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Abstract

Despite significant improvements in contemporary machine learning, symbolic methods currently outperform
artificial neural networks on tasks that involve compositional reasoning, such as goal-directed planning and logical
inference. This illustrates a computational explanatory gap between cognitive and neurocomputational algorithms that
obscures the neurobiological mechanisms underlying cognition and impedes progress toward human-level artificial
intelligence. Because of the strong relationship between cognition and working memory control, we suggest that
the cognitive abilities of contemporary neural networks are limited by biologically-implausible working memory
systems that rely on persistent activity maintenance and/or temporal nonlocality. Here we present NeuroLISP, an
attractor neural network that can represent and execute programs written in the LISP programming language. Unlike
previous approaches to high-level programming with neural networks, NeuroLISP features a temporally-local working
memory based on itinerant attractor dynamics, top-down gating, and fast associative learning, and implements several
high-level programming constructs such as compositional data structures, scoped variable binding, and the ability
to manipulate and execute programmatic expressions in working memory (i.e., programs can be treated as data).
Our computational experiments demonstrate the correctness of the NeuroLISP interpreter, and show that it can learn
non-trivial programs that manipulate complex derived data structures (multiway trees), perform compositional string
manipulation operations (PCFG SET task), and implement high-level symbolic AI algorithms (first-order unification).
We conclude that NeuroLISP is an effective neurocognitive controller that can replace the symbolic components of
hybrid models, and serves as a proof of concept for further development of high-level symbolic programming in neural
networks.
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Compositionality, Associative learning
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1. Introduction2

While the capabilities of artificial neural networks have improved significantly in the past several decades, im-3

plementing high-level cognitive abilities with neural computations remains a significant challenge. Many of these4

abilities, such as goal-directed planning and logical inference, are readily captured in symbolic algorithms, while5

neural networks struggle to learn the robust, generalizable procedures necessary to carry out these tasks. This is6

often addressed with hybrid systems that combine neural networks with symbolic programs to leverage the unique7

benefits of both methods (Garcez et al., 2015; Marcus, 2020; Kipf et al., 2019; Andreas et al., 2016; Sun and Naveh,8

2004; Chella et al., 2008), such as neural-guided search algorithms (Bunel et al., 2018; Silver et al., 2016; Kalyan9

∗Corresponding author.
Email addresses: grpdavis@umd.edu (Gregory P. Davis), gkatz01@syr.edu (Garrett E. Katz), rodolphe@umd.edu (Rodolphe J.

Gentili), reggia@umd.edu (James A. Reggia)

©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Published journal article available at https://doi.org/10.1016/j.neunet.2021.11.009

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neunet.2021.11.009


et al., 2018). The success of hybrid models supports the idea that neural networks lack the cognitive control provided10

by symbolic programming. Given that the human nervous system can reliably perform a wide array of high-level11

cognitive tasks, this lacuna highlights a computational explanatory gap between cognitive and neurocomputational12

algorithms that hinders development of human-level neurocognitive models (Reggia et al., 2017, 2014). What im-13

provements to neural networks might help bridge this gap?14

Working memory is a form of short-term memory that is actively manipulated during cognitive processing, and15

has been extensively studied in both the neural and cognitive sciences (D’Esposito and Postle, 2015; Baddeley, 2002).16

Because working memory capacity is strongly correlated with measures of general intelligence in humans (Conway17

et al., 2003; Colom et al., 2004; Jaeggi et al., 2008; Oberauer et al., 2008, 2007), advances in working memory18

mechanisms may significantly improve the cognitive capabilities of neural networks, and may also have implications19

for perceptual and motor learning in both humans and cognitive robots (Persiani et al., 2018; Phillips and Noelle, 2005;20

Montero-Odasso et al., 2012; Sidarta et al., 2018; Shuggi et al., 2017). In addition, working memory includes both21

static and dynamic aspects that are reminiscent of symbolic programming; it contains richly organized representations22

(data structures) that are algorithmically manipulated by top-down cognitive control (Oberauer, 2009; Edin et al.,23

2009; Zanto et al., 2011; D’Esposito and Postle, 2015). This makes working memory a promising system of study for24

bridging the computational explanatory gap (Reggia et al., 2019, 2020).25

Recently, neural attention has greatly improved the performance of neural networks on challenging natural lan-26

guage processing tasks such as machine translation and image captioning (Galassi et al., 2020; Vaswani et al., 2017;27

Sukhbaatar et al., 2015; Bahdanau et al., 2015; Rush et al., 2015; You et al., 2016). Attention mechanisms allow neural28

networks to take a more active role in data processing by selectively filtering and routing information via top-down29

gating. However, even with attention, deep neural networks have a limited ability to learn tasks that require robust30

compositional reasoning (Hupkes et al., 2020; Lake and Baroni, 2018; Loula et al., 2018), and we propose that this is31

due in part to biologically-implausible working memory. For example, Transformer networks (Vaswani et al., 2017)32

perform temporally non-local operations over a history of activation states, while models like Neural Turing Machines33

and Differentiable Neural Computers (Graves et al., 2014, 2016) include specialized RAM-like circuitry dedicated to34

maintaining activity patterns in spatially segregated neural populations. In contrast, neuroscientific evidence suggests35

that human working memory is supported by activity-silent mechanisms such as rapid synaptic plasticity (Manohar36

et al., 2019; Mongillo et al., 2008; Rose et al., 2016; Stokes, 2015; Barbosa et al., 2019). This form of working37

memory permits storage of multiple representations in a shared neural substrate, and requires top-down control that38

is qualitatively different from the filtering/selection provided by neural attention. Because of the strong relationship39

between working memory control and cognition in general, improvements to neural working memory that achieve40

temporal locality without specialized memory arrays may provide the necessary tools for learning high-level cogni-41

tive behaviors that are currently beyond the reach of contemporary neural models.42

Fast associative learning can be used to establish activity patterns as attractor states in recurrent neural networks,43

making them available for subsequent recall without persistent maintenance (Ba et al., 2016; Hopfield, 1982; Amit,44

1992; Pascanu and Jaeger, 2011; Miller, 2016; Hoshino et al., 1997). Such attractor neural networks have a long45

history in neurocomputation research, but have only recently addressed the compositional structure and procedural46

top-down control that are characteristic of human working memory. Recently developed “programmable attractor47

networks” achieve human-like control of working memory on several cognitive tasks (Sylvester and Reggia, 2016;48

Sylvester et al., 2013), and are capable of storing and manipulating structured representations such as lists, associative49

arrays, and trees (Davis et al., 2021a). These networks feature temporally-local control of distributed (non-local)50

representations in working memory that is based on itinerant attractor dynamics, fast associative learning, and top-51

down gating. Critically, their behavior is directed by learned instruction sequences that are themselves stored as52

sequential attractors in memory, and they can be flexibly “reprogrammed” to perform new tasks without changes to53

the underlying neural architecture.54

One such network, the “Neural Virtual Machine” (NVM), is a purely neural system with program-independent cir-55

cuitry that supports the key functionality of conventional computer architectures (Katz et al., 2019). While the NVM56

achieves universal neural programming and can simulate any Turing machine, its low-level assembly-like language57

makes it difficult to express high-level programs that are common in symbolic AI. In addition, it features segregated58

regions for representing programs and data, making it difficult to implement cognitive procedures that involve reason-59

ing about behavior (e.g., planning, imitation, metacognition, etc). These procedures are more readily implemented in60

high-level languages that treat programs as “first-class citizens” that can be programmatically manipulated, such as61
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LISP or Scheme.62

In this paper, we present NeuroLISP, an attractor neural network that can represent and execute programs written in63

the LISP programming language. NeuroLISP implements the core functionality of a LISP interpreter using only neural64

computations, and demonstrates how high-level symbolic structures can be reliably constructed and manipulated by65

sub-symbolic neural processes. As such, our model contributes to bridging the computational explanatory gap, and66

may inform studies on the neural basis of cognition and consciousness (Reggia et al., 2019). In addition, NeuroLISP67

serves as a purely-neural replacement for the top-down control provided by symbolic algorithms in hybrid models, and68

has the potential to carry over the unique advantages of neural computation to high-level cognition, such as adaptive69

learning, improved generalization abilities, fault tolerance, and seamless integration with low-level neural models of70

sensory and motor processing.71

To our knowledge, this is the first effort to implement a high-level functional programming language in a fixed neu-72

ral architecture with distributed representations. NeuroLISP is based on the same core principles as the NVM; namely,73

itinerant attractor dynamics, fast associative learning, and top-down gating. However, it implements several features74

of high-level symbolic programming that are absent in the NVM and other programmable neural networks, such as75

native support for compositional data structures, scoped variable binding, and the ability to construct, manipulate, and76

execute programmatic expressions (i.e., programs can be treated as data). These features facilitate implementation of77

high-level cognitive processes by improving both the static and dynamic components of working memory.78

We present empirical results that demonstrate the breadth of NeuroLISP’s capabilities. After verifying the cor-79

rectness of the implemented interpreter with a suite of handwritten tests, we evaluated the network’s memory capacity80

with basic programs involving list storage and variable binding. Our results show that the network’s memory capacity81

scales linearly with the size of its memory regions. Next, we trained NeuroLISP with a small library of multiway tree82

processing algorithms, including depth-first traversal and substitution, demonstrating its ability to learn procedures83

that manipulate complex data structures. Then, we evaluated NeuroLISP using programs with greater relevance to84

artificial intelligence. Specifically, we tested a library of sequence manipulation functions that solves the PCFG SET85

task, a benchmark for compositionality in machine learning models (Hupkes et al., 2020), and a first-order unification86

algorithm that performs symbolic pattern matching, a key component of automated reasoning. With sufficiently sized87

neural regions, NeuroLISP achieved perfect performance on test cases with significant memory and processing de-88

mands. Finally, we evaluated runtime and memory usage to show that the model can be simulated efficiently, and that89

it scales well on parallel computing hardware. We conclude that NeuroLISP is an effective neurocognitive controller90

that can replace the symbolic components that provide robust top-down control in hybrid models, and serves as a91

proof of concept for further development of high-level symbolic programming in neural networks.92

2. Methods93

LISP is a family of high-level programming languages with an extensive history of use in artificial intelligence94

(McCarthy et al., 1965; Norvig, 1992). Today, active communities of developers exist for several dialects of LISP,95

including Common Lisp (Seibel, 2006), Clojure (Hickey, 2008), and Racket (Felleisen et al., 2015). LISP is celebrated96

for the simplicity and consistency of its syntax and underlying data structures: the contents of memory are made up97

of “s-expressions” (symbolic expressions), each of which is either an atomic symbol or a pair containing two s-98

expressions (referred to as a “cons cell”). This recursive definition permits expression of compositional structures99

such as lists and trees. Notably, s-expressions are used to represent both programs and the data they manipulate,100

which facilitates programmatic modification and generation of programs (i.e., programs as data). LISP also includes101

operators that allow programs to influence their own evaluation and switch between treatment of s-expressions as102

programs or data: the “quote” operation prevents evaluation of a sub-expression in the program, and instead returns103

it directly as data, while the “eval” operation explicitly induces evaluation of an s-expression that was returned as104

data from evaluation of a program sub-expression. Altogether, the ability to interchange programs and data makes105

LISP a valuable language for modeling high-level cognitive functions that include reasoning about behavior, such as106

planning, imitation, and metacognition, which are difficult for neural networks to learn. More generally, high-level107

symbolic programming provides a number of useful tools for cognitive modeling, such as scoped variable binding and108

compositional data structures.109
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NeuroLISP1 is a purely-neural model that emulates an interpreter for a dialect of LISP that includes the core110

functionality of Common Lisp, and serves as a proof of concept for further development of high-level symbolic111

programming in neural networks. The operators supported in NeuroLISP are listed in Table 1 and described in112

more detail in Appendix A. NeuroLISP represents discrete symbols as distributed patterns of neural activation that

Table 1: Operators supported in NeuroLISP

Lists (Cons Cells) cons, car, cdr, cadr, list
Hash Maps (Associative Arrays) makehash, checkhash, gethash, sethash, remhash
I/O read, print
Function Definition defun, lambda, label
Variable Binding let, setq
Conditional Statements cond, if
Logical Statements eq, atom, listp, not, and, or
Evaluation eval, quote
Control progn, dolist, error, halt

113

are organized into complex data structures by learned associations in neural pathways. The high-level workflow of114

NeuroLISP is shown in Figure 1. The model is constructed by a one-time user-configurable procedure that involves

Controller     Memory

Architecture
Specifica"on 

(car (cons
   (quote A)
   (quote B)))

Ini�alize model

A

Read input program Evaluate program Print result

Firmware

Figure 1: NeuroLISP workflow. Graphs depict learned distributed activity states and transitions in neural memory. First, the model is constructed
and initialized by a one-time procedure (left) that constructs the neural components and “flashes” the interpreter firmware (dashed graph in left
Controller half of model). Then, the model begins execution in a read-eval-print-loop that begins by parsing a sequence of inputs representing a
program to be executed (center left). The program depicted here (top center) constructs a cons cell containing two symbols, (A B), and retrieves
the car (first) element. The program is fed into the model as a sequence of activation states over time, each representing one symbol in the program.
During parsing, the model modifies its memory to create a representation of the program in neural memory (dashed graph in right Memory half of
model). Once the program is parsed and learned in memory, it is evaluated, which may involve construction of new memories (dashed circle and
arrows, center right). Upon completion, the result (A) is printed as output of the model (right) via a sequence of activation states representing the
symbols in the output stream. Finally, the model returns to the beginning of the loop to parse the next program. The previously learned programs
remain in memory as new programs are learned.

115

learning the underlying “firmware” of the LISP interpreter using a one-step associative learning rule. Subsequently,116

the model executes a cycle of activity that 1) reads a sequence of input activity patterns specifying a program to be117

executed, 2) evaluates the program according to the implemented language by modifying its memory, and 3) prints118

1https://github.com/vicariousgreg/neurolisp
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the result as a sequence of output activity patterns. Programs are read in as temporally-extended sequences of neural119

inputs, and stored in memory as systems of interconnected attractor states called attractor graphs (Davis et al., 2021a)120

in a recurrent neural region that represents a shared program/data memory space. During evaluation, new memories are121

constructed based on the interpreted programmatic expressions, and the final result is printed via sequential activation122

of neural patterns that represent a stream of output symbols. The neurocomputational procedures involved in parsing,123

evaluation, and printing are discussed in Section 2.3.124

In the following, we first outline the mechanisms that govern model execution and the various types of dynamics125

that they support (Section 2.1). Then we describe the fundamental data structures of the virtual interpreter, their rep-126

resentation as systems of attractors, and the basic operations that are performed on them via algorithmic control of127

top-down gating (Section 2.2). This is followed by an explanation of the virtual interpreter, including expression eval-128

uation, comparison operations, input/output, scoped variable bindings, function definitions, and function applications129

(Section 2.3). Finally, we present experimental methods (Section 2.4) and empirical results (Section 3) that demon-130

strate that NeuroLISP properly implements the LISP programming language and can successfully execute high-level131

programs.132

2.1. Neural Architecture133

NeuroLISP is a multi-region recurrent neural network with gated inter-connections that implements a virtual LISP134

interpreter. The architecture of the model (shown in Figure 2 and described in more detail in Appendix B) is inspired135

by the Neural Virtual Machine (Katz et al., 2019) and the stack machine architectures used for early LISP machines136

(Koopman, 1989). A Controller sub-network (bottom left) controls the flow of information processing through the137

model over time by translating patterns of activation into temporally-extended gating of model components. These138

activation patterns represent learned programs that are evaluated by the underlying virtual interpreter, and can be139

modified during program evaluation (i.e., programs can be treated as data). Discrete symbols are represented by140

patterns of activation in a lexicon region (lex, center of Figure 2) that can be exchanged as input and output with an141

external environment, allowing the model to be programmed via environmental interactions. Unlike contemporary142

deep neural networks, NeuroLISP uses a one-step local learning rule that permits rapid modification of associative143

networks within and between regions. This learning rule is used for both one-time initialization of interpreter functions144

and online learning during program execution (e.g., when modifying variable bindings, creating new data structures,145

and modifying runtime/data stacks).146

Regions in NeuroLISP represent symbolic information as distributed patterns of activation, and function according147

to a shared set of rules for activation dynamics and learning. Neurons in a region r receive inputs from a variety of148

sources, each with a unique gate that determines when it is active during model execution:149

sr(t) =
∑
q,`

gr,q[`](t) Wr,q[`](t) vq(t)︸                           ︷︷                           ︸
weighted connectivity

+ gbias
r (t) br︸     ︷︷     ︸

bias

+ gnoise
r (t) nr(t)︸         ︷︷         ︸

noise

+ gread
r (t) Ir(t)︸        ︷︷        ︸

external inputs

+ gsaturate
r (t) σ−1

r (vr(t))︸                    ︷︷                    ︸
maintenance

(1)

where sr(t) is a vector of cumulative synaptic input to region r at time t that is aggregated from several sources:150

• weighted inputs from connected regions (solid lines with arrow heads in Figure 2). Wr,q[`] is a weight matrix for151

the connection from region q to region r that is active when gr,q[`](t) = 1, ` is a label that distinguishes between152

weight matrices that share source and target regions, and vq(t) is a vector of neural activity in source region q at153

time t. When r = q, the connection is recurrent (looped arrows in Figure 2).154

• bias vector. br is a bias vector for region r that is active when gbias
r (t) = 1. The bias term is used by the gate155

sequence region during comparison operations (Section 2.3.2).156

• random noise. When gnoise
r (t) = 1, a vector of random inputs nr(t) generates a random activity pattern in region157

r at time t. The random vector nr(t) is produced by a Bernoulli process with probability λr. For regions with158

recurrent dynamics, λr = 0.5 to maintain balance between positive and negative activation levels. For context159

regions (labeled ctx in Figure 2), λr is a variable parameter (for details on the implications of this parameter on160

contextualized attractor dynamics, see Davis et al. (2021a)).161
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Controller

Memory

Stack

ctx

ctx

Lexicon

output

env

mem

lex

op
gate

sequence

run me

stack

data

stack

gate output

regional ga!ng

input

Figure 2: NeuroLISP architecture, inspired by the Neural Virtual Machine (Katz et al., 2019) and the stack machine architecture of traditional
LISP machines (Koopman, 1989). The model is made up of several neural regions (boxes) with recurrent and inter-regional connectivity (looped
and straight arrows with solid lines). Connections are controlled by neurons in the gate output region of the Controller sub-network (bottom left),
which determine the components of the model that are active at each timestep (regional gating, dashed lines). Each gate (g(t) with subscripts in
Equations 1 - 6) is assigned to a unique neuron in the gate output region, and its activation level is used to determine whether the gate is open or
closed at each timestep. Activation of the gate output region is guided by a cascade of regions with recurrent dynamics (gate sequence and op)
that implement the core functionality of a virtual LISP interpreter. Together, the Controller regions translate learned LISP programs to temporally-
extended sequences of regional gating that specify pathways for information processing over time, much like the control unit of a conventional
computer architecture. The lexicon region (lex, center) serves as a bridge between model components, and its activity patterns represent discrete
symbols that may correspond to interpreter functions (i.e., LISP operators) or arbitrary symbols that can be read from or written to an external
environment (dashed input/output lines, center left). Data structures, including LISP programs, are represented by systems of attractors in the core
memory region (mem, center), which store symbolic contents via the pathway from mem to lex. The remaining components support interpretive
functions: the environment region (env, top) stores a tree structure containing namespaces of variable bindings that are modified and accessed
during program execution, and the Stack sub-network regions (runtime stack and data stack, right) store stack sequences made up of pointers to
various activation states in the model, making them accessible without persistent maintenance.

• external inputs. When gread
r (t) = 1, region r “reads” an input pattern Ir(t) from the external environment. The162

dashed line entering the lex region in Figure 2 indicates external inputs. The adjacent dashed line labeled output163

indicates gated outputs that are “printed” to the environment when gwrite
r (t) = 1. Unlike other gates in the model,164

these gates signal to the external environment to interact with the activity in the lex region. In principle, input165

and output processes could be implemented by gated pathways with additional sensory and motor networks that166

control continuous behavior in a simulated or real environment. Here we focus on cognitive control of such167

processes, and omit the low-level networks involved with sensorimotor processing.168

• activity maintenance. When gsaturate
r (t) = 1, activity vr(t) in region r is cycled back into the region’s inputs169

to maintain it over time. σ−1
r is the inverse of the region’s activation function. For simplicity, we assume that170

gsaturate
r (t) = 1 whenever all of the above gates are closed (i.e., a region maintains its activation pattern whenever171

it is not receiving synaptic input).172

A region may also receive gated inputs that contextualize its dynamics via multiplicative modulation:173
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xr(t) =
∏

q

vq(t) > 0, if gcontext
r,q (t) = 1

1, otherwise
(2)

where xr(t) is a vector of cumulative multiplicative inputs to region r at time t, 1 is a vector all ones, and
∏

indicates174

the Hadamard product of a set of vectors. xr(t) is aggregated from the activity state vq(t) of each region q that provides175

multiplicative inputs when the corresponding gate gcontext
r,q (t) = 1. These connections are depicted by solid lines with176

circular heads in Figure 2. When none of these gates are active (or if region r has no contextual inputs), xr(t) = 1.177

Note that in NeuroLISP, there is a single dedicated context region for each recurrent region that receives contextual178

input (mem and env), but the mathematical model presented here does not impose such constraints.179

These two types of inputs are combined and passed into the neural activation function:180

vr(t + 1) = σr

(
xr(t) � sr(t)

)
(3)

where vr(t) is a vector of neural activity in region r at time t, σr is the activation function of neurons in region r,181

and � is the Hadamard product. The synaptic inputs sr(t) are gated by multiplicative inputs xr(t) before being passed182

into the activation function. When xr(t) contains zeroes, the corresponding neurons receive no net input. Note that183

recurrent regions with contextual dynamics must use a sign-preserving bipolar activation function (e.g., sign/signum184

or the hyperbolic tangent). This ensures that deactivated neurons function differently from neurons receiving strong185

negative input.186

Learning in the model occurs in two stages, each controlled by a different type of gate. The first stage involves187

updating a regional eligibility trace to store the current pattern of activation as a target for subsequent learning:188

εr(t + 1) =

σ−1
r

(
vr(t + 1)

)
, if gεr(t) = 1

εr(t), otherwise
(4)

where εr(t) is the eligibility trace for region r at time t, vr(t + 1) is the most recently computed activity pattern in189

region r for timestep t + 1 (Equation 3), and σ−1
r is the inverse of the activation function for region r. When gεr(t) = 1,190

εr(t) is updated such that σr (εr(t + 1)) = v(t + 1). We refer to εr(t) as an eligibility trace, a term borrowed from191

reinforcement learning, because it temporarily stores an activity state for use in the second stage of learning, in which192

a pathway-specific weight matrix is updated with the store-erase learning rule (Katz et al., 2019):193

∆Wr,q[`](t) =
1

||vq(t)||︸   ︷︷   ︸
norm

(
εr(t) −

(
xr(t) �Wr,q[`](t) vq(t)

)︸                                 ︷︷                                 ︸
target delta

)
vq(t)>︸︷︷︸
source

(5)

Wr,q[`](t + 1) = Wr,q[`](t) + glearn
r,q[`](t) ∆Wr,q[`](t) (6)

where Wr,q[`](t) is the weight matrix for connection ` from region q to region r at time t. Weight updates are distributed194

across the weight matrix and are normalized according to the magnitude of the source pattern. When glearn
r,q[`](t) = 1,195

weights are updated such that the current inputs will produce the eligibility trace in the future:196

xr(t) �Wr,q[`](t + 1) vq(t) = εr(t)

This equality is only guaranteed to hold for the most recently learned association, which may deteriorate as addi-197

tional associations are learned. This was investigated empirically in Davis et al. (2021a), in which practical memory198

capacities were established for networks that learn using contextually-gated store-erase learning.199

The mathematical model outlined above affords a diverse set of dynamics that depend on top-down control of200

regional gating over time (e.g., gr,q[`](t), gnoise
r (t), etc). In NeuroLISP, these gates are controlled by neurons in the gate201

output region (one neuron per gate) based on learned sequences of activation patterns in the Controller sub-network202
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(Figure 2). This allows the model to be “programmed” with new computational procedures that specify pathways203

through which activation flows, much like opcodes in the instruction set of a conventional computer architecture.204

These procedures make up the core functionality of the implemented language interpreter that are established using205

one-step learning during model construction, and remain fixed during model execution. Among these procedures are206

the core functions for constructing and accessing compositional data structures, which are implemented as systems of207

attractors linked by contextualized transitions (Section 2.2).208

Connection gating is used for both inter-regional and recurrent connectivity. Inter-regional gating allows the209

model to control the spread of activation between neural regions, initializing a target region to a state that is specified210

by learned associations via weighted inputs from a source region. Recurrent dynamics within a region fall into one211

of two categories: attractor convergence and sequential transitions. By interleaving these dynamics, a region can be212

made to iterate through a sequence of attractor states, settling at each attractor before advancing to the next state in213

the sequence (i.e., itinerant attractor dynamics, Miller (2016); Hoshino et al. (1997)). Inter-regional and recurrent214

dynamics can be combined into complex behavior that is orchestrated by the gate controller according to learned215

“programs”. For example, inter-regional gating may be used to initialize a region to the start of an attractor sequence216

that can be traversed with subsequent recurrent gating.217

Attractor itinerancy is typically limited in that each state has a single successor state in the sequence. This is218

overcome by the addition of “contextual” multiplicative gating (Equations 2 and 3), which permits context-dependent219

recurrent transitions that depend non-linearly on inputs from another region. These inputs differ from weighted inter-220

regional inputs in that they do not drive the target region toward a particular pattern directly; instead, they contextualize221

its recurrent dynamics, selecting among multiple learned associations to govern each transition. Thus, when a region222

executes a transition in this regime, the consequent state depends on both the initial state of that region and the223

pattern of activation that is used to contextualize the transition. This “functional branching” makes it possible to learn224

directed graphs of attractors and transitions through which a region may traverse. In previous work, we have shown225

that attractor graphs can efficiently represent compositional data structures such as linked lists, associative arrays, and226

trees (Davis et al., 2021a). Such structures can be traversed via temporally-extended top-down control of regional and227

contextual gating.228

Previous programmable attractor networks have relied primarily on itinerant attractor sequences without contex-229

tual gating, which restricts the space of possible programming languages that may be implemented. For example,230

the Neural Virtual Machine implements an assembly-like language, with programs represented as linear sequences231

of instructions (Katz et al., 2019). This makes it difficult to encode complex programs that are much more easily232

expressed in higher-level languages as abstract syntax trees, which can be represented directly in neural memory as233

attractor graphs. In Section 2.2, we show how the “cons cells” of the LISP programming language can be represented234

by simple attractor graphs and composed into nested expressions to represent complex programs (stored in the mem235

region). These expressions can then be recursively evaluated by other regions with simpler non-contextualized dy-236

namics (Controller regions) that implement an assembly-like language suitable for defining LISP interpreter functions237

(e.g., evaluation, variable lookups, input/output, etc), as described in Section 2.3.238

2.2. Compositional Data Structures239

Compositional data structures are implemented in NeuroLISP as systems of attractors (distributed representations)240

with gated transitions, called attractor graphs. The details of the dynamics underlying attractor graphs can be found241

in Davis et al. (2021a). Here we describe how they are used to implement cons cells and associative arrays (maps),242

two fundamental data structures that serve as building blocks for NeuroLISP’s memory system (Figure 3). These data243

structures can be constructed and accessed in neural memory via computationally-efficient gating operations with244

constant time and linear memory requirements.245

2.2.1. Cons Cells246

Cons cells are ordered pairs of elements that may be atomic symbols or other cons cells. Atomic symbols are247

represented as attractor states in the memory (mem) region that are associated with a corresponding pattern of acti-248

vation in the lexicon (lex) region (Figure 3a). Cons cells are also represented as mem attractor states (Figure 3b), but249

they differ from atomic symbols in three ways. First, they are associated with a reserved lex pattern that identifies the250

memory state as a cons cell. Second, each cons cell serves as the source state for a unique sequence of transitions251
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Figure 3: Graphical depiction of attractor graph representations of fundamental data structures (Davis et al., 2021a). Each gray rectangle represents
the activity space of a region (mem, lex, or ctx), and each circle represents a unique distributed neural activity pattern in that region. Solid lines
indicate learned associations between states, either between or within regions. Dashed lines indicate contextual dependencies for recurrent mem
transitions, which can only be executed when the corresponding ctx pattern is present. (a) Atomic symbols are represented by pairs of states in the
lex and mem region. The mem state allows the symbol to participate in compositional structures, while the lex state allows the symbol to be read
from or written to the environment, and interpreted as a variable name, function name, or LISP operator. (b) Cons cells are represented by a unique
activity state (labeled “cons”) that serves as the head of a trajectory through the elements contained in the cell (labeled “car” and “cdr”). These
transitions are contextualized by a unique ctx state (circle within ctx rectangle). (c) Associative arrays (maps) are represented similarly, except
that there are multiple trajectories from the head state (labeled “map”) that run through each key/value pair in the map. Each transition to a key is
contextualized by a unique ctx state associated with the key (lower right circle in ctx rectangle). This permits verification that a key is contained in
the map prior to value lookups (see Appendix D). Each key state is associated with the corresponding value in the map by a unique map context
state (top right circle in ctx rectangle). This allows the same memory state to serve as a key in multiple maps, each with a unique corresponding
value. For clarity, we only show the context states for a single key/value pair, and abbreviate the remaining pairs (bottom of mem rectangle).

from the cons cell through the two elements of its ordered pair. Third, each cons cell mem state is associated with a252

unique state in the memory context region (ctx region adjacent to mem) that contextualizes the transitions linking the253

cons cell with its elements. This organization allows memory states to be contained as elements in several cons cells254

without duplication, as the transitions linking the elements of a cons cell are contextualized by a unique multiplicative255

pattern (see Appendix C).256

The car and cdr operations retrieve the first and second elements of a cons cell, respectively. These operations can257

be performed by iterating through the mem attractor sequence, starting with the cons cell attractor, and stopping at the258

desired element. This sequence is contextualized by the unique ctx state associated with the cons cell, which must259

be retrieved prior to iteration. To construct a cons cell, a mem attractor sequence must be constructed using several260

gates, including the noise (Equation 1), eligibility trace (Equation 4), and plasticity gates (Equation 6). This sequence261

links together a newly created cons attractor with the two elements that will be contained as car and cdr elements. The262

details of these operations are included in Appendix C.263

2.2.2. Associative Arrays (Maps)264

Associative arrays, or maps, are collections of key/value pairs. The fundamental operations of maps include265

addition, modification, and removal of key/value pairs, checking whether a key/value pair exists for a given key, and266

retrieving that value if it exists. Maps are generally implemented as hash tables in conventional computers, which267
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use a hashing function to transform keys into unique offsets for indexing an array in linear memory. In lieu of such268

a hashing function, we use neural attractor transitions to uniquely associate keys with values, similarly to the above269

implementation of cons cells. Several unique features of maps, however, make their underlying implementation more270

involved than cons cells.271

The organization of maps in neural memory is shown in Figure 3c. Each key/value pair in a map corresponds to272

a pair of attractor states linked by a contextualized transition. Unlike cons cells, the first element of a pair (the key)273

is provided during operations performed on the map (e.g., lookups). To retrieve the value for a given key, the context274

state for the map is used to execute a transition from the key’s memory state to the value’s memory state, much like275

the cdr element of a cons cell is retrieved from the corresponding car element. However, unlike with cons cells, the276

corresponding transition from the map to the key state is not contextualized by the map’s context state, as a map may277

contain multiple key/value pairs. Instead, a context state associated with the key memory is used for the transition,278

making it possible to check whether a key is contained in a map (see Appendix D for details).279

2.3. Virtual Interpreter280

NeuroLISP implements a virtual interpreter that evaluates programmatic expressions stored as nested cons cells in281

neural memory (Section 2.2.1). Interpreter functions are orchestrated by sequential activation in the Controller sub-282

network, which controls model functionality by opening and closing gates on model components over time (Equations283

1 - 6). Much like a conventional computer, the Controller specifies pathways through the architecture for information284

processing based on learned instructions. This includes manipulation of memory, runtime/data stacks, input/output285

pathways, and environmental variable bindings, but also the functionality of the Controller itself. For example, condi-286

tional statements require the Controller to execute different procedures based on the result of operations performed on287

the contents of memory (e.g., comparisons, logical operations). Interpreter functionality in the Controller (i.e., inter-288

preter firmware) is learned with fast associative learning (Equations 4 - 6) during a one-time initialization procedure.289

The design of the Controller and Stack sub-networks is inspired by the Neural Virtual Machine, which implements290

an assembly-like language and represents programs using temporal sequences of distributed neural activity patterns291

(Katz et al., 2019). Sequences in the op region represent programs in a low-level assembly-like language that imple-292

ment interpreter functions for the higher-level LISP language. We refer to these low-level programs as op-sequences293

to distinguish them from LISP programs. The relationship between these two levels is discussed in more detail in294

Appendix E.295

2.3.1. Evaluation296

In LISP, eval is a core interpreter function that recursively evaluates a LISP expression and returns the result. The297

eval function contains conditional logic that determines how an expression is to be evaluated based on its contents298

and structure, and invokes other necessary interpreter functions. For example, an atomic expression is interpreted as a299

variable name to be looked up in the environment, while a list is interpreted as an application of a function or built-in300

operator.301

The eval function is implemented in NeuroLISP as a central op-sequence of the Controller that branches off into302

one of several other op-sequences based on the currently active pattern of activity in mem, which represents the LISP303

expression to be evaluated. This begins a cascade of op-sequence calls that implements the expression’s operator304

via top-down control of gated neural computations, and may include recursive evaluation of sub-expressions. During305

recursive evaluation, the Controller uses the stack regions to temporarily store op, mem, and env activity states by306

learning associations in the corresponding pathways (see Figure 2). For example, evaluation of a cons expression307

(e.g., (cons ’a ’b)) begins with recursive evaluation of the sub-expressions for the car and cdr elements, which308

are stored temporarily on the data stack and retrieved during construction of the cons cell attractor sequence (Section309

2.2.1). Further details on recursive evaluation are included in Appendix E.310

Compound expressions are stored in memory as lists represented by chains of cons cells. The first element of311

the list represents either a built-in operation (Table 1) or a sub-expression that can be evaluated to retrieve a function312

(e.g., a function name or lambda expression). To distinguish between these cases, all patterns in the lex region313

representing symbols for built-in operators are learned as attractors in a recurrent lex matrix. These patterns are314

recognizable via comparison (Section 2.3.2): if the pattern remains stable following recurrent dynamics, it represents315

a built-in operator. Each built-in operator has a corresponding op sequence that implements its operation and can316
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be retrieved via the pathway from lex to op. When the first element of a compound expression is not a built-in317

operation, it must evaluate to a function, and may either be a variable naming a function that can be retrieved from the318

environment (Section 2.3.4), or a cons cell representing a lambda function (Section 2.3.5). In either of these cases, the319

operator is recursively evaluated, and the parent expression is interpreted as a call to the returned function, with the320

remaining elements of the list interpreted as expressions for the values of the function’s arguments. When evaluating321

non-compound expressions (i.e., individual symbols), built-in symbols are simply returned, and other symbols are322

interpreted as variable names, and looked up in the environment.323

Two special LISP operators provide programmatic control of evaluation: quote and eval. The quote operator324

instructs the interpreter to skip evaluation of sub-expressions and return them directly as data. Conversely, the eval325

operator instructs the interpreter to evaluate the value that was returned from evaluation of the sub-expression. These326

two operators allow seamless interchange of programs and data (i.e., programs as data), and make it straightforward327

to implement programs that generate other programs. The quote operator is implemented in NeuroLISP by an op-328

sequence that simply retrieves the memory state representing the expression’s argument (e.g., evaluating (quote x)329

returns the memory state representing the symbol x). The op-sequence implementing the eval operator recursively330

evaluates the argument sub-expression, then performs a second round of recursive evaluation on the resulting memory331

state, and returns the final result.332

2.3.2. Conditional Evaluation333

Conditional evaluation involves comparisons that are initiated by branching instructions in the op region. A334

comparison is performed on two activity states that occur in the same region (one of mem, lex, or env) at different335

timesteps. The result of the comparison causes the gate sequence region to initiate one of two operations for advancing336

the op region, analogous to the jump operations that occur in conventional computer architectures. If the compared337

states are within a threshold of similarity, op is advanced to a new sequence designated by the branch operation’s338

operand. Otherwise, op is simply advanced to the next instruction in the current op-sequence.339

Comparisons are performed in two stages. For illustrative purposes, we consider a comparison performed between340

two mem states to determine whether a key is contained in an associative array / map (Section 2.2.2). First, the key341

memory state is retrieved, and an association is learned in the pathway from mem to gate sequence that links the key342

memory state with a designated gate sequence state corresponding to the jump gate procedure. Next, the key is used343

to execute a transition from the map state in mem, which yields the key state if the key is contained in the map, or344

a random state otherwise. The comparison is performed to determine which of these two cases occurred. At this345

point, two gates are opened in the gate sequence region: one that controls the pathway from mem, and another that346

activates a bias input that pushes gate sequence toward a designated sequence that corresponds to a false comparison.347

If the current mem state matches the memorized state (i.e., the key memory state), then the net input to gate sequence348

will match the jump sequence state. Otherwise, the net input will be dominated by the bias term. The resulting gate349

sequence activity performs the appropriate operation for advancing op according to the result of the comparison: jump350

to the operand if the result was true, or advance to the next instruction in the current op-sequence if false. The details351

of the comparison operation are discussed in Appendix F.352

2.3.3. Input/Output353

As mentioned in Section 2.1, symbols represented by lex activity patterns can be read from or printed to the354

environment via control of special input/output gates. Each of these patterns is also reciprocally associated with a355

unique activity pattern in mem, which allows the symbol to serve as a component of compositional structures (Figure356

3a). The bi-directional associations between mem and lex representations of a symbol make it possible for the model357

to recognize that a symbol has never been seen before, and to construct a new mem state to represent it. This is done by358

reading the symbol to lex, memorizing it, executing an inter-regional transition from lex to mem and back to lex, and359

comparing the resulting lex activity pattern to the memorized pattern (Section 2.3.2). If they match, the symbol has a360

mem representation already. If not, one is created, and the bi-directional associations are created. Thus, NeuroLISP’s361

lexicon is automatically expanded as it encounters new input symbols.362

A read operation parses a sequence of symbolic inputs into a data structure in memory. Two special symbols363

representing open and closed parentheses indicate delimiters of nested expressions, which can be parsed recursively.364

When the open symbol is encountered, the interpreter enters a loop, recursively parsing each symbol until a close365

symbol is encountered. Each parsed memory, besides the close symbol, is placed in a chain of cons cells representing366
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a list. An additional quotation symbol streamlines expression quotation; when it is encountered, the result of parsing367

the next symbol(s) is appended to a list containing the quote symbol. A read operation is completed when the368

expression is closed (or immediately after reading a non-delimiting symbol), and the resulting memory structure is369

returned to the caller. Conversely, a write operation performs a pre-order traversal of a memory structure, printing an370

open parenthesis upon entry to a cons cell, a close parenthesis upon exit of a cons cell, and the corresponding symbol371

when a leaf node is reached.372

NeuroLISP begins operation in a read-eval-print-loop, in which an expression to be evaluated is read in as input,373

constructing a program in memory to be evaluated. The memory state that is returned from evaluation is then printed,374

and the loop repeats. Thus, once the model is initialized with interpreter functions, it can be programmed via envi-375

ronmental interactions that prompt the model to control its own plasticity, rather than by direct manipulation of the376

weight matrices in the model.377

2.3.4. Environment Management378

In high-level programming languages, variable bindings are maintained and updated in an environment that is379

accessible during program evaluation. Environments are typically composed of distinct namespaces that manage dif-380

ferent bindings for the same variable name that are relevant to different execution contexts. For example, if a function381

f(x) calls another function g(x), two distinct bindings are maintained for x that may contain different values. When382

a lookup is performed, the evaluator must retrieve the correct binding based on the current execution context. This383

can be done dynamically, in which the most recent binding is retrieved, or lexically, in which the correct binding is384

determined based on the location of the expression being executed within the program. Lexical scoping is more com-385

plex than dynamic scoping because variable lookups are relative to the code being executed, and several bindings for386

a given variable must be maintained separately. The organization of environments is described in detail in Appendix387

G. NeuroLISP supports both dynamic and lexical scoping because the procedures for environment organization and388

access are determined by learned interpreter functions. Lexical scoping was used for the experiments described below.389

2.3.5. Function Definitions and Applications390

In lexically-scoped languages, function definition involves creation of a closure that binds together the body of the391

function, its argument list, and a namespace containing variable bindings that were accessible at the time of definition.392

In NeuroLISP, closures are stored as cons cells in the mem region (Section 2.2.1) that have special learned associations393

with namespaces represented in the env region (Section 2.3.4), and are associated with a reserved “function” symbol394

in lex. When a function is called, the corresponding namespace is retrieved, and a new namespace is constructed from395

it to store the bindings of the function’s arguments. This namespace is then used for variable lookups during execution396

of the function body, and it contains both the argument bindings and the extant bindings from when the function was397

first defined (see Appendix H for details). When dynamic scoping is used, the closure namespace is ignored, and the398

new namespace is branched off of the caller’s namespace.399

2.4. Experimental Methods400

We performed experiments on NeuroLISP using several different programs: 1) To verify its correctness, we tested401

a suite of 37 simple handwritten test cases that evaluate the various functions of the implemented language. 2) To402

determine the relationship between region sizing and memory capacity, we evaluated the network’s memory capacity403

with basic programs involving list storage and variable binding. 3) To demonstrate that NeuroLISP can successfully404

execute basic LISP programs that manipulate complex data structures, we tested a small library of multiway tree405

processing functions. 4) To demonstrate that NeuroLISP is capable of compositional processing, we tested a library406

of sequence manipulation functions that solves the PCFG SET task described in Hupkes et al. (2020). 5) Finally,407

to show that NeuroLISP can perform high-level procedures that are relevant to traditional symbolic AI, we tested a408

first-order unification algorithm (Russell and Norvig, 2002), a key component of automated reasoning, type checking,409

and logic programming. Empirical results from these experiments are presented in Sections 3.1-3.5.410

To distinguish between bugs in the interpreter firmware and neurocomputational errors (i.e., corruption of learned411

neural associations), we implemented a non-neural emulator for the NeuroLISP architecture. The emulator faithfully412

reproduces the flow of information that occurs through regions in the architecture, but uses explicit symbols and413

lookup tables in lieu of activation patterns and weight matrices. This allowed us to determine the number of asso-414

ciations in various pathways that would be learned during correct execution of a program, which we refer to as the415

12



program’s complexity, without the possibility of interference from neurocomputational errors. Because the memory416

capacity of simple attractor networks is relative to the number of neurons in the network (Amit et al., 1985; Davis417

et al., 2021a; Katz et al., 2019), we sought to determine the relationship between the size of NeuroLISP regions418

and the complexity of programs that it can successfully execute. Specifically, we examined the number of generated419

memory states (attractors in the mem region) and the number of variable bindings (associations between env and mem420

states), relative to the size of the mem, lex, and env regions. In addition, we examined the impact of the context density421

parameter λenv−ctx, which determines how many env neurons participate in each variable binding.422

Each experiment included several trials in which the NeuroLISP architecture was instantiated with a particular set423

of model parameters, initialized with the interpreter firmware, and executed with a particular set of inputs encoding a424

test program. The output of the model was compared to the correct reference output for the trial inputs to determine425

if the trial was successful or not. Experiments were performed in blocks with shared model parameters and inputs426

with a shared property that were not necessarily identical (e.g., testing retention of different lists of the same length).427

Each block contained 20 trials, and results are reported as the percentage of trials in each block that produced correct428

outputs (each datapoint in the plots in Section 3.1-3.5 corresponds to one block of 20 trials). We systematically varied429

one model parameter at a time in order to determine its impact on model performance (e.g., how does the size of the430

mem region impact list retention?). The remaining parameters were set in order to avoid degradation of performance431

(e.g., we used a large mem region size when testing the impact of env region sizing on variable binding). The details432

of model parameters used during experiments can be found in Appendix I.433

Our computational experiments address the following questions:434

• Correctness: Does the NeuroLISP firmware correctly implement the language interpreter? Can NeuroLISP435

successfully execute high-level programs, including multiway tree processing functions, the string manipulation436

functions of the PCFG SET task, and a first-order unification procedure used in automated reasoning?437

• Memory capacity: How do the sizes of the mem and lex regions impact program/data memory storage capacity?438

• Binding capacity: How does the size of the env region and its context density parameter λenv−ctx affect a) the439

number of variable bindings that can be stored in a single namespace, and b) the number of namespaces that440

can store separate bindings for the same variable name?441

We hypothesized that correct performance would require sizing the mem, lex, and env regions according to the442

complexity of the executed program. Based on results reported in Davis et al. (2021a), we predicted the following:443

• Region sizing: a linear relationship between a) mem region size and program/data memory storage capacity444

capacity, and b) env region size and the number of bindings stored for the same variable name in different445

namespaces.446

• Context density: a larger env context density λenv−ctx would facilitate storage of bindings with the same variable447

name in different namespaces, but interfere with storage of several variables in one namespace. Thus, a balanced448

context density would lead to the best performance on complex programs involving multiple bindings across449

multiple namespaces.450

Finally, we investigated the scalability of the model in parallel computing environments with additional experi-451

ments that evaluated runtime performance and memory usage. Experiments were performed on a 3.5GHz 10-core452

Xeon E5-2687W v3 with two NVIDIA RTX 3060 GPUs. The model was implemented in the Python programming453

language using the numpy library for multi-dimensional arrays and the pyCUDA library for GPU processing. Model454

computations that involved matrix operations (e.g., input activation and learning) were performed on GPU(s), while455

those that did not (e.g., neural activation functions) were performed on the CPU. The results of these experiments are456

presented in Section 3.6. We investigated several approaches to improving both the runtime and memory efficiency of457

model simulation without affecting the accuracy of its symbolic behavior, as described below.458

A significant advantage of the gated region-and-pathway paradigm is that only a subset of the model (correspond-459

ing to active regions and connections) must be computed during each timestep, greatly reducing the computational460

cost of model execution. This also means that scaling up the number of neurons in a specific region only incurs perfor-461

mance penalties for computations that involve that region and its associated connectivity matrices. For example, the462
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size of the env region does not affect operations that do not involve variable bindings or namespaces, such as parsing463

inputs and constructing programs in memory. We illustrate this by separately measuring the runtime for program464

parsing and execution.465

Because each timestep of simulation only involves a subset of model computations, the theoretical performance466

benefits from distributing kernels among multiple compute devices is limited. A more effective strategy would be to467

split up individual regions, divvying up neurons to separate devices for distributed computation of individual kernels.468

We do not pursue this possibility here, but note that it is feasible due to the locality of associative learning. Instead,469

we distribute weight matrices among GPUs to take advantage of their available memory. When the size of the model470

exceeds available GPU memory, matrices must be shuttled between the host and GPU as they are needed during kernel471

execution, incurring a significant runtime performance penalty called memory thrashing. Thus, the use of multiple472

GPUs therefore provides additional memory and allows larger models to be simulated without intractable increases in473

runtime. In addition, the use of half-precision floating points for weight matrices reduces their memory footprint by474

50%, allowing further increases in model size.475

When a region is contextually gated, a subset of its neurons do not participate in computations, as their output is476

guaranteed to be zero and their corresponding weights will not be affected by learning. Thus, a naive implementation477

of matrix operations involves unnecessary computations when contextual gating is active, as compute threads are478

allocated to deactivated neurons. The percentage of wasted computations depends on the context density parameter,479

which is typically less than 1
2 (i.e., more than half of the computations are wasted). We therefore implemented efficient480

versions of the matrix operation kernels that perform preprocessing to determine which neurons are active and assign481

them to compute threads accordingly.482

Overall, we hypothesized that runtime would be significantly improved by the use of efficient kernels that avoid483

unnecessary computations for deactivated neurons. In addition, we hypothesized that runtime would scale roughly484

with model size until GPU memory is exceeded, at which point runtime would rapidly increase due to memory485

thrashing. Thus, the use of half-precision weights and distribution of the model across GPUs would increase the486

maximum model size possible without intractable increases in runtime.487

3. Results488

3.1. Interpreter Test Suite489

We first tested NeuroLISP with 37 simple handwritten test cases that exercised the various components of the490

implemented language to verify the correctness of the virtual interpreter firmware. These tests include constructing491

and navigating s-expressions and associative arrays, reading and printing s-expressions, logical and conditional oper-492

ations, function definitions, and variable bindings in nested namespaces (see Appendix J for details). For each test,493

NeuroLISP was constructed with mem, lex, and env region sizes of 2048, 2048, and 1024, respectively, and an env494

context density parameter λenv = 1
4 . With these parameters, the model successfully passed all tests.495

3.2. Memory and Variable Binding Capacity496

To examine the relationship between program/data memory capacity and the size of the mem and lex regions,497

we performed simple tests involving storage and retrieval of lists containing between 10 and 100 symbols randomly498

drawn from a set of 10 possible symbols. During each trial, a list of symbols was read in as input using the read499

operation, stored in memory, then printed back as output. First, we systematically varied the size of the mem region500

from 300 to 1500 neurons while keeping the lex region size constant at 2048 neurons. Then, we did the opposite,501

testing variations of the lex region size from 300 to 1500 while keeping the mem region size constant at 2048. In both502

cases, λenv−ctx was fixed at 1
4 . The results are shown in Figure 4, where each data point indicates the percentage of503

successful trials (y-axis) involving lists of a specific length (x-axis). Each line indicates results for instantiations of504

the model with the same parameters. Figure 4a shows that, as predicted, the memory capacity of the model scales505

roughly linearly with the size of the mem region, with larger lists requiring a larger mem size to be reliably stored and506

retrieved. This can be seen by noting the gaps between the lines, and the points at which each line diverges from 100%507

accuracy, indicating the maximum storage capacity for a given mem region size (e.g., 600 neurons suffices for a list of508

20 elements, 900 neurons for 50 elements, 1200 neurons for 70 elements, and 1500 neurons for 100 elements). This509
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(a) Variable Memory Region Size
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(b) Variable Lexicon Region Size
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Figure 4: Results for list storage and retrieval with varying mem and lex region sizes. During each trial, NeuroLISP read in a randomly generated
list of symbols of a specified length (x-axis) and stored it in memory, then traversed and printed its contents. A trial was considered successful if the
printed list matched the input list. Each datapoint indicates the percentage of successful trials (y-axis) out of 20 for a specified list length (x-axis).
(a) With the lex region size fixed at 2048 neurons, varying the size of the mem region reveals a roughly linear relationship with storage capacity
(i.e., successful storage and retrieval of longer lists requires correspondingly larger mem region sizes). (b) With the mem region size fixed at 2048
neurons, the lex region size does not show a linear relationship with storage capacity, but a sufficient lex size is necessary for reliable storage. Note
that because perfect accuracy is achieved for lex sizes of 900 and above, some lines are stacked and are not visible in the plot.

linear relationship is not found in Figure 4b, which nevertheless shows that a sufficiently large lex region is necessary510

to learn the associations between mem states and the corresponding lex patterns representing stored symbols.511

We tested variable binding in two ways that we refer to as breadth and depth testing. In breadth testing, we512

used a program that created many bindings with different variable names in the same namespace (Figure 5a). In513

depth testing, we used a recursive function that creates many bindings with the same variable name in different514

namespaces (depth refers to depth of recursion; see Figure 5b). We tested these two situations separately because515

they involve different neurocomputational demands: depth requires learning many attractors with the same context516

masking pattern, and breadth involves learning many attractors with the same activity pattern, but with different517

context masks. We hypothesized that λenv−ctx would affect these two situations differently. Specifically, a higher518

λenv−ctx would improve depth performance by allowing a greater percentage of the namespace pattern to participate in519

attractor dynamics, but would reduce breadth performance by increasing the overlap and interference between learned520

attractors for different variables in the same namespace. This tradeoff was explored in Davis et al. (2021a), in which521

it was shown that a moderate λenv−ctx balanced performance for auto-associative and hetero-associative learning. For522

both breadth and depth testing, the experiment was repeated for λenv−ctx values of 1
8 , 1

4 , and 1
2 .523

The results for breadth testing are shown in Figure 6. The size of the lex and mem regions was fixed at 2048524

neurons and 5000 neurons, respectively, while the size of the env region was varied from 100 to 600 neurons. For525

each test, a unique program was generated to create a specific number of variable bindings in the same namespace526

(using the setq operation) before accessing them to print the corresponding values (Figure 5a). Each variable had a527

unique name, and was bound to a random symbol drawn from a set of 10 possible symbols. As predicted, a higher528

λenv−ctx greatly reduced performance, presumably by increasing interference between learned attractors due to greater529

overlap.530

The results for depth testing are shown in Figure 7. The size of the lex and mem regions was fixed at 2048 neurons531

each, while the size of the env region was varied from 1000 to 5000 neurons. The test program passed a random list532

of symbols (drawn from a set of 10 possible symbols) into a recursive function that printed the list in reverse order533
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(a) Sample Breadth Testing Program

(setq v0 ’B)

(setq v1 ’G)

(setq v2 ’F)

(setq v3 ’A)

v0

v1

v2

v3

(b) Depth Testing Program

(progn

(defun f (x)

(if x

(progn

(f (cdr x))

(print (car x)))))

(f (read))

’NIL)

Figure 5: Programs for variable binding capacity testing. (a) Breadth testing involves binding several variables with different names in the same
namespace. The sample program shown here binds four variables to random symbols using the setq operation, then retrieves them sequentially.
NeuroLISP prints the result of evaluating each expression, providing an output sequence to verify correct evaluation. (b) Depth testing involves
binding several variables of the same name in different namespaces. The program shown here includes a recursive function that prints a list in
reverse. The input list is read in using the read operation, and the printed output is compared with the input list to verify correct evaluation.
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Figure 6: Results for breadth testing of variable binding with varying env region size and λenv−ctx. Each test involved binding several variables
with unique names in the same namespace using the setq operation, then retrieving and printing their values (Figure 5a). The x-axis indicates the
number of stored variable bindings, and the y-axis indicates the percentage of successful trials (20 per datapoint). (a) Better performance is achieved
with a low λenv−ctx of 1

8 , which minimizes the interference between associative learning of distinct variable bindings in the same namespace. (b)
Performance deteriorates with a higher λenv−ctx of 1

4 . (c) With a high λenv−ctx of 1
2 , the model struggles to store large numbers of bindings in the

same namespace, even with larger env region sizes. Note that some lines in the plots are stacked and are not visible.

(Figure 5b). Importantly, the last symbol in the list was printed by the deepest recursive function call, and variable534

retrievals were only performed after all bindings were created. The results match our prediction of a linear relationship535

between env region size and the number of bindings that can be successfully stored and retrieved. This can be seen536

by noting the gaps between the lines in Figure 7a, and the points at which each line diverges from 100% accuracy,537

indicating the maximum binding capacity for a given env region size (e.g., 1000 neurons suffices for 10 bindings, 2000538

neurons for 20 bindings, 3000 for 50, 4000 for 60, and 5000 for 80). In addition, the results corroborate our prediction539

of higher performance with a higher λenv−ctx.540

3.3. Multiway Tree Processing541

Having established rough guidelines for sizing the regions of the model, we tested NeuroLISP with a small library542

of multiway tree processing functions to demonstrate that the model can successfully execute basic LISP programs543
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Figure 7: Results for depth testing of variable binding with varying env region size and λenv−ctx. Each test involved execution of a recursive function
with a single variable, and required storing several bindings with the same variable name in different namespaces (Figure 5b). Because the function
uses head recursion, the model was required to store all bindings before retrieving and printing them. The x-axis indicates recursive depth (number
of namespaces), and the y-axis indicates the percentage of successful trials (20 per datapoint). (a) With a low λenv−ctx of 1

8 , a linear relationship can
be seen that resembles that of Figure 4a: more env neurons are required to store more bindings. (b) Unlike with breadth testing (Figure 6), a higher
λenv−ctx of 1

4 improves binding capacity across namespaces by increasing the number of neurons that participate in env region attractor dynamics
and improving the discriminability of masked namespace patterns. (c) Increasing λenv−ctx to 1

2 further improves performance. Note that some lines
in the plots are stacked and are not visible.

that manipulate complex data structures2. A multiway tree is represented as either an atom (leaf node), or a list544

containing an atom (node label) and one or more multiway trees (children). The implemented functions are listed in545

Table 2. The full implementation and test cases for the is-tree? function are listed in Figure 8 (see Appendix K for546

remaining functions). Each function was tested with several test cases. For each test, NeuroLISP was constructed with547

mem, lex, and env region sizes of 6000, 2048, and 1024, respectively, and an env context density parameter λenv = 1
4 .548

With these parameters, the model successfully passed all tests.549

(a) Implementation of is-tree? Function

(defun is-tree? (expr)

(or (atom expr)

(and (listp expr)

(atom (car expr))

(cdr expr)

(is-forest? (cdr expr )))))

(defun is-forest? (expr)

(or (not expr)

(and (is-tree? (car expr))

(is-forest? (cdr expr )))))

(b) Test Cases for is-tree? Function

(is-tree? ’a)

(is-tree? ’(a b))

(is-tree? ’(a (b c)))

(is-tree? ’(b d e))

(is-tree? ’(a (f g) c (b d e)))

(is-tree? ’(x y z))

(is-tree? ’(a))

(is-tree? ’(a (b c) (d) e))

(is-tree? ’((a b c) (d e)))

Figure 8: (a) Implementation of the is-tree? function, which tests if an expression represents a valid multiway tree. (b) Test cases for is-tree?.
The first seven test cases evaluate valid trees, while the last two evaluate invalid trees.

2The multiway tree data structure representation is thanks to Werner Hett’s “Ninety-Nine Prolog Problems”, and the processing functions are
inspired by binary tree processing functions found in the Appendix to Paul Graham’s “ANSI Common Lisp” textbook.
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Table 2: Multiway tree processing functions implemented in NeuroLISP.

(expr-equal? x y) Recursively determines whether two s-expressions are equivalent.
(tree? expr) Determines whether an expression is a valid multi-way tree. A multiway tree

is either an atom, or a list containing an atom and 1 or more multiway trees.
(copy-tree tree) Creates a deep copy of a tree.
(tree-member elm tree) Determines whether an atomic element is contained in a tree as a node label.
(tree-prefix tree) Returns a list containing the node labels of a tree in prefix traversal order. The

implementation is memory efficient, and only allocates the memory necessary
for the final list.

(tree-subst new old tree) Returns a tree that is equivalent to the input tree, except any subtrees match-
ing old are replaced with new. The implementation is memory efficient: mem-
ory is only allocated for ancestors of replaced subtrees.

(tree-sublis subs tree) Performs substitutions on the input tree using a list of old/new pairs (subs).
As with tree-subst, the implementation minimizes memory allocation.

3.4. PCFG SET Compositionality Task550

The PCFG SET task is a sequence processing task designed to evaluate compositional learning in machine learning551

models (Hupkes et al., 2020). The task involves input sequences that specify nested operations performed on strings552

of symbols. For example:553

append swap F G H , repeat I J −→ H G F I J I J554

where the left side of the arrow indicates the input sequence, and the right side indicates the expected output sequence.555

This task is particularly challenging because it requires learning several operations that can be arbitrarily composed556

into complex expressions. Notably, Hupkes et al. (2020) report empirical results demonstrating that several state-557

of-the-art artificial neural networks struggle to learn the task, including recurrent, convolution-based, and transformer558

neural networks. These models learn the task in a data-driven fashion, and are trained using large datasets of generated559

input/output pairs. In contrast, we trained NeuroLISP with one-step learning on LISP functions that implement each560

operation of the task (Figure 9a), and show that it can successfully compose these functions to solve input sequences561

encoding nested operations like the example listed above.562

We used the NeuroLISP emulator to determine the complexity of PCFG SET test cases, and drew a sample563

covering a range of memory demands. Because tests with high memory demands require very large models, we564

filtered out tests to include only those requiring between 250 and 350 memory states, up to 128 namespaces, and565

up to 64 runtime/data stack states. From the remaining tests, we created two samples. The first included 20 tests566

from each bin of required memory states (i.e., 20 tests requiring 250-259 memory states, 20 requiring 260-269 states,567

etc). The second included tests with varying numbers of variable bindings from 20-120 (i.e., 20 tests requiring 20-29568

bindings, 20 requiring 30-39 bindings, etc). Although NeuroLISP is capable of implementing a parsing procedure, for569

simplicity, we preprocessed each test input sequence into a LISP expression by converting it to prefix form and adding570

quote operations for element sequences (e.g., "append swap F G H , repeat I J" becomes (append (swap571

’(F G H)) (repeat ’(I J)))).572

The results for the first PCFG SET tests are shown in Figure 10. The size of the lex and env regions was fixed at573

2048 and 1024, respectively, and the λenv−ctx was set to 1
4 . The mem region size was varied from 3000 to 5500. As574

expected, tests requiring greater numbers of mem states required a larger mem region size. With a sufficiently sized575

mem region, the model was able to successfully pass all of the tests. Figure 11 shows the results of the second set of576

PCFG SET tests with varying numbers of variable bindings. Here, the lex and mem region sizes are fixed at 2048 and577

5500, respectively, while the env region size was varied from 100 to 600, and λenv−ctx was tested at 1
8 , 1

4 , and 1
2 . The578

best results were achieved with a moderate λenv−ctx of 1
4 (middle plot), which permitted a surprisingly large number of579

bindings with a small env region size: perfect performance was achieved for up to 120 bindings with only 500 neurons.580

These results support our hypothesis that a moderate λenv−ctx balances between depth and breadth requirements for581

variable binding, providing a reasonable capacity for many variables bound across many namespaces.582
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(a) PCFG SET Functions

(defun append (x y)

(if x

(cons (car x)

(append (cdr x) y))

y))

(defun prepend (x y) (append y x))

(defun remove_first (x y) y)

(defun remove_second (x y) x)

(defun last (x) (dolist (e x e)))

(defun copy (x) x)

(defun reverse (pre)

(let ((post NIL))

(dolist (x pre post)

(setq post (cons x post )))))

(defun shift (x)

(append (cdr x) (list (car x))))

(defun swap-helper (first mid)

(if (cdr mid)

(cons (car mid)

(swap-helper first (cdr mid)))

(list first )))

(defun swap_first_last (x)

(cons (last x)

(swap-helper (car x) (cdr x))))

(defun repeat (x) (append x x))

(defun echo (x) (append x (list (last x))))

(b) Unification Functions

(defun var? (x)

(and

(listp x)

(eq (car x) ’var)))

(defun match-var (var pat subs)

(cond

((and (var? pat)

(eq var (cadr pat))) subs)

(( checkhash var subs)

(unify (gethash var subs)

pat subs))

(true (sethash var pat subs ))))

(defun unify (pat1 pat2 subs)

(cond

((not subs) subs)

((var? pat1)

(match-var (cadr pat1)

pat2 subs))

((var? pat2)

(match-var (cadr pat2)

pat1 subs))

((atom pat1)

(if (eq pat1 pat2) subs NIL))

((atom pat2) NIL)

(true

(unify (cdr pat1) (cdr pat2)

(unify (car pat1)

(car pat2) subs )))))

Figure 9: LISP functions implementing the PCFG SET sequence manipulation functions (a) and first-order unification algorithm (b). During
testing, these expressions were broken into sequences of symbols, each of which was translated into the corresponding neural activation pattern
in the lex region, and fed into NeuroLISP one at a time (Section 2.3.3). These functions were invoked by additional test code (e.g., an expression
encoding a PCFG SET or unification test case) that was also fed into NeuroLISP as sequential activation patterns, stored in neural memory, and
executed by the virtual interpreter. Finally, the results were printed as a sequence of neural activation patterns, translated back to symbols, and
compared with the ground truth of the corresponding test case to determine if the test was successful.

3.5. First-Order Unification583

First-order unification is a symbolic matching process that is an integral component of automated reasoning sys-584

tems such as theorem provers (Russell and Norvig, 2002). Two expressions containing unbound variables can be585

unified if there exists a set of substitutions for the variables that makes the expressions equivalent. For example,586

unifying expressions P and Q below yields the listed set of substitutions:587

P: (f (var x) (g b)) Q: (f a (g (var y))) Substitutions: {x −→ a, y −→ b}588

where (var x) indicates a variable named x, and the substitution set contains mappings (variable −→ value) that589

unify the expressions. Previous work has shown that neural networks can be incorporated as components in automated590

reasoning systems (Irving et al., 2016; Bansal et al., 2019; Rocktäschel and Riedel, 2017), and that expression-specific591

neural networks with local representations can perform unification with error-correction learning (Komendantskaya,592

2011). Here we show that NeuroLISP can learn to perform first-order unification on arbitrary expressions using a593

fixed architecture and distributed representations. We trained NeuroLISP with a unification algorithm (Figure 9b)594

based on that presented in Russell and Norvig (2002), and show that it works on test cases with randomly generated595

nested expressions.596

Unification test cases were produced by randomly generating trees and converting them to s-expressions (see597

Appendix L for details). We experimentally varied the complexity of these expressions by varying the number of598

nodes in the randomly generated trees from 6 nodes to 14 nodes. Although the stochastic process introduced variations599
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Figure 10: Results for PCFG SET testing with varying mem region size. Each test involved reading in an s-expression indicating a composition
of symbolic sequence manipulations, executing the indicated functions, and printing the resulting sequence. We labeled and binned each test
according to the number of memory states (mem attractors) it required based on an emulator for the NeuroLISP architecture, and sampled 20 tests
per bin (i.e., 20 tests requiring 250-259 memory states, etc). The x-axis indicates the bin, and the y-axis indicates the percentage of successful trials
for tests in each bin. As expected, model performance is contingent upon adequate mem region sizing; with a sufficient size, the model achieved
perfect performance.
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Figure 11: Results for PCFG SET testing with varying env region size and env context density. As in Figure 10, each test involved reading in an
s-expression indicating a composition of symbolic sequence manipulations, executing the indicated functions, and printing the resulting sequence.
We labeled and binned each test according to the number of variable bindings it required based on an emulator for the NeuroLISP architecture, and
sampled 20 tests per bin (i.e., 20 tests requiring 20-29 variable bindings, etc). The x-axis indicates the bin, and the y-axis indicates the percentage
of successful trials for tests in each bin. The best performance is achieved with a moderate context density of 1

4 that balances the differing demands
of storing several variable bindings within (Figure 6) and across (Figure 7) namespaces.

in the size of the final trees due to variable substitutions, the number of starting nodes provides a rough estimate of600
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the complexity of a test case. We generated 20 test cases per initial tree size (expression complexity), and tested the601

model as above with a) varying mem region sizes and b) varying env region sizes and λenv−ctx. In 20% of the test cases,602

one input expression was mutated to induce a mismatch during unification, and the model was expected to indicate603

that the expressions could not be unified.604

Figure 12 shows the results of unification testing with variable mem region sizes. The lex and env region sizes were605

fixed at 2048 and 1024 neurons, respectively, and λenv−ctx was set to 1
4 . The mem region size was varied from 3000 to606

4500 neurons. Perfect results were achieved with 4500 neurons. Figure 13 shows the results with variable env region607

sizes (100-600 neurons) and env context densities ( 1
8 , 1

4 , and 1
2 ). Here the lex and mem region sizes were fixed at 2048608

and 5500 neurons. As with the PCFG SET tests, a relatively small env size was sufficient for accurate performance609

on relatively complex test cases. However, the best results were achieved with a smaller λenv−ctx of 1
8 . We suspect that610

this has to do with differences in the PCFG SET and unification programs: the string manipulation functions of the611

PCFG SET required deeper recursion, and therefore suffered more from smaller λenv−ctx. These results highlight the612

trade-off involved with λenv−ctx: the optimal parameter value depends on the demands of the programs that the model613

is running.614
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Figure 12: Results for first-order unification testing with varying mem region size. Each test involved reading in two s-expressions representing
patterns with variables, performing unification on the patterns, and printing the resulting substitutions if the unification was successful. The
expressions for each test case were randomly generated using an initial complexity parameter (x-axis; see Appendix L). The y-axis indicates the
percentage of successful trials for each complexity parameter setting (20 trials per datapoint). Successful execution required a sufficiently sized
mem region to meet the memory demands of unifying complex expressions.

3.6. Runtime Performance and Scalability615

While the above experiments specifically address model performance in terms of symbolic behavior, here we616

evaluate how region sizing affects runtime and memory usage, and investigate approaches to improving the efficiency617

of its implementation. We test the model with varying mem and env region sizing using a program that includes618

a simple recursive function (Figure 14). This program is first parsed in its entirety, requiring no modifications to619

variable bindings or namespaces, and therefore no computations that involve the env region and its connectivity.620

After parsing, the program is executed, which involves both memory access and the utilization of variable bindings621

and namespaces. We report these two runtimes separately to show that scaling a region only affects the runtime622

performance of relevant model computations.623

Tests were performed using mem region sizes varying from 10,000 to 60,000 (env size fixed at 10,000) and env624

region sizes varying from 10,000 to 70,000 (mem size fixed at 10,000). The lex region size was fixed at 2048, and625

the context density parameters for the mem and env regions was set to 1
4 . These tests were repeated using different626

implementation configurations:627

• One or two GPUs. For two GPUs, the weight matrices for the model were distributed between GPUs using628

a greedy algorithm, in which the next largest matrix is assigned to the GPU with the most available memory.629
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Figure 13: Results for first-order unification testing with varying env region size and env context density. As in Figure 12, each test involves
performing unification on randomly generated expressions and printing substitutions if unification succeeds. The x-axis indicates the complexity
of the test expressions (see Appendix L), and the y-axis indicates the percentage of successful trials per complexity parameter setting (20 trials per
datapoint). Unlike with PCFG SET testing, slightly better performance is achieved with a low context density of 1

8 . Because low context densities
favor larger numbers of bindings within a namespace (Figure 6), we suspect that this is due to differences between the PCFG SET and unification
algorithms: the former requires deeper recursion with fewer variables per namespace than the latter.

(progn

(print ’executing)

(defun f (x)

(if x (f (cdr x))))

(f ’(a b c d e f g h i j))

’complete)

Figure 14: Program used to evaluate runtime and memory performance. NeuroLISP first parses the entire program and stores it in memory, which
requires no modifications to variable bindings or namespaces, and therefore no computations that involve the env region. Then, it evaluates the
program, executing a recursive function that creates several namespaces and variable bindings. The timing of the printed outputs (“executing” and
“complete”) indicates the runtimes of parsing and execution, respectively.

Matrix operations for a connection were executed on the GPU holding its weight matrix, and connections were630

computed one at a a time.631

• Single (four byte) or half (two byte) floating-point precision for connection weights. Half-precision weights did632

not noticeably impact the symbolic behavior of the model, but cut memory usage in half. Thus, larger models633

could be executed without memory saturation.634

• Simple (slow) or efficient (fast) kernels for contextually-gated connection computations. Fast kernels use pre-635

processing to assign only active neurons and synapses to compute threads, while slow kernels use a naive636

implementation that does not skip deactivated neurons and synapses.637

Raw runtime and memory usage is reported in Figure 15. Program parsing and execution are reported separately638

in the first and second rows. Runtime scales with the size of the model until GPU memory is saturated, at which point639

runtime spikes significantly due to memory thrashing. This can be seen in the parsing runtime plot (top left); runtime640

spikes at different points depending on the number of available GPUs and the floating-point precision used, as these641

affect the maximum available memory and the total memory used by the model. As expected, parsing runtime was642

not affected by env region sizing (top right), as the corresponding neurons and weights are not needed during parsing.643
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Figure 15: Model runtime and memory usage (y-axes) with increasing mem and env region sizing (x-axes). Each line indicates performance for a
particular combination of GPU count and floating-point precision for connection weights. Solid lines indicate single-precision weights (four bytes
per weight) and dashed lines indicate half-precision weights (two bytes per weight). Each precision configuration is tested with both a single and
dual GPU setup. The first row shows runtime for program parsing, which does not involve env region computations. Thus, as the env region
is scaled, parsing runtime does not change, as the corresponding weights are not needed in GPU memory. The second row indicates runtime for
program execution, which involves both mem and env region computations. Runtime scales relative to model size until GPU memory is saturated, at
which point runtime increases significantly due to memory thrashing (see Figure 16). Total available GPU memory is indicated by dotted horizontal
lines in the third row plots (12000MB for one GPU or 24000MB for two GPUs).

Thus, although memory for env region connections exceeds the maximum available GPU memory, it is not accessed644

during parsing, and does not affect runtime. During execution, however, runtime scales with both mem and env region645

sizing (middle row). The third row indicates memory usage, which only differs with floating-point precision. The total646

available GPU memory is indicated by the dotted horizontal lines (12000 megabytes (MB) for one GPU and 24000MB647

for two GPUs). The points where memory usage crosses these lines correspond to the spikes in runtime in the top two648

rows; runtime spikes at 12000MB with single GPU configurations and 24000MB with dual GPU configurations.649

Figure 16 shows total runtime (parsing and execution combined) relative to memory usage, reported as seconds per650

MB. Relative runtime slightly decreases as model size increases, likely because the overhead of CPU computations651

and CUDA kernel dispatch is washed out by increasingly large kernel execution times. The rate of decrease is more652

significant with env region scaling (right plot) because env region computations are much less common than mem653

region computations. Once memory is saturated, relative runtime increases sharply in both plots. Although relative654

performance appears to level off, single-precision performance for high env region sizing (right side) indicates that the655

plateau does not persist; once the model becomes large enough, the relative performance quickly reaches intractable656
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Figure 16: Model runtime relative to memory usage (y-axis) with increasing mem and env region sizing (x-axes). As in Figure 15, each line indicates
performance for a particular combination of GPU count and floating-point precision for connection weights. Here the total runtime, including both
program parsing and execution, is reported relative to memory usage (seconds per MB). Relative runtime decrease slightly as the overhead of CPU
computations and CUDA kernel dispatch is washed out by increasingly large sizes for connection weight matrices. Once GPU memory is saturated
(see third row of Figure 15), performance degrades significantly, and each weight incurs a more significant penalty on runtime.

levels, and the GPUs spend most of their time performing memory transfers.657

Finally, Figure 17 show the performance benefits gained by the use of fast kernels for contextually-gated connec-658

tion computations. Results are reported for single-GPU configurations with either single or half precision weights and659

either slow or fast kernels. The first row shows the total runtime (top left) and the corresponding speedup gained from660

using fast kernels over slow kernels (top right). Because not all computations involve contextual gating, the overall661

performance gain is relatively low, and peaks near 2x for moderately sized models. Thus, we examined computations662

for the hetero-associative recurrent connection of the mem region, which involves contextual gating. The second row663

shows runtime (middle left) and speedup (middle right) for learning in this connection, which involves both reads664

and writes for weights. Speedup peaks near 4x with half-precision weights, which corresponds to the fraction of665

neurons activated by contextual gating. The third row shows runtime (bottom left) and speedup (bottom right) for666

input activation in this connection, which only involves reads for weights. Here the peak speedup reaches just over 8x667

for half-precision weights. These results indicate that memory access is a major bottleneck for performance, and that668

contextual gating provides significant performance increases. This suggests that more widespread use of contextual669

gating in the model would provide greater increases in performance.670

4. Discussion671

We have presented NeuroLISP, a multi-region recurrent neural network that implements a virtual interpreter for672

a dialect of the LISP programming language. The network’s architecture is composed of program-independent cir-673

cuitry that learns both interpreter functions and LISP programs using one-step associative learning, and is capable of674

flexible reprogramming without architectural changes. To our knowledge, this is the first effort to implement a high-675

level functional programming language in a fixed neural architecture with distributed representations. NeuroLISP is676

most closely related to previous programmable attractor neural networks like the Neural Virtual Machine (Katz et al.,677

2019) and GALIS (Sylvester and Reggia, 2016), which include program-independent circuitry, distributed represen-678

tations, and local one-step associative learning. However, NeuroLISP includes several novel features that improve its679

computational capabilities. Most significantly, NeuroLISP implements an interpreter for a high-level programming680

language (LISP) that supports nested expressions rather than an assembly-like language with sequential instructions.681

This makes it easy to express complex algorithms like those used in traditional symbolic AI. The network’s shared682
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Figure 17: Performance benefits from using efficient matrix computation kernels for contextually-gated connection computations. As in Figures
15 and 16, each line indicates performance for a particular combination of GPU count and floating-point precision for connection weights. Solid
lines indicate simple kernels that naively allocate deactivated neurons and weights to compute threads, while dashed lines indicate efficient kernels
that perform preprocessing to assign only active neurons and weights (see Section 2.4 for details). Note that the context density parameter for
these tests was set to 1

4 , and contextually-gated connection computations therefore involve only 1
4 of the neurons in the target region, and 1

16 of the
total incomping weights. The first row indicates the overall runtime (top left) along with the relative speedup gained by using efficient kernels (top
right). Because only a subset of connection computations involve contextual gating, the overall speedup remains relatively low, peaking near 2x
for moderately sized models. The second row indicates the cumulative runtime for learning in the hetero-associative recurrent connection of the
mem region (middle left) and the corresponding speedup (middle right). Speedup peaks near 4x for moderately sized models. Finally, the third row
indicates cumulative runtime for activation in the hetero-associative recurrent connection of the mem region (bottom left) and the corresponding
speedup (bottom right). Unlike learning, which involves both reading and writing of connection weights, activation only involves reads, and is
therefore less intensive. As a result, speedup peaks just above 8x for moderately sized models.

program/data memory region stores compositional data structures as attractor graphs that can be constructed, ma-683

nipulated, and accessed via top-down gating during program execution (Davis et al., 2021a). Notably, this includes684

programs themselves; programs can be treated as data, and generated in memory by other programs or by sequential685

inputs that represent code. Finally, NeuroLISP supports function definitions and variable binding with scoping rules686

that are determined by the learned interpreter firmware, facilitating program modularity and reuse.687
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Compared with other programmable neural networks, NeuroLISP is highly flexible and extensible due to its688

program-independent architecture and fully distributed representations. New programs and interpreter functions can689

be learned with fast associative learning without adding new neurons/connections or retraining the model on previ-690

ously learned behaviors. This is in contrast to approaches that involve compiling programs into specialized neural cir-691

cuits with local representations (Bunel et al., 2016; Neto et al., 2003), storing programs in segregated sub-populations692

of a RAM-like memory matrix (Bošnjak et al., 2017; Reed and De Freitas, 2015), or performing neural program in-693

duction with iterative gradient descent learning (Graves et al., 2016, 2014; Zaremba and Sutskever, 2014). NeuroLISP694

also features purely-neural mechanisms for procedures that are sometimes performed by non-neural components in695

hybrid systems, such as call-stack management (Reed and De Freitas, 2015), storage and manipulation of structured696

memories (Silver et al., 2016; Bunel et al., 2018), and coordinating the flow of information through and between697

neural circuits (Andreas et al., 2016). All of these mechanisms in NeuroLISP are controlled by learned activity in the698

Controller regions of the model, and can therefore be reprogrammed in various ways to modify the virtual interpreter699

without architectural changes.700

NeuroLISP also differs from prior models in that its working memory is based on learned attractor dynamics rather701

than persistent activity patterns, and it achieves temporal locality without specialized RAM-like memory matrices.702

Models based on neural attention are typically provided with simultaneous access to a sequence of input patterns703

(temporal non-locality) (Vaswani et al., 2017; Bieber et al., 2020), and/or selectively read and write to a large array of704

neurons that maintain activity patterns in segregated neural “addresses” (Santoro et al., 2016; Graves et al., 2016; Reed705

and De Freitas, 2015), neither of which is considered biologically plausible. In contrast, NeuroLISP processes inputs706

one at a time, stores them in memory using fast associative learning, and retrieves them through top-down control707

of attractor dynamics. This means that NeuroLISP’s working memory does not require copying activity patterns708

between neural regions, or complex mechanisms for memory allocation, garbage collection, or indexing schemes for709

data structures (e.g., usage vectors, temporal link matrices; Graves et al. (2016)). Instead, new memories are created710

by randomly generating activity patterns, establishing them as attractors using one-step auto-associative learning,711

and linking them directly to other memories using one-step hetero-associative learning (i.e., attractor graphs). The712

organization of data structures in memory is based on learned algorithmic behaviors contained in the interpreter713

firmware. Thus, NeuroLISP features improvements to both the static and dynamic aspects of working memory: its714

memory region natively supports attractor graphs, and its Controller regions learn specific procedures for organizing715

them into compositional data structures.716

Our computational experiments demonstrate the correctness of the NeuroLISP interpreter and show that it can717

learn to successfully execute several non-trivial programs, including functions that operate on complex derived data718

structures (multiway trees). The results for the PCFG SET task show that NeuroLISP readily learns string manip-719

ulation operations that can be composed into nested expressions, a significant challenge for state-of-the-art neural720

networks, including recurrent, convolution-based, and transformer networks (Hupkes et al., 2020). We also showed721

that NeuroLISP can successfully implement first-order unification, a high-level symbolic AI task that is an integral722

component of automated reasoning systems (Russell and Norvig, 2002). To our knowledge, unification with neu-723

ral networks has only previously been attempted using expression-specific architectures and local representations724

(Komendantskaya, 2011), whereas NeuroLISP learns to unify arbitrary expressions using a fixed architecture and dis-725

tributed representations. In accordance with prior work on the memory capacity of attractor neural networks (Amit726

et al., 1985; Davis et al., 2021a; Katz et al., 2019), our results show that the model’s storage capacity for data structures727

and variable bindings is linearly dependent upon the size of its memory regions.728

Performance testing with parallel processors indicates that simulation runtime scales with memory usage un-729

til penalties are introduced by memory thrashing, which occurs when available device memory is exceeded. Because730

NeuroLISP’s architecture is modular, its components can be effectively distributed to different compute devices. In ad-731

dition, the use of half floating-point precision over single-precision reduces memory usage without affecting symbolic732

behavior, allowing larger region sizes to be simulated on the same hardware. Finally, contextually-gated connections733

can be computed more efficiently by allocating only active neurons and synapses to compute threads, and improves734

runtime efficiency in a way that is similar to architectural modularity. This suggests that more widespread use of735

contextual gating might lead to further performance gains by reducing the computational load of each simulation736

timestep.737

NeuroLISP is not meant to be a veridical model of the human brain, but several aspects of its architecture and dy-738

namics are inspired by neuroanatomy. Its “region-and-pathway” architecture (Sylvester and Reggia, 2016) is inspired739
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by the organization of the cerebral cortex, and includes several recurrent regions with heterogenous functions. Inter-740

actions among these regions are controlled by top-down gating signals that are reciprocally dependent upon regional741

dynamics. This resembles the functional dynamics of the basal ganglia, which are guided in part by cortical activ-742

ity and provide top-down control of cortical interactions via modulation of the thalamus (Parent and Hazrati, 1995;743

Dudman and Gerfen, 2015). In particular, we suggest that the gate sequence and gate output regions of NeuroLISP’s744

Controller subnetwork represent striatal and pallidal circuitry, while the remaining regions represent various subre-745

gions of the prefrontal cortex. Although NeuroLISP does not include sensory or motor circuitry, it could be readily746

extended to include regions representing sensory and motor cortices, along with corresponding subcortical regions747

such as the tectum, cerebellum, and motor thalamus.748

4.1. Limitations and Future Work749

NeuroLISP is limited by its short-term memory capacity and lack of long-term memory. If memory becomes750

overloaded, learned programs are prone to corruption as memory is updated during program execution and subsequent751

learning of new programs. This phenomenon, known as catastrophic forgetting, is a pervasive issue in artificial neural752

networks that affects both short-term and long-term memory (Reggia et al., in press; Parisi et al., 2019; Kemker753

et al., 2018). Although NeuroLISP is subject to catastrophic forgetting, its memory retention may be improved by754

enrichment of synaptic structure and behavioral strategies. For example, memories may be refreshed via rehearsal755

(Atkinson et al., 2021) and subject to representational drift to reduce interference between memories (Rule et al.,756

2019). On a structural level, synapses may be augmented with history-dependent transitions in plasticity, as in cascade757

models (Fusi et al., 2005), or multiple interacting weights with heterogeneous time constants and learning rates (Benna758

and Fusi, 2016; Kirkpatrick et al., 2017).759

Another limitation of NeuroLISP is that it currently deals exclusively with symbolic processing, and lacks circuitry760

for low-level perception and action. Prior work has shown that sensory-motor circuits are readily incorporated into761

programmable neural networks (Davis et al., 2021b; Sylvester and Reggia, 2016), which provide the top-down control762

typically afforded by non-neural symbolic algorithms in hybrid models. Future work might therefore involve the763

addition of sensory and motor networks that allow the model to run on robotic hardware that interacts directly with764

realtime multi-modal environments. The flexibility of the model makes such an extension straightforward, as it only765

requires additional gating neurons for new regions and pathways, as well as new learned interpreter functions for766

sensory attention and motor control.767

Finally, NeuroLISP currently only learns to execute human-authored programs, and does not learn directly from768

input/output examples (i.e., program induction). However, its shared program/data memory space makes it possible769

to learn algorithms for inducing and synthesizing programs directly in neural memory, and more generally suggests770

future work on alternative learning paradigms such as neuroevolution (Stanley et al., 2019; Such et al., 2017), rein-771

forcement learning (Katz et al., in review, 2020), and imitation learning (Osa et al., 2018; Burke et al., 2019; Katz772

et al., 2017; Le et al., 2018). These approaches may benefit from the addition of sensory and motor circuitry, and773

contribute to stabilizing memory and resolving catastrophic forgetting.774

Despite its limitations, NeuroLISP provides a promising framework for future research. Its implementation of a775

high-level programming language with compositional expressions makes it much easier to encode complex behaviors776

that are difficult to express in low-level assembly languages. Thus, NeuroLISP can replace the non-neural components777

of hybrid models to create purely-neural systems that integrate high-level cognitive reasoning with the low-level778

processing that traditional neural networks excel at. Such hybrid models include neural-guided search algorithms as779

well as hybrid robotic learning systems that use symbolic reasoning to guide neural sensory-motor processing (Katz780

et al., 2017; Reggia et al., 2018). Conversion to purely-neural modeling facilitates future work on leveraging neural781

learning to adapt and refine cognitive algorithms based on experience.782

4.2. Conclusions783

We conclude that high-level programming constructs can be incorporated into neural models to significantly ad-784

vance their cognitive abilities. NeuroLISP presents a proof of concept that neural networks can implement cognitive785

algorithms that are typically implemented using symbolic programming techniques, including compositional logical786

reasoning. Our model is therefore an effective neurocognitive controller that can replace the non-neural components787

of hybrid models, promoting seamless integration of top-down cognitive control with the strengths of contempo-788

rary machine learning. NeuroLISP’s working memory system is based on biologically-inspired principles such as789
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temporally-local control of dynamical attractors (distributed representations), fast associative learning, and top-down790

gating, and is therefore also relevant to interdisciplinary researchers in neuroscience and cognitive science as well as791

artificial intelligence. Future work should address the control of sensory-motor dynamics in cognitive-robotic systems,792

as well as experience-based adaptation and refinement of cognitive procedures using methods such as reinforcement793

learning, program synthesis, and imitation learning.794
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Appendix A. NeuroLISP Language Specification

The full list of implemented interpreter functions is listed in Table A.3. Ellipses indicate repetition of arguments.
NeuroLISP selectively evaluates sub-expressions according to an expression’s operator (first element), and uses the
Stack regions to hold intermediate return values for operations with multiple arguments. Note that some functions
involve conditional evaluation of argument expressions (e.g., cond, and, etc). NeuroLISP currently does not support
error checking during parsing, user-defined macros, strings, or numerals, but could be programmed to do so by
updating the interpreter firmware.

Table A.3: Full specification of the NeuroLISP language operators.

(cons x y) creates a cons cell containing two values
(car x) returns the first value in a cons cell
(cdr x) returns the second value in a cons cell
(cadr x) equivalent to (car (cdr x))

(list x ...) creates a list containing the supplied elements (zero or more ar-
guments), represented by a chain of cons cells, terminated by the
NIL symbol (empty list)

(makehash) creates a hash map (associative array)
(checkhash key map) checks whether a key is contained in a map (returns true or

false)
(gethash key map) returns the value associated with a key in a map (undefined if key

not contained in map)
(sethash key val map) associates a key and value in a map
(remhash key map) removes the key/value pair for a key in a map
(read) reads an input expression and stores it in memory. Parentheses-

delineated sequences are recursively parsed as lists, and the quote
symbol (‘) is parsed as an encapsulating quote operation (e.g., ’x
becomes (quote x))

(print x) prints an expression as output. Nested expressions made of cons
cells are printed recursively, while functions and hash maps are
printed as #FUNCTION and #HASH

(defun name (args ...) body) defines a function with a name, zero or more arguments, and a
body expression

(lambda (args ...) body) creates an anonymous function with zero or more arguments and
a body expression

(label name (args ...) body) like lambda, except the function closure contains a binding from
the given name to the anonymous function, permitting recursion

(let ((var val) ...) body) binds a series of one or more variable/value pairs, and executes
a body expression with the bindings in scope. After completion,
the bindings fall out of scope.

(setq var val ...) binds a series of one or more variable/value pairs in the current
environment namespace. If bindings for any variable exist in the
current scope, they are updated. Otherwise, new bindings are
created in the default environment.

(cond ((clause body) ...) conditionally evaluates expressions based on test clauses. Each
test clause is evaluated in sequence until one returns true or the
end of the list is reached. If a clause returns true, its correspond-
ing body expression is evaluated
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(if clause true-body false-body) if clause evaluation returns true, the true-body is evaluated. Oth-
erwise, the false-body is evaluated

(eq x y) returns true if x and y are identical. Does not check for struc-
tural equivalence in non-atomic data structures (i.e., different
cons cells with the same contents are not considered equal)

(atom x) returns true if x is an atomic symbol
(listp x) returns true if x is a cons cell
(not x) returns true if x is false or NIL
(and x y ...) returns true if none of the arguments evaluate to false or NIL.

Evaluation is short-circuited if an argument evaluates to false

or NIL
(or x y ...) returns true if all of the arguments evaluate to false or NIL.

Evaluation is short-circuited if any argument evaluates to some-
thing other than false or NIL

(eval expr) evaluates the return value of evaluating an expression
(quote expr) returns an expression without evaluating it
(progn expr ...) evaluates a sequence of expressions and returns the return value

of the last expression
(dolist (var list ret-val) body) iterates through a list, binding each element to a variable, and

evaluating a body expression with the binding in scope. Upon
completion, returns either NIL or evaluates an optional ret-val
expression and returns the result

(error msg) prints an error with an optional message, and halts the interpreter
(halt) halts the interpreter

Appendix B. NeuroLISP Architecture Details

Table B.4 lists the neural regions in NeuroLISP and the region-specific gates utilized by the flashed interpreter
firmware. The gconverge

r gate (last column) is a special gate that simplifies attractor convergence in the mem region.
When this gate is active, recurrent dynamics are run repeatedly using the auto-associative matrix until activity con-
verges to a stable attractor, or until a pre-specified number of timesteps has elapsed (10 was used for testing). The
meaning of each other gate can be found in Section 2.1 (see Equations 1 - 4).

Table B.4: Neural regions in NeuroLISP (see Figure 2) and their implemented region-specific gates.

Region gbias
r gnoise

r gread
r gprint

r gsaturate
r gεr gconverge

r

data stack X
runtime stack X
op X X
gate sequence X
gate output
lex X X X X X
mem X X X X
mem-ctx X X X
env X X X
env-ctx X X X

Table B.5 lists the connections between and within regions in NeuroLISP and their functional purpose in model
execution. Each connection links a source region to a target region, and connections with shared source/target regions

2



are distinguished by unique labels. Some connections (marked in the “Lrn” column) have learning gates that allow
them to be updated during model execution (glearn

r,q[`](t); see Equation 5). Connections from context regions (marked
with a *) are unweighted one-to-one multiplicative connections (see Equation 2). All other connections are weighted
all-to-all connections (see Equation 1).

Table B.5: List of connections in NeuroLISP and their functions.

Target Source Label Lrn Function
data stack

data stack fwd pushing data stack
data stack bwd popping data stack

runtime stack
runtime stack fwd pushing runtime stack
runtime stack bwd popping runtime stack

op
lex associating op sequences with symbolic labels
op advancing through operation sequences
runtime stack X returning from an operation sub-call

gate sequence
op associating gate sequences with op sequence states
gh advancing through gate sequences
lex X comparisons on lexicon patterns
mem X comparisons on memory patterns
env X comparisons on namespace patterns

gate output
gate sequence retrieving gate patterns from gate sequence states

lex
lex checking if a symbol is built-in
op associating symbolic arguments with op sequence states
mem X retrieving the symbol stored in a memory state

mem
mem auto X memory state attractor convergence
mem hetero X memory state hetero-associative transitioning
*mem-ctx multiplicative contextual gating of mem dynamics
lex X retrieving the dedicated memory state for a lexicon symbol
env X binding memory states to variables in namespaces
runtime stack X temporary storage during operation sequence execution
data stack X temporary storage during operation sequence execution

mem-ctx
mem X cons cell and associative array key-value associations
lex X associative array map-key associations

env
env auto X binding-specific namespace attractor convergence
env hetero X namespace nesting
*env-ctx multiplicative contextual gating of env dynamics
mem X closure binding
runtime stack X temporary storage during operation sequence execution

env-ctx
lex X variable binding associations
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Appendix C. Cons Cell Implementation

A cons cell is stored in neural memory as a trajectory from a unique memory state through the elements stored
in the cons cell. Because the trajectory runs through the memory states stored in the cell, constructing a cons cell
only requires the addition of a single attractor, and a data structure can be stored in more than one cons cell without
being copied. For example, if a memory state is stored as the car element of two cons cells, it has two outgoing tran-
sitions linking it to the corresponding cdr elements (shown in Figure C.18). Each of these transitions is differentially
accessible because it is contextualized by the unique state of the corresponding cons cell.

ctx

mem

x x

x

x

“#CONS”                  “x”          “NIL”

lex

Figure C.18: Graphical depiction of nested cons cells stored in neural memory, illustrating state recycling for lists with repeat elements. Each
circle represents a distributed activity pattern, and solid arrows represent learned associations/transitions between these patterns. The represented
list contains two copies of the symbol “x”, and can be constructed by the expression (cons ‘x (cons ‘x NIL)). Two mem states representing
cons cells can be identified by their associations with the reserved “#CONS” symbol, represented by a unique activity state in lex (bottom left). In
addition, each cons cell memory state has an associated context state (top) that contextualizes the transitions linking it with its corresponding car
and cdr elements (see Figure 3b). Because both cons cells contain the same car element, the mem state associated with the “x” symbol contains
two outgoing transitions with unique contexts (center circle in mem rectangle). Thus, in the context of the outer cons cell, this state transitions to
the inner cons cell, and in the context of the inner cons cell, it transitions to the mem state for the null symbol (bottom of mem rectangle, associated
with “nil” pattern in lex).

The car and cdr operations that can be performed on cons cells are implemented as follows. First, the cons cell
memory state is activated, and the corresponding context state is retrieved via the pathway from mem to ctx. This
state is then used to contextualize a transition from the cons cell to the car (first) element, which completes the car
operation. To complete a cdr operation, an additional transition is then executed from the car element to the cdr
(second) element. These operations can be nested: if the car or cdr element is also a cons cell, its context state can be
retrieved in order to access one of its elements.

Construction of a cons cell is carried out using several gates, including the noise (Equation 1), eligibility trace
(Equation 4), and plasticity gates (Equation 6). The memory states to be linked as car and cdr elements are computed
by sub-expressions during program evaluation, and pushed onto the data stack for retrieval during cons cell construc-
tion. Once these states are available, the cons cell context state is generated in ctx, and the transitions are constructed
in reverse order. First, the cdr element is retrieved, masked by the context state (via multiplicative gating; see Equation
2), and stashed in the mem eligibility trace (εmem(t)). Then, the car element is retrieved and masked, and the transition
from car to cdr element is learned. Next, a new mem state is generated to represent the cons cell, and the process is
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repeated to link the cons cell state to the car state. Finally, the cons cell mem state is linked to the generated ctx state,
making it accessible for subsequent car and cdr operations. A similar process is used for the “list” operation, which is
equivalent to nested cons operations (i.e., (list a b c) == (cons a (cons b (cons c NIL))), where NIL is a
reserved symbol for the null state that serves as a list terminator).

Appendix D. Associative Array Implementation

The organization of associative arrays in memory makes it possible to check whether a key is contained in a map:
if the transition from the map yields the key memory state, then the key is contained in the map (Figure D.19a), and the
corresponding value can be retrieved via a transition from the key state (Figure D.19b). This can be confirmed with a
comparison operation (Section 2.3.2). Adding or updating a key/value pair involves learning the transitions described
above (from map to key and key to value), and deleting a key/value pair involves changing the transition from the map
state such that it targets a state other than the key state (e.g., the NIL state), thereby causing a mismatch that can be
detected via comparison. Note that the above operations can be performed with constant-time complexity, as they do
not require iteration through key/value pairs in memory. This is possible because of the underlying implementation of
maps as attractor graphs with context-dependent transitions, rather than unbranched attractor sequences.

map

key

ctx

mem

value

x x

map

key

ctx

mem

value

x x

map

key

ctx

mem

value

x x

map

key

ctx

mem

value

x x

(memorize) (recognize)

��������������

� ��� ��!"#

Figure D.19: Graphical depiction of the neural operations for checking for a key and retrieving its value from an associative array / map (see Figure
3c). Circles represent distributed activity patterns. Arrows entering mem states from below represent inputs from other regions that are not shown
in the image (i.e., lex or data stack). The depicted operations are agnostic to the source of these inputs. (a) To check if a key is contained in a map,
the key memory state (labeled “key”) is retrieved and memorized for subsequent comparison (Section 2.3.2), and the corresponding context state
in ctx is retrieved (bottom right circle in ctx rectangle). Next, the map state (labeled “map”) is retrieved, and the key context state is used to execute
a transition. If the key is contained in the map, this transition will yield the key memory state, which can then be recognized via comparison.
Otherwise, a random state will be retrieved, producing a false comparison (i.e., failed recognition). Memorization and recognition occur in the
pathway from mem to gate sequence. (b) Assuming the key is contained in the map, its value can be retrieved as follows. First the map state is
retrieved, along with its corresponding context state (top left circle in ctx rectangle). Then, the key state is retrieved, and the context state is used to
execute a transition to the value state (labeled “value”, bottom right of mem rectangle).
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Appendix E. Organization of Interpreter Memory

The relationship between LISP programs and interpreter operation sequences can be seen in Figure E.20, where
a LISP expression is represented by a cons cell in the mem region (top), and the low-level assembly op-sequences
are represented as sequences of activity in the op region (bottom right). Each pattern of activity in op represents an
assembly instruction that is associated with an opcode and an optional operand via the pathways from op to gate
sequence and lex, respectively. The opcode corresponds to a sequence of states in the gate sequence region, each of
which is associated with a pattern of activity in the gate output region that specifies which model components are
active or inactive in a given timestep (bottom left of Figure E.20). The operand corresponds to a pattern of activity
in the lex region that represents a discrete symbol (center right). These symbols serve various functions in the model;
for example, they can be printed to the environment as output, used to contextualize environment lookups (Section
2.3.4), or used to retrieve a new op sequence during recursive evaluation (i.e., an op-sequence call). Retrieval and
usage of the optional operand is directed by the gating sequence specified by the opcode. For example, an instruction
that prints a symbol involves opening the pathway from op to lex to retrieve the instruction operand, and then opening
a special lex output gate that signals to the environment that an output is ready to be printed (see Section 2.3.3 for
further details on input/output operations).

Stack regions are initialized with a bi-directional chain of associated states, each of which serves as a pointer
that can be dynamically bound to activity states in other regions (mem, env, or op). Pushing onto a stack involves
advancing its activity to the next pointer in the chain, and learning an association between the stack pointer state and
an activity state in a target region. The associated activity state can be retrieved as needed during program execution
by opening the activity gate from the stack region to the target region, and popped off the stack by advancing the stack
region to the previous pointer state in the chain.

During recursive program evaluation, the Controller stores the current memory state and op state on the runtime
stack, advances to the sub-expression memory state, and jumps to the beginning of the eval op-sequence. Upon
completion of sub-expression evaluation, the Controller retrieves the op state from the stack, returning to the operation
that initiated recursive evaluation. At this point, the current memory state represents the return value from evaluating
the sub-expression, and the parent expression’s memory state is available for retrieval from the runtime stack. If
the parent expression contains multiple sub-expressions, the calling op-sequence can then stash the return value on
the data stack, retrieve the parent expression, and advance to the next sub-expression for another round of recursive
evaluation. Once all of the return values of sub-expressions are stored on the data stack, the parent expression’s
operation can then be performed. For example, the cons operation described in Section 2.2.1 will retrieve the memory
states representing elements of the new cons cell, link them together in memory, and return the generated cons cell
state upon completion. The returned cons cell is then passed up for use in the calling expression (e.g., another cons
operation may use it as an element in another cons cell).

To evaluate an expression with a built-in operator, the lex pattern associated with the car element of the expression
is retrieved, the head of the cons cell in mem is recovered, and the lex pattern is used to retrieve the operator’s op
sequence. Retrieval of the cons cell memory state makes the remainder of the expression available for access during
execution of the operation.

Appendix F. Comparison Operations

Formally, comparisons are accomplished in the following manner. Unlike with other weight matrices, learning
that occurs on the comparison pathways completely overrides the previous weight matrix, leaving only the most
recently learned association for recognizing the memorized pattern. The eligibility trace of the gate sequence region is
initialized to an activity state vgs[true], which is the start of the jumping gate sequence that occurs when a comparison
is successful. Thus, memorizing an activity pattern in a source region (src) at time t for later comparison can be
expressed as:

∆Wgs,src(t + 1) =
1

||vsrc(t)||︸    ︷︷    ︸
norm

vgs[true]︸    ︷︷    ︸
jump state

vsrc(t)>︸  ︷︷  ︸
source

− Wgs,src(t) (F.1)
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Figure E.20: Relations between states in various regions of the NeuroLISP architecture that implement interpreter functions. Circles represent
distributed activity patterns, and arrows represent learned transitions between activity patterns within or between regions. A LISP expression is
represented as a cons cell in the mem region (see Figure 3b), and its first element represents a LISP operator. This operator can be used to retrieve the
corresponding sequence in the op region that implements the operation (bottom right op rectangle). Each op state has an opcode that corresponds
to a unique sequence of activity in the gate sequence region, which specifies a temporal sequence of gating values via associations with gate output
states (bottom left). These sequences control the behavior of the relevant model components, including the recurrent dynamics of the gate sequence
and op regions themselves. Some op states are associated with an optional operand via the pathway from op to lex (center right). The corresponding
opcode sequence determines what is to be done with this operand; for example, it may be used to retrieve an atomic memory state (top center state
labeled “atom” in the mem rectangle), or to retrieve a new op sequence during recursive evaluation (right side arrow from lex state to op state).
During recursive op-sequence evaluation, states in the runtime stack region are temporarily associated with the calling op state, which allows the
model to return to the calling op-sequence instruction upon completion. For clarity, some associations are omitted from the diagram, including
associations between runtime stack and mem states, as well as associations between some op, gate sequence, and gate output states.

where Wgs,src(t) is the weight matrix for the pathway from a source region (src) to the gate sequence region (gs) at
time t, vsrc(t) is the src activity pattern to memorize, and vgs[true] is the gate sequence activity state for op-sequence
jumping. The updated weight matrix can then be used to determine if another activity pattern in src is similar enough
to the memorized pattern to yield a successful comparison. This is done by presenting a new input pattern to gate
sequence while attempting to drive gate sequence activity away from the “true” state toward an alternative “false”
state that corresponds to a false comparison:

vgs(T + 1) = σgs

(
Wgs,src(T ) vsrc(T )︸                ︷︷                ︸

recognition

− θ vgs[ f alse]︸        ︷︷        ︸
bias

)
(F.2)

where vgs(T +1) is the post-comparison activity state in the gate sequence region (gs) at time T +1, σgs is the activation
function in gs, Wgs,src(T ) is the weight matrix described above, vsrc(T ) is the activity pattern in src that is compared to
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the memorized pattern, θ is the similarity threshold, and vgs[ f alse] is the gate sequence activity state for non-jumping
operation advancement that occurs when a comparison fails. Equation F.2 is a special form of Equations 1 - 3, where
the bias term bgs = θ vgs[ f alse]. The comparison threshold θ determines how similar the two src activation states
must be to yield a successful comparison (typically θ = 0.95). Note that when a non-threshold activation function
such as the hyperbolic tangent is used, the activity pattern resulting from Equation F.2 will require saturation to match
the magnitude of vgs[true] or vgs[ f alse].

Appendix G. Environments

The organization of environments in neural memory is graphically depicted in Figure G.21 and described in detail
below. Environment namespaces are represented as activity states in the env region of the model (top of Figure 2).
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ctx mem
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mem

env
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xx

x

x

x

x

global

env

env

binding
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��� ���

var name

global

env

Figure G.21: Graphical depiction of various components of environment management in NeuroLISP. Circles represent distributed activity patterns,
and arrows represent learned associations/transitions between activity patterns. (a) Variable bindings are stored as contextualized associations
between activity states in the env and mem regions (arrow labeled “binding”, center). The env state represents an environmental namespace that
may store bindings for several variables. A lex activity pattern representing the variable name (“var name”, left) is associated with unique patterns
in the context regions for env and mem that are each used to contextualize the corresponding region during variable retrieval (dashed lines connected
to “binding” line). In addition, the context state for the env region also contextualizes an auto-association of the env state with itself (looped arrow
in env circle, top). This makes it possible to determine if there is a binding for a particular variable in a particular namespace: if the namespace’s
env state is stable under contextualized auto-associative dynamics, a binding exists. This can be determined via a comparison operation (Section
2.3.2). (b) For dynamically scoped variable binding, environment namespaces are chained together into a sequence that terminates with the global
environment (“global env”, right side). When looking up a variable, the namespaces are inspected in order until a binding is found, or until a
transition is executed from the global environment back to itself (i.e., no environments contain a binding for the variable). (c) For lexically scoped
variable binding, namespaces are organized into an inverted tree, where different branches are created and maintained for function closures. When a
function is defined, a namespace is created and bound to the memory state representing its closure (Section 2.3.5, Figure H.22). When the function
is called, this namespace is retrieved and a new namespace is created to store argument bindings (Section 2.3.5).

8



Each variable binding is maintained as a context-dependent association between a namespace and an activity state
in the mem region that represents a variable’s value (arrow labeled “binding” in Figure G.21a). This association is
contextualized by activity states in the ctx regions (one for mem and one for env) that are derived from a lex pattern that
represents the variable name (“var name” on left side of Figure G.21a). Thus, to retrieve a variable, an inter-regional
transition is performed from env to mem in the context of the variable name. As with associative arrays / maps (Section
2.2.2), it is necessary to validate that a namespace contains a binding for a particular variable name before retrieving
it. This is done using context-dependent auto-associative learning: namespaces that contain a binding for a variable
are stable attractors under recurrent dynamics when the variable name’s context pattern is present. Formally, this is
expressed as:

venv[binding] = vctx−env[var] � venv[namespace]
vmem[binding] = vctx−mem[var] � vmem[value]

σenv

(
vctx−env[var] �

(
Wenv,env[auto] venv[binding]

) )
= venv[binding] (G.1)

σmem

(
vctx−mem[var] �

(
Wmem,env venv[binding]

) )
= vmem[binding] (G.2)

where:

• venv[namespace] is the activity state in the env region representing the namespace.

• vctx−env[var] and vctx−mem[var] are the variable-specific activity patterns in the ctx regions for env and mem,
respectively.

• vmem[value] is the activity state in the mem region representing the value of the binding.

• venv[binding] and vmem[binding] are the contextually-masked activity patterns in the env and mem regions. The
binding is stored as an association between these states (Equation G.2).

• σenv and σmem are the activation functions for neurons in the env and mem regions, respectively.

• Wenv,env[auto] is an auto-associative recurrent weight matrix in the env region that is updated when new bindings
are created.

• Wmem,env is an inter-regional weight matrix from the env region to the mem region that is updated when new
bindings are created.

The relation expressed in Equation G.1 makes it possible to determine whether a binding exists for a given variable in
a given namespace: the activity states before and after auto-associative dynamics can be compared (Section 2.3.2). If
they match, the binding exists, and the relation expressed in Equation G.2 can be used to retrieve the corresponding
value in mem. Because bindings are stored as context-dependent associations, a namespace may contain bindings for
several different variables, much like an associative array can contain multiple key/value pairs.

Namespaces are organized in a nested fashion: when a variable is looked up, and no binding exists for the in-
nermost namespace, the lookup proceeds to the encapsulating namespace. Once the outermost namespace is reached
(referred to as the “global environment”) and no binding is found, the lookup fails and the program returns an er-
ror. For dynamic scoping, namespaces can be maintained in a sequential chain (Figure G.21b), similar to those of the
stack regions. Lexical scoping requires a branched organization (Figure G.21c) because function closures maintain the
bindings that existed during function definition. Thus, lexical scoping allows access to bindings that would otherwise
fall out of a dynamic scope and become inaccessible.

Operations that create new variable bindings evaluate sub-expressions and store the resulting values (mem states)
on the data stack. Once all the values are computed, a new environment namespace (env state) is created to store the
new bindings, and is associated with the prior namespace (arrows between env states in Figures G.21b and G.21c).
Each binding is created by retrieving the variable/argument name (lex state), retrieving the corresponding value from
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the data stack, and learning the associations outlined above to create the binding (Equations G.1 and G.2). These
bindings are then available during subsequent evaluation (i.e., the sub-expression of a let operation, or the body
of a function). Upon completion, the newly created namespace is abandoned by advancing env to the prior names-
pace. However, if a function was defined before completion (i.e., a defun within a let expression), the abandoned
namespace may be retrievable via a closure, as described in the following section.

Appendix H. Closures

Figure H.22 shows the associations making up a closure stored in memory, as well as the environmental bindings
created during a function call. Closures for anonymous functions (lambdas) are stored similarly, but do not include a
binding for a function name (arrow from “defun env” to “closure” in Figure H.22, top left). When a function is called,
a new namespace is created to store argument bindings (“call env”), and is associated with the namespace that was
active when the function was defined (“defun environment”). The caller’s argument expressions are evaluated and
bound to the variables listed in the function definition, which are retrieved from the closure memory structure (“args
list”). The body expression is then retrieved and evaluated with the bindings in scope. Upon completion, the resulting
mem state is returned to the caller, and the caller’s namespace is retrieved from the stack (not shown).

x x

x x

memenv closure

x x

args

list

body

x

x

defun
env

call env

x x

x x

x x x

arg bindings

arg
names

lex

func
name

(ctx states)

Figure H.22: Graphical depiction of the learned associations that make up closures and argument bindings for function calls. A closure is a cons cell
(center top state labeled “closure”) containing a list of argument names (“args list”, center), and an expression for the body of the function (“body”,
top right). The closure state is also associated with the environmental namespace that was active when the function was defined (“defun env”,
top left). In return, the closure is bound to the function name within this environment; a lex state representing the function name contextualizes
this binding (“func name”, bottom). For simplicity, we omit the context states from the diagram, and abbreviate them in the bottom left (“ctx
states”, see Figure G.21 for details). When the function is called, the interpreter creates a new environment to store argument bindings (“call env”,
left), evaluates sub-expressions for argument values, and binds them with their associated argument name (“arg bindings”, center). Each binding
is contextualized by the corresponding lex pattern representing the argument name (“arg” names, bottom right), which can be retrieved from the
argument list contained in the closure.
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Appendix I. Model Parameters for Testing

The model parameters used for the tests outlined in Section 3 are listed in Table I.6. Cells labeled “variable” were
experimentally varied (see Sections 2.4 and 3). The sizing of the stack regions was set according to the demands of
the test, as determined by the NeuroLISP emulator. Either 256 or 1024 neurons was used (four times the number of
orthogonal patterns representing stack frames, for stability purposes). The op and gate sequence regions were sized
according to the number of states necessary for the interpreter firmware sequences (four neurons per orthogonal state
pattern). These regions use orthogonal patterns because orthogonality reduces the required region sizes ((Katz et al.,
2019)), and because the learned states are only established during one-time initialization. Cells in Table I.6 labeled
“flashed” indicate regions that learn solely during the one-time initialization process, which flashes the interpreter
firmware. Cells labeled “combo” indicate regions that learn associations in an online fashion during model execution
in addition to a small set of flashed associations (e.g., patterns for NIL, true, and false are flashed in the mem region,
and a pattern is created for the default environment in the env region).

Table I.6: Model parameters used for testing. “Size” refers to the number of neurons contained in a region. “Learning Type” refers to the
source of learned patterns and associations (“flashed” memories are established during the one-time initialization process, and “combo” refers to
a combination of flashed memories and memories learned online during model execution). “Pattern Type” refers to the organization of learned
representations: “ortho” patterns are orthogonal vectors established during one-time initialization for high efficiency, “local” patterns are one-hot
vectors (used in the gate output region to refer to individual model gates), and “random” patterns are generated with a Bernoulli process. “Activ
Func” refers to the activation function used for neurons in the region. “Lambda” refers to the density parameter used for random pattern generation,
and determines the probability of generating an individual neural activation value of 1.

Region Size Learning Type Pattern Type Activ Func Lambda
runtime stack 256 / 1024 flashed ortho sign N/A

data stack 256 / 1024 flashed ortho sign N/A
op 1536 flashed ortho sign N/A

gate sequence 496 flashed ortho sign N/A
gate output 70 flashed local heaviside N/A

lex variable combo random sign 0.5
mem variable combo random sign 0.5

mem-ctx =size(mem) combo random heaviside 0.25
env variable combo random sign 0.5

env-ctx =size(env) combo random heaviside variable

Appendix J. Interpreter Test Suite

The handwritten test suite described in Section 3.1 is shown in Table J.7.

Table J.7: Basic test suite for the NeuroLISP interpreter. The left column contains test programs, and the right column contains the corresponding
expected outputs. Note that because NeuroLISP executes a read-eval-print-loop, the return value of each expression is printed alongside any outputs
provided by explicit print commands. Lists (cons cells) are printed as parenthesis-enclosed expressions, while function closures and hash maps
(associative arrays) are printed as #FUNCTION and #HASH, respectively.

(cons (quote A) (cons (quote B) NIL)) (A B)

(list (quote A) (quote B)) (A B)

(quote (A B)) (A B)

(car (cons (quote A) NIL)) A
(car (cdr (cdr (list

(quote A) (quote B) (quote C))))) C

(car (cdr (car (cdr (quote (A (B C) D)))))) C

(cadr (quote (A (B C) D))) (B C)
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(eq ’x ’x) true

(eq ’x ’y) false

(eq ’x (list ’x)) false

(atom ’x) true

(atom (list ’x)) false

(listp ’x) false

(listp (list ’x)) true

(print (read)) A A A

(print (list (read) (read) (read))) A B C (A B C) (A B C)

(progn (print ’foo) (print ’bar) ’baz) foo bar baz

(dolist (x ’(A B C) x) (print x)) A B C C

(eval (quote (print (quote x)))) x x
(eval (cons ’print

(cdr (list ’foo ’(quote x))))) x x

(if true ’foo ’bar) (if false ’foo ’bar) foo bar

(if (or false (and true true)) ’foo ’bar) foo
(cond (false ’a)

((or false false) ’b)
((and true false) ’c)
((not true) ’d)
((eq ’x ’y) ’e)

(true ’f)) f

((lambda (x y) (list x y)) ’foo ’bar) (foo bar)
((lambda (f x y) (f x y))

(lambda (x y) (list x y)) ’foo ’bar) (foo bar)
((label f (lambda (x)

(if x (progn (print (car x)) (f (cdr x))))))

(list ’foo ’bar)) foo bar NIL
(defun f (x y) (list x y))

(defun g (x y) (f x y))

(g ’foo ’bar) #FUNCTION #FUNCTION (foo bar)
(let ((x ’foo))

(progn (print x)

(let ((x ’bar)) (print x)) x)) foo bar foo

(let ((x ’foo) (y ’bar)) (list x y)) (foo bar)
(let ((x ’foo) (y ’bar))

(progn (defun f (x) (print (list x y)))

(f ’baz) x)) (baz bar) foo

(progn (setq x ’foo) x) foo

(let ((x ’foo)) (progn (setq x ’bar) x)) bar
(let ((x ’foo))

(progn (let ((x ’bar)) (setq x ’baz)) x)) foo
(let ((x ’foo))

(progn (defun f (x) (setq x ’bar))

(f ’baz) x)) foo

(defun f () (setq x ’foo)) (f) x #FUNCTION foo foo

12



(let ((hash (makehash))) (progn

(sethash ’key1 ’val1 hash)

(sethash ’key2 ’val2 hash)

(print (and

(checkhash ’key1 hash)

(checkhash ’key2 hash)

(not (checkhash ’key3 hash))))

(print (list

(gethash ’key1 hash)

(gethash ’key2 hash)))

(remhash ’key1 hash)

(print (checkhash ’key1 hash))

(sethash ’key1 ’foo hash)

(print (checkhash ’key1 hash))

(print (gethash ’key1 hash))

hash)) true (val1 val2) false true foo #HASH
(progn

(((lambda (le)
((lambda (g) (g g))

(lambda (h)
(le (lambda (x) ((h h) x))))))

(lambda (f)
(lambda (x) (cond
(x (progn

(print x)

(f (cdr x))
(print (car x)))

(true x))))))
’(a b c))

’complete) (a b c) (b c) (c) c b a complete

Appendix K. Multiway Tree Library

The code implementing the multiway tree functions (including helper functions) is listed in Figure K.23. The
corresponding test cases are listed in Figure K.24.
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(defun expr-equal? (x y)

(cond ((or (atom x) (atom y)) (eq x y))

((and (listp x) (listp y))

(and (expr-equal? (car x) (car y))

(expr-equal? (cdr x) (cdr y))))

(true false )))

(defun tree? (expr)

(or (atom expr)

(and (listp expr) (atom (car expr))

(cdr expr) (forest? (cdr expr )))))

(defun forest? (expr)

(or (not expr)

(and (tree? (car expr))

(forest? (cdr expr )))))

(defun copy-tree (tree)

(if (atom tree) tree

(cons (car tree)

(copy-forest (cdr tree )))))

(defun copy-forest (subtrees)

(if (not subtrees) NIL

(cons (copy-tree (car subtrees ))

(copy-forest (cdr subtrees )))))

(defun tree-member (elm tree)

(cond ((atom tree) (eq elm tree))

(true (or (eq (car tree) elm)

(forest-member elm (cdr tree ))))))

(defun forest-member (elm forest)

(and forest

(or (tree-member elm (car forest ))

(forest-member elm (cdr forest )))))

(defun tree-prefix (tree)

(tree-prefix-helper tree NIL))

(defun tree-prefix-helper (tree seq)

(if (atom tree)

(cons tree seq)

(cons (car tree)

(forest-prefix-helper

(cdr tree) seq ))))

(defun forest-prefix-helper (subtrees seq)

(if subtrees

(tree-prefix-helper

(car subtrees)

(forest-prefix-helper

(cdr subtrees) seq))

seq))

(defun tree-subst (new old tree)

(let

((ret (tree-subst-helper new old tree )))

(if ret ret tree )))

(defun tree-subst-helper (new old tree)

(cond

(( expr-equal? tree old) new)

((atom tree) NIL)

(true

(let (( subtrees (forest-subst-helper

new old (cdr tree ))))

(if subtrees

(cons (car tree) subtrees)

NIL )))))

(defun forest-subst-helper (new old subtrees)

(if (not subtrees) NIL

(let ((curr (tree-subst-helper

new old (car subtrees )))

(rest (forest-subst-helper

new old (cdr subtrees ))))

(if (or curr rest)

(cons (if curr curr (car subtrees ))

(if rest rest (cdr subtrees )))

NIL ))))

(defun tree-sublis (subs tree)

(let ((ret (tree-sublis-helper subs tree )))

(if ret ret tree )))

(defun tree-sublis-replace (subs tree)

(if subs

(if (expr-equal? (car (car subs)) tree)

(cadr (car subs))

(tree-sublis-replace (cdr subs) tree))

NIL))

(defun tree-sublis-helper (subs tree)

(let (( replacement

(tree-sublis-replace subs tree )))

(cond

(replacement replacement)

((atom tree) NIL)

(true

(let (( subtrees (forest-sublis-helper

subs (cdr tree ))))

(if subtrees

(cons (car tree) subtrees)

NIL ))))))

(defun forest-sublis-helper (subs subtrees)

(if (not subtrees) NIL

(let ((curr (tree-sublis-helper

subs (car subtrees )))

(rest (forest-sublis-helper

subs (cdr subtrees ))))

(if (or curr rest)

(cons

(if curr curr (car subtrees ))

(if rest rest (cdr subtrees )))

NIL ))))

Figure K.23: Library of multiway tree processing functions.

14



(defun test (expr target)

(if (not (eq (eval expr) target ))

(error (list target ’NOT_EQUAL expr ))))

(test ’(expr-equal? ’a ’b) false)

(test ’(expr-equal? ’a ’a) true)

(test ’(expr-equal? ’(a (b c)) ’(a (b c))) true)

(test ’(expr-equal? ’(a (b (c))) ’(a (b c))) false)

(setq tree1 ’a)

(setq tree2 ’(a b))

(setq tree3 ’(a (b c)))

(setq tree4 ’(b d e))

(setq tree5 ’(a (f g) c (b d e)))

(setq tree6 ’(x y z))

(setq nottree1 ’(a))

(setq nottree2 ’(a (b c) (d) e))

(setq nottree3 ’((a b c) (d e)))

(test ’(is-tree? tree1) true)

(test ’(is-tree? tree2) true)

(test ’(is-tree? tree3) true)

(test ’(is-tree? tree4) true)

(test ’(is-tree? tree5) true)

(test ’(is-tree? nottree1) false)

(test ’(is-tree? nottree2) false)

(test ’(is-tree? nottree3) false)

(test ’(tree-contains? ’a tree1) true)

(test ’(tree-contains? ’d tree5) true)

(test ’(tree-contains? ’h tree5) false)

(test ’(expr-equal? (tree-prefix tree1) ’(a)) true)

(test ’(expr-equal? (tree-prefix tree2) ’(a b)) true)

(test ’(expr-equal? (tree-prefix tree3) ’(a b c)) true)

(test ’(expr-equal? (tree-prefix tree4) ’(b d e)) true)

(test ’(expr-equal? (tree-prefix tree5) ’(a f g c b d e)) true)

(test ’(expr-equal? (tree-subst ’z ’a tree1) ’z) true)

(test ’(expr-equal? (tree-subst ’(z a b) ’a tree1) ’(z a b)) true)

(test ’(expr-equal? (tree-subst ’z ’(b c) tree3) ’(a z)) true)

(test ’(expr-equal? (tree-subst ’z ’g tree5) ’(a (f z) c (b d e))) true)

(setq subs ’((a (x y z)) ((b d e) y) (c z)))

(test ’(expr-equal? (tree-sublis subs tree1) ’(x y z)) true)

(test ’(expr-equal? (tree-sublis subs tree5) ’(a (f g) z y)) true)

(test ’(expr-equal? (tree-sublis subs tree6) tree6) true)

(test ’(expr-equal? (copy-tree tree1) tree1) true)

(test ’(expr-equal? (copy-tree tree5) tree5) true)

Figure K.24: Test cases for multiway tree processing functions.
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Appendix L. Unification Test Case Generation

Unification test cases were produced by randomly generating trees and converting them to s-expressions as fol-
lows. First, a random tree is generated using the random tree function in the Python networkx package3. The size
of the initial tree is the expression complexity parameter described in Section 3.5 (x-axis of Figures 12 and 13). The
tree is rooted by selecting the node with the greatest number of edges, the leaf nodes are labeled with randomly gen-
erated symbols, and the tree is copied to produce an identical pair. Then, a set of variable substitutions is generated,
each mapping a variable name to a small randomly generated subtree representing the value of that variable. These
substitutions are introduced to the pair of trees by randomly selecting a leaf node, and replacing it with a variable
name in one tree, and the corresponding value subtree. In 20% of the test cases, a mismatch was introduced to the pair
by randomly mutating a node in one tree such that they can no longer be unified. Below is an example of a randomly
generated test case with an initial tree size of 10 nodes, leaf symbols drawn from a-j, variable names drawn from V-Z,
up to 3 variable substitutions, and a maximum variable value size of up to 5 nodes.

Initial expression:
(((c) (f h)) (b) i)

Substitutions:
V −→ ((g) j i)

W −→ i

Y −→ (g a)

Expression pair with substitutions:
((((var W)) (f ((g) j i))) (b) (var Y))

(((i) (f (var V))) (b) (g a))

Mismatch mutation (optional):
((((var W)) (f ((g) j i))) (b) (var Y))

(((i) (f (var V))) (d) (g a))

3https://networkx.org/documentation/stable/reference/generated/networkx.generators.trees.random tree.html
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