported by ONR award N00014-19-1-2044.762

Appendix A. Planning Task Domain763

The hierarchical planning task described in Section 2.3.6 involves rule-based decomposition of sequential behav-764

iors according to environmental conditions. Here we provide the decomposition rules, environmental bindings, and765

sequences of top-level actions used for the experiments in Section 3.6.766

Rules in the knowledge-base specify how compound actions can be decomposed into sequences of sub-actions767

according to properties of the environment. For example, opening a door involves different actions that depend on the768

type of door being opened (e.g., a sliding door is opened by grasping the handle, sliding the door open, and releasing769

the handle). We use the following notation to express these rules:770

compound action(env value) =

(sub actiona

1, sub actiona
2, ...) if env val = vala

(sub actionb
1, sub actionb

2, ...) if env val = valb

...

where compound action is the action to be decomposed, env value is the value of the environmental binding that771

determines the applicable decomposition rule, (sub actiona
1, sub actiona

2, ...) is a sequence of sub-actions for rule a,772

and vala is the required environmental binding value to apply rule a. The full set of rules is enumerated below. Rules773

marked with a ? are only learned in the “extended knowledge-base” condition in Section 3.6, and are not used during774

decomposition of the top-level sequences that were tested.775

open door(door type) =

(grasp, slide open, release) if door type = sliding
(enter passcode, enter open) if door type = electronic

? (unlatch, grasp, pull open, release) if door type = latch

close door(door type) =

(grasp, slide closed, release) if door type = sliding
(enter close) if door type = electronic

? (grasp, push closed, release, latch) if door type = latch

check component(indicator) =

(check led) if indicator = led

? (check pressure gauge) if indicator = pressure gauge
? (check display) if indicator = display

check led(led color) =

(report working) if led color = green
(repair component) if led color = yellow

? (report broken) if led color = red

check display(display reading) =

? (report working) if display reading = ok
? (repair component) if display reading = warning
? (report broken) if display reading = error

check pressure gauge(pressure reading) =

? (report working) if pressure reading = high
? (repair component) if pressure reading = medium
? (report broken) if pressure reading = low

27

repair component(interaction point) =

(f lip switch) if interaction point = switch
(press button) if interaction point = button

? (screw valve) if interaction point = valve

Environmental bindings are stored in an associative array, and each binding takes the form of a simple key-value776

pair. The full environment is listed below. Items marked with a ? are only learned in the “extended environment”777

condition in Section 3.6, and are not accessed during decomposition of the test top-level sequences.778

door type : electronic

indicator : led

led color : yellow

interaction point : button

? weather : cloudy

? pants : jeans

? time : evening

? mood : tired

Four different top-level action sequences were used for testing. These sequences are listed below, along with the779

total number of actions contained in the resulting HTN (including internal and leaf nodes):780

2 actions : (repair component)
5 actions : (open door, close door)
7 actions : (open door, press button, report repaired, close door)
10 actions : (open door, check component, close door)

References781

Aizawa, K., 2003. The productivity of thought, in: The Systematicity Arguments. Springer, pp. 43–55.782

Andreas, J., Rohrbach, M., Darrell, T., Klein, D., 2016. Neural module networks, in: Proceedings of the IEEE Conference on Computer Vision783

and Pattern Recognition, pp. 39–48.784

Ba, J., Hinton, G.E., Mnih, V., Leibo, J.Z., Ionescu, C., 2016. Using fast weights to attend to the recent past, in: Advances in Neural Information785

Processing Systems, pp. 4331–4339.786

Baan, J., Leible, J., Nikolaus, M., Rau, D., Ulmer, D., Baumgärtner, T., Hupkes, D., Bruni, E., 2019. On the realization of compositionality in neural787

networks, in: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 127–137.788

Baars, B.J., 2007. The global workspace theory of consciousness. The Blackwell Companion to Consciousness , 236–246.789

Baars, B.J., Franklin, S., 2003. How conscious experience and working memory interact. Trends in Cognitive Sciences 7, 166–172.790

Baayen, R.H., 1994. Productivity in language production. Language and Cognitive Processes 9, 447–469.791

Baddeley, A., 1993. Working memory and conscious awareness. Theories of Memory , 11–28.792

Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 .793

Barbosa, J., Stein, H., Martinez, R., Galan, A., Adam, K., Li, S., Valls-Solé, J., Constantinidis, C., Compte, A., 2019. Interplay between persistent794

activity and activity-silent dynamics in prefrontal cortex during working memory. bioRxiv , 763938.795

Barsalou, L.W., 1993. Flexibility, structure, and linguistic vagory in concepts: Manifestations of compositional system of perceptual symbols.796

Theories of Memory , 29.797

Besold, T.R., Garcez, A.d., Bader, S., Bowman, H., Domingos, P., Hitzler, P., Kühnberger, K.U., Lamb, L.C., Lowd, D., Lima, P.M.V., et al., 2015.798

Neural-symbolic learning and reasoning: A survey and interpretation, in: Knowledge Representation and Reasoning: Integrating Symbolic and799

Neural Approaches: Papers from the 2015 AAAI Spring Symposium.800

Bienenstock, E., Geman, S., Potter, D., 1997. Compositionality, MDL priors, and object recognition, in: Advances in Neural Information Processing801

Systems, pp. 838–844.802

Blouw, P., Solodkin, E., Thagard, P., Eliasmith, C., 2016. Concepts as semantic pointers: A framework and computational model. Cognitive803

Science 40, 1128–1162.804

Borisyuk, R., Chik, D., Kazanovich, Y., da Silva Gomes, J., 2013. Spiking neural network model for memorizing sequences with forward and805

backward recall. Biosystems 112, 214–223.806

Botvinick, M.M., 2008. Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences 12, 201–208.807

28

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., Kohli, P., 2018. Leveraging grammar and reinforcement learning for neural program synthesis.808

arXiv preprint arXiv:1805.04276 .809

Burke, M., Penkov, S., Ramamoorthy, S., 2019. From explanation to synthesis: Compositional program induction for learning from demonstration.810

Robotics: Science and Systems XV doi:10.15607/RSS.2019.XV.015.811

Campitelli, G., Gobet, F., Head, K., Buckley, M., Parker, A., 2007. Brain localization of memory chunks in chessplayers. International Journal of812

Neuroscience 117, 1641–1659.813

Chabuk, T., Reggia, J.A., 2013. The added value of gating in evolved neurocontrollers, in: The 2013 International Joint Conference on Neural814

Networks (IJCNN), pp. 1–8. doi:10.1109/IJCNN.2013.6706895.815

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint816

arXiv:1412.3555 .817

Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., Kyllonen, P.C., 2004. Working memory is (almost) perfectly predicted by g. Intelligence818

32, 277–296.819

Conway, A.R., Kane, M.J., Engle, R.W., 2003. Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences 7,820

547–552.821

Cowan, N., 2010. The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science822

19, 51–57.823

Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., Graves, A., 2016. Associative long short-term memory, in: International Conference on824

Machine Learning, pp. 1986–1994.825

Dehaene, S., Changeux, J.P., 1997. A hierarchical neuronal network for planning behavior. Proceedings of the National Academy of Sciences 94,826

13293–13298.827

Durán, B., Sandamirskaya, Y., Schöner, G., 2012. A dynamic field architecture for the generation of hierarchically organized sequences, in:828

International Conference on Artificial Neural Networks, Springer. pp. 25–32.829

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D., 2012. A large-scale model of the functioning brain.830

Science 338, 1202–1205.831

Erlhagen, W., Schöner, G., 2002. Dynamic field theory of movement preparation. Psychological Review 109, 545.832

Erol, K., 1996. Hierarchical task network planning: formalization, analysis, and implementation. Ph.D. thesis.833

Fodor, J.A., Pylyshyn, Z.W., 1988. Connectionism and cognitive architecture: A critical analysis. Cognition 28, 3–71. doi:10.1016/834

0010-0277(88)90031-5.835

Gayler, R.W., 2003. Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience, in: International Conference on836

Cognitive Science, Citeseer.837

Ghallab, M., Nau, D., Traverso, P., 2004. Automated Planning: Theory and Practice. Elsevier.838

Graves, A., Wayne, G., Danihelka, I., 2014. Neural turing machines. arXiv preprint arXiv:1410.5401 .839

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Colmenarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou,840

J., et al., 2016. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476.841

Hauge, T.C., Katz, G.E., Davis, G.P., Huang, D.W., Reggia, J.A., Gentili, R.J., 2020. High-level motor planning assessment during performance of842

complex action sequences in humans and a humanoid robot. International Journal of Social Robotics , 1–18.843

Hauge, T.C., Katz, G.E., Davis, G.P., Jaquess, K.J., Reinhard, M.J., Costanzo, M.E., Reggia, J.A., Gentili, R.J., 2019. A novel application of844

levenshtein distance for assessment of high-level motor planning underlying performance during learning of complex motor sequences. Journal845

of Motor Learning and Development 1, 1–20.846

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation 9, 1735–1780.847

Hoshino, O., Usuba, N., Kashimori, Y., Kambara, T., 1997. Role of itinerancy among attractors as dynamical map in distributed coding scheme.848

Neural Networks 10, 1375–1390.849

Hupkes, D., Dankers, V., Mul, M., Bruni, E., 2020. Compositionality decomposed: How do neural networks generalise? Journal of Artificial850

Intelligence Research 67, 757–795.851

Hupkes, D., Singh, A., Korrel, K., Kruszewski, G., Bruni, E., 2018. Learning compositionally through attentive guidance. arXiv preprint852

arXiv:1805.09657 .853

Jaeggi, S.M., Buschkuehl, M., Jonides, J., Perrig, W.J., 2008. Improving fluid intelligence with training on working memory. Proceedings of the854

National Academy of Sciences 105, 6829–6833.855

Jensen, O., 2006. Maintenance of multiple working memory items by temporal segmentation. Neuroscience 139, 237–249.856

Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., Gulwani, S., 2018. Neural-guided deductive search for real-time program synthesis from857

examples. arXiv preprint arXiv:1804.01186 .858

Kamp, H., Partee, B., 1995. Prototype theory and compositionality. Cognition 57, 129–191.859

Katz, G.E., Davis, G.P., Gentili, R.J., Reggia, J.A., 2019. A programmable neural virtual machine based on a fast store-erase learning rule. Neural860

Networks 119, 10–30.861

Kipf, T., Li, Y., Dai, H., Zambaldi, V., Sanchez-Gonzalez, A., Grefenstette, E., Kohli, P., Battaglia, P., 2019. Compile: Compositional imitation862

learning and execution, in: International Conference on Machine Learning (ICML), pp. 3418–3428.863

Lake, B., Baroni, M., 2018. Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks, in:864

International Conference on Machine Learning, pp. 2873–2882.865

Lake, B.M., 2019. Compositional generalization through meta sequence-to-sequence learning, in: Advances in Neural Information Processing866

Systems, pp. 9788–9798.867

Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J., 2017. Building machines that learn and think like people. Behavioral and Brain868

Sciences 40.869

Loula, J., Baroni, M., Lake, B.M., 2018. Rearranging the familiar: Testing compositional generalization in recurrent networks. arXiv preprint870

arXiv:1807.07545 .871

Manohar, S.G., Zokaei, N., Fallon, S.J., Vogels, T., Husain, M., 2019. Neural mechanisms of attending to items in working memory. Neuroscience872

29

http://dx.doi.org/10.15607/RSS.2019.XV.015
http://dx.doi.org/10.1109/IJCNN.2013.6706895
http://dx.doi.org/10.1016/0010-0277(88)90031-5
http://dx.doi.org/10.1016/0010-0277(88)90031-5
http://dx.doi.org/10.1016/0010-0277(88)90031-5

& Biobehavioral Reviews .873

Marcus, G., 2018. Deep Learning: A Critical Appraisal. arXiv:1801.00631 .874

Marcus, G., 2020. The next decade in ai: four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177 .875

Masse, N.Y., Grant, G.D., Freedman, D.J., 2018. Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization.876

Proceedings of the National Academy of Sciences 115, E10467–E10475.877

Miconi, T., Stanley, K., Clune, J., 2018. Differentiable plasticity: training plastic neural networks with backpropagation, in: International Confer-878

ence on Machine Learning, pp. 3559–3568.879

Miller, P., 2016. Itinerancy between attractor states in neural systems. Current Opinion in Neurobiology 40, 14–22.880

Mongillo, G., Barak, O., Tsodyks, M., 2008. Synaptic theory of working memory. Science 319, 1543–1546.881

Nefdt, R.M., 2020. A puzzle concerning compositionality in machines. Minds and Machines , 1–29.882

Oberauer, K., 2009. Design for a working memory. Psychology of Learning and Motivation 51, 45–100.883

Pelletier, F.J., 1994. The principle of semantic compositionality. Topoi 13, 11–24.884

Pham, T., Tran, T., Venkatesh, S., 2018. Graph memory networks for molecular activity prediction, in: 2018 24th International Conference on885

Pattern Recognition (ICPR), IEEE. pp. 639–644.886

Piantadosi, S.T., Tenenbaum, J.B., Goodman, N.D., 2016. The logical primitives of thought: Empirical foundations for compositional cognitive887

models. Psychological Review 123, 392.888

Plate, T.A., 1995. Holographic reduced representations. IEEE Transactions on Neural networks 6, 623–641.889

Rajan, K., Harvey, C.D., Tank, D.W., 2016. Recurrent network models of sequence generation and memory. Neuron 90, 128–142.890

Reggia, J.A., Katz, G.E., Davis, G.P., 2019. Modeling working memory to identify computational correlates of consciousness. Open Philosophy891

2, 252–269.892

Reggia, J.A., Katz, G.E., Davis, G.P., 2020. Artificial conscious intelligence. Journal of Artificial Intelligence and Consciousness 7, 95–107.893

Reverberi, C., Görgen, K., Haynes, J.D., 2012. Compositionality of rule representations in human prefrontal cortex. Cerebral Cortex 22, 1237–894

1246.895

Riesenhuber, M., Poggio, T., 1999. Hierarchical models of object recognition in cortex. Nature Neuroscience 2, 1019–1025.896

Rikhye, R.V., Gilra, A., Halassa, M.M., 2018. Thalamic regulation of switching between cortical representations enables cognitive flexibility.897

Nature Neuroscience 21, 1753–1763.898

Rose, N.S., LaRocque, J.J., Riggall, A.C., Gosseries, O., Starrett, M.J., Meyering, E.E., Postle, B.R., 2016. Reactivation of latent working memories899

with transcranial magnetic stimulation. Science 354, 1136–1139.900

Sandamirskaya, Y., Zibner, S.K., Schneegans, S., Schöner, G., 2013. Using dynamic field theory to extend the embodiment stance toward higher901

cognition. New Ideas in Psychology 31, 322–339.902

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,903

M., et al., 2016. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489.904

Stewart, T.C., Bekolay, T., Eliasmith, C., 2011. Neural representations of compositional structures: Representing and manipulating vector spaces905

with spiking neurons. Connection Science 23, 145–153.906

Stokes, M.G., 2015. ‘activity-silent’working memory in prefrontal cortex: a dynamic coding framework. Trends in Cognitive Sciences 19, 394–405.907

Sukhbaatar, S., Weston, J., Fergus, R., et al., 2015. End-to-end memory networks, in: Advances in Neural Information Processing Systems, pp.908

2440–2448.909

Sylvester, J., Reggia, J., 2016. Engineering neural systems for high-level problem solving. Neural Networks 79, 37–52. doi:10.1016/j.neunet.910

2016.03.006.911

Sylvester, J., Reggia, J., Weems, S., Bunting, M., 2013. Controlling working memory with learned instructions. Neural Networks 41, 23–38.912

Szabó, Z., 2012. The case for compositionality. The Oxford Handbook of Compositionality 64, 80.913

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need, in: Advances914

in Neural Information Processing Systems, pp. 5998–6008.915

Vecoven, N., Ernst, D., Wehenkel, A., Drion, G., 2020. Introducing neuromodulation in deep neural networks to learn adaptive behaviours. PloS916

One 15, e0227922.917

Van der Velde, F., Kamps, M.d., 2006. Neural blackboard architectures of combinatorial structures in cognition. Behavioral and Brain Sciences918

29, 37–70.919

Witkin, A.P., Tenenbaum, J.M., 1983. On the role of structure in vision, in: Human and Machine Vision. Elsevier, pp. 481–543.920

Yamashita, Y., Tani, J., 2008. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.921

PLoS Comput Biol 4, e1000220.922

30

http://dx.doi.org/10.1016/j.neunet.2016.03.006
http://dx.doi.org/10.1016/j.neunet.2016.03.006
http://dx.doi.org/10.1016/j.neunet.2016.03.006

	Introduction
	Methods
	Attractor Graph Networks
	Contextual Gating Supports Functional Branching

	Compositional Memory
	Representing Compositional Data Structures

	Programmatic Control of Compositional Memory
	Program Storage and Execution
	Online Learning
	Comparisons
	Generating Memory States
	I/O
	Planning Task

	Results
	Attractor Convergence
	Transition Branching
	Random Graphs
	Linked Lists
	Parse Trees
	Planning Task

	Discussion
	Planning Task Domain

