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Abstract— Despite the well-defined behavioral criteria for
posttraumatic stress disorder (PTSD), clinical care is com-
plicated by the heterogeneity of biological factors underly-
ing impairment. Eye movement tasks provide an opportunity
to assess the relationships between aberrant neurobiological
function and non-volitional performance metrics that are not
dependent on self-report. A recent study using an emotional
variant of the antisaccade task demonstrated attentional control
biases that interfered with task performance in Veterans with
PTSD. Here we present a neuroanatomically-inspired com-
putational model based on gated attractor networks that is
designed to replicate oculomotor behavior on an affective anti-
saccade task. The model includes the putative neural circuitry
underlying fear response (amygdala) and top-down inhibitory
control (prefrontal cortex), and is capable of generating testable
predictions about the causal implications of changes in this
circuitry on task performance and neural activation associated
with PTSD. Calibrating the model with the results of behavioral
and neuroimaging studies on patient populations yields a
pattern of connectivity changes characterized by increased
amygdala sensitivity and reduced top-down prefrontal control
that is consistent with the fear conditioning model of PTSD. In
addition, the model makes experimentally verifiable predictions
about the consequences of increased prefrontal connectivity
associated with cognitive reappraisal training.
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I. INTRODUCTION

PTSD is a neuropsychiatric illness clinically defined by
behavioral symptoms such as intrusive thoughts, avoidance,
and hyperarousal that persist following exposure to a trau-
matic event and result in functional impairment. According
to the U.S. National Center for PTSD, estimates of PTSD
prevalence range between 5-10% of the US population, and
up to 30% in highly exposed populations such as combat
veterans. Despite its well-defined criteria, the behavioral
symptoms of PTSD are dependent on self-report and can
involve heterogeneous biological factors [1]. The biological
complexity of the disorder and lack of performance markers
make it difficult to predict the appropriate treatment approach
for a particular patient.

*Research supported by awards 18010252, VA24517P3981, and
VA24517P3971 from the US Dept. of Veterans Affairs, NSF Award DGE-
1632976, and ONR award N00014-19-1-2044.

I Department of Computer Science, University of Maryland, College Park,
MD, USA 2Department of Electrical Engineering and Computer Science,
Syracuse University, Syracuse, NY, USA SWRIISC-DC, VA Medical
Center, Washington DC, USA  “Georgetown University Medical Center,
Washington DC, USA  5Department of Kinesiology, School of Public
Health, University of Maryland, College Park, MD, USA 6Neuroscience
and Cognitive Science Program, University of Maryland, College Park, MD,
USA "Maryland Robotics Center, University of Maryland, College Park,
MD, USA Correspondence to: Gregory P. Davis, grpdavis@umd.edu

The fear conditioning model provides a rich theoretical
architecture for understanding how trauma may cause neu-
robiological and behavioral abnormalities [2], [3]. Accord-
ing to this model, environmental triggers of fear responses
become generalized to non-aversive contexts via associative
learning. The primary neurobiological consequence of fear
conditioning is increased amygdala activation [4]. Fear re-
sponses are regulated by reciprocal inhibition between the
amygdala and ventromedial prefrontal cortex (vmPFC) [5].
Functional neuroimaging studies reveal a common pattern
of amygdala hyperactivation and vmPFC hypoactivation in
PTSD [6]. This indicates a key regulatory imbalance in fear
conditioning neurocircuitry, but the specific neurobiological
process in humans is still not clear [7]. Is the observed
pattern a result of impaired prefrontal inhibition, amygdala
sensitization, or a combination of both?

Greater understanding of the connection between dysreg-
ulated frontolimbic interactions and fear-related psychophys-
iology may inform therapeutic efforts to restore balance in
function. Experimental paradigms challenge the regulatory
processes that may be compromised in PTSD [2]. The anti-
saccade task has been commonly used to test inhibitory
control by tracking eye movement reactions to stimuli [8].
This task requires recruitment of prefrontal regions to inhibit
the pre-potent instinct to look towards a dominant target
(i.e., a prosaccade) before executing the correct saccade
away from a central fixation point. A recent study found
that facial stimuli reliably interfered with performance on
an antisaccade task more than neutral stimuli in PTSD
[9]. Because the amygdala contributes to visual orientation
towards emotionally salient stimuli such as human faces
[10], these performance deficits may be explained by the
frontolimbic regulatory imbalances characteristic of PTSD.

Computational modeling is one means of assessing
the relationships between behavioral and neurobiological
changes in psychiatric disorders. Here we introduce a
neuroanatomically-inspired computational model that ex-
tends gated cortical networks [11], [12] by adding subcortical
circuitry for visual and oculomotor processing in order to
carry out cognitive operations implementing the antisaccade
task. The model also includes a frontolimbic circuit modeled
after the amygdala and vmPFC. We investigate how changes
in the connectivity of this circuit impact task performance,
and identify changes that account for the behavioral results of
[9] and the characteristic BOLD responses demonstrated in
fMRI studies [1], [6]. In addition, we investigate the impacts
of increased prefrontal connectivity associated with cognitive
reappraisal training [5], and propose a testable prediction that
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Fig. 1. High-level diagram of the neurocomputational model coupled with
the antisaccade environment (bottom center). Connections ending in small
circles are inhibitory, and dashed lines correspond to connections that are
gated (asterisks) by the output structures of the basal ganglia: the substantia
nigra pars reticulata gates motor output (frontal eye fields - superior
colliculus, left), while the pallidum controls gating of cortical connectivity
through the medial dorsal nucleus (lateral PFC - ventromedial PFC, center)
and additional thalamic nuclei that are not modeled explicitly (remaining
dashed connections, top). The gates on these remaining connections (e.g.
temporal cortex - lateral PFC) are represented by an additional line exiting
the pallidum (shown as a dangling asterisk on the bottom right). See text
for details of model functionality.

such training attenuates antisaccade performance deficits in
patients with PTSD by compensating for increased amygdala
sensitivity with increased top-down prefrontal inhibition.

II. METHODS

To simulate a participant carrying out the antisaccade task,
we implemented a recurrent neural network embedded in
a virtual environment, as shown in Figure 1. The network
is composed of interacting components, and sensorimotor
exchanges are implemented as pixel-level visual input and
topographic eye movement motor commands. The task en-
vironment is modeled after [9]. The subject’s goal is to
generate eye movements in the opposite direction of facial
stimuli presented between periods of rest. The time between
stimulus presentation and the subsequent eye movement is
measured as the antisaccade latency.

The task is carried out in multiple stages. First, visual
processing in the ventral visual stream is monitored by the

anterior cingulate cortex (ACC). Upon detection of a face in
the temporal cortex (TC), the ACC emits a signal to the basal
ganglia (BG) to proceed with the task. Next, based on the de-
tected eye gaze direction, the lateral prefrontal cortex (LPFC)
prepares an antisaccade in the frontal eye fields (FEF), which
is emitted to the superior colliculus (SC), engaging the appro-
priate motor response. This flow of information is determined
by the LPFC, which maintains goal-directed behavior via
top-down control of gating operations in the basal ganglia
(BG). Programmatic behavior is encoded in these regions
as distributed activation states with gated transitions, and is
learned using temporally asymmetric one-step learning [11],
[12]. Together, the LPFC and BG cooperate to carry out the
antisaccade task, mediating oculomotor behavior according
to perceived environmental cues.

Visual input from the environment is processed by a
cascade of layers from the retina to the TC, which is
implemented as a convolutional neural network trained to
recognize task-relevant visual features. TC activation is mon-
itored by the ACC, which signals to the BG to proceed with
the task upon face detection. The LPFC then prepares a
contralateral saccade in the FEF based on the detected gaze
direction, and the BG initiates the saccade via the SC.

Our central question concerns the contribution of amyg-
dala hyperactivity and impaired top-down prefrontal inhibi-
tion to increased antisaccade latency. To address this ques-
tion, the model includes reciprocally inhibitory connectivity
between amygdala (AMY) ventromedial prefrontal cortex
(vimPFC) regions [3]. AMY activation is driven by face
detection in the TC, initiating a fear response to salient
environmental stimuli that interferes with task execution [4],
[10]. Strong AMY activation may overwhelm the vmPFC,
diminishing top-down regulatory inhibition [2]. In this case,
support is needed from prefrontal structures that are impli-
cated in cognitive control, such as the LPFC [5].

The AMY interacts extensively with the basal ganglia,
which is thought to contribute to its ability to rapidly
interrupt and bias behavior under appropriate conditions [13].
In our model, AMY activation causes a shift in gating
dynamics in the basal ganglia that activates the medial dorsal
thalamus (MD), which is known to integrate cortical activity
by synchronizing oscillatory rhythms [14]. MD activation
opens a gate from the LPFC to the vmPFC, supporting the
latter in providing time delayed top-down inhibition of the
AMY. This ultimately releases the basal ganglia from inter-
ruption, allowing task execution to continue. The duration
of the interruption, which produces measurable increases in
antisaccade latency, depends on the dynamics of reciprocal
inhibitory connectivity between the AMY and vmPFC.

This neurocircuitry allows us to explore the putative im-
pairment of top-down inhibition of the AMY hyperactivity by
the vmPFC and its impact on measurable response latencies.
Experiments were conducted on instantiations of the model
that served as simulated experimental subjects carrying out
the antisaccade task (referred to as ‘“subjects”). Response
latency was measured as the number of model timesteps
that elapsed between each face presentation and execution of



the corresponding saccade (latency), detected by monitoring
the visual fixation point. BOLD signals were simulated for
the AMY (bold*™) and vmPFC (bold"™P/¢) by averaging
net synaptic activity over the entire test [15]. Weight pa-
rameters in the emotional subnetwork of the model served
as explanatory variables: w* (TC to AMY), w*® (TC to
vmPFC), w*’ (vmPFC to AMY), w'* (AMY to vmPFC)
and w¥! (LPFC to vmPFC). We fix w®* and w"® at 0.5 and
1.0, respectively, and vary w®, w, and w"! experimentally.
These weights correspond to AMY sensitivity (w®!), strength
of frontolimbic inhibition (w®”), and strength of prefrontal
functional connectivity implicated in cognitive control of
emotional regulation (w®!) [5].

IIT. RESULTS

To establish a baseline model, a healthy control group was
simulated using weight parameters (w® = 0.5, w*t = 0.5,
w® = 1.0, w® = 1.0, w¥' = 1.5). Note that the values of
these parameters are expressed as positive values indicating
connectivity strength, regardless of whether the connection is
excitatory or inhibitory. A total of 20 subjects was generated
using these parameters, and all 20 successfully produced
antisaccades for 20 face presentations with a mean latency
of 172.4 model timesteps. Because the mean latency of
the control group in [9] was 440ms, one model timestep
corresponds to 2.552ms of real time. Mean simulated AMY
BOLD and vmPFC BOLD averaged over the test period were
247 and 884 units per second, respectively. Because fMRI
experiments typically express results as the percentage of
change in BOLD response, we left these in arbitrary units.

Our goal was to identify connectivity changes that explain
the observed increases in antisaccade latency and changes in
BOLD reported in neuroimaging studies. The mean latency
of the experimental group in [9] was 633ms, and the results
of [6] suggest that such a subject should demonstrate an
increase in AMY BOLD, and a decrease in vmPFC BOLD.
We assumed small but significant changes in BOLD signals
of 5% to 259 (AMY) and 839 (vmPFC) units per second,
respectively. We hypothesized that the expected changes in
these response variables would be produced by an increase
in AMY sensitivity (w®), a decrease in top-down inhibitory
strength (w*¥), and a decrease in prefrontal functional con-
nectivity (w"'). In addition, we hypothesized that recovering
prefrontal functional connectivity (w®!) to baseline levels
would recover some of the antisaccade performance deficit
observed in PTSD, decreasing mean antisaccade latency.

To avoid confounds from the choice of initial parameters,
we first conducted a search of the parameter space, varying
w®, w*, and w*’ on an evenly spaced lattice in the
ranges ([0.1, 1.0], [0.1, 2.0], [0.1, 2.0]) with an increment
of 0.1 in each dimension. Each data point corresponded
to a simulated subject (4000 total) that was tested on 5
face presentations. We filtered out subjects that failed to
produce one or more antisaccades leaving 2134 subjects
that successfully completed the task with non-zero task
interference. These remaining subjects were used to generate
a dataset of explanatory and dependent variables, shown

in Figure 2. Although the BOLD response variables are in
arbitrary units, these plots illustrate the impacts of changes
in connectivity parameters: increased AMY sensitivity (w®?)
tends to increase antisaccade latency and AMY BOLD, while
increasing the strength of the LPFC-vmPFC-AMY pathway
(w¥!, w*) tends to decrease antisaccade latency.
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Fig. 2. Mean antisaccade latencies and BOLD responses for 2134 simulated
subjects that successfully completed the task and demonstrated non-zero task
interruption. Each axis corresponds to a variable connection weight (w®?,
w?, w“l), and the color indicates the value of each response variable
(latency, bold*™Y, bold”mpfc) in log-scale.

To quantify these relationships and eliminate arbitrary
units, we generated a dataset of log-transformed fractional
changes between each unique pair of subjects and performed
ordinary least squares regression with fixed intercepts, yield-
ing the coefficients shown in Table I. This model produces
a reasonable fit to the data, and the signs of the coefficients
corroborate the relationships illustrated in Figure 2. Results
from [9] provided a target increase in antisaccade latency
of 43.9% (633ms/440ms). Using the computed coefficients,
we solved the following system of equations to identify the
corresponding parameter changes:

1.198 —0.694 —0.2997 [w* log(1.439)
0.980 0.018  0.004 | [w' | = | log(1.05)
0.182 —0.136  0.459 | | " 10g(0.95)
w =1.058, w™ =0.721, w’ =0.794

This pattern of changes matches our hypothesis of in-
creased AMY sensitivity, decreased top-down inhibition from
the vmPFC, and decreased excitation from the LPFC to the
vmPFC. We applied this pattern to our simulated control
subjects (hlth) to produce parameters for simulated patients
with PTSD (ptsd). To simulate cognitive reappraisal training,
we generated a third set of subjects (recov) with recovered
(healthy baseline) prefrontal connectivity:

Wil Witea  Witeou 0.5 0.529 0.529
WL, WG Wity | = |10 0.721 0.721
Wil Whea  Whkeow 1.5 1.191 1.5

20 subjects were generated per group and and evaluated
on 20 face presentations. Means and standard deviations are



reported in Table II, which includes net activation of the
relevant regions. Statistical significance (Welch’s t-test) is
reported in Table III. The results show a reasonably close
match to our predicted latency and BOLD responses for
the PTSD group. Although the vmnPFC BOLD response
falls quantitatively short of the predicted 859 units/sec,
the BOLD results match our qualitative predictions: AMY
BOLD increased, while vmPFC BOLD decreased.

In addition, the results yield testable predictions about
the impact of cognitive reappraisal training on antisaccade
performance and BOLD measurements. If such training
recovers baseline prefrontal connectivity, the model predicts
that these patients would demonstrate a mean antisaccade
latency of 587ms, no noticeable changes in AMY BOLD,
and a significant increase in vmPFC BOLD. This somewhat
paradoxical prediction can be explained by discrepancies be-
tween BOLD responses and neural activation: BOLD signals
integrate excitatory and inhibitory synaptic activity. Despite
increased AMY sensitivity, AMY activation in the model
decreases by 11.7% after cognitive reappraisal training, while
vmPFC activation increases by 5.9%. The increases in sim-
ulated AMY BOLD must be partially compensated by a net
reduction in recurrent activation due to enhanced top-down
inhibition from the vmPFC.

IV. DISCUSSION

A recent review identified the need to bridge the gap
between neuroanatomical, functional, and behavioral changes
in PTSD [7]. Our study begins to address this challenge by
predicting changes in amygdala and prefrontal connectivity
that may be tested empirically with methods such as op-
togenetic fMRI. Our model produces changes in simulated
oculomotor behavior and BOLD responses that are consistent
with empirical studies [6], [9]. Our experimental results
support the hypothesis that elevated amygdala activation
and diminished top-down prefrontal regulation significantly
contribute to impaired behavioral control in patients with
PTSD, consistent with the fear conditioning model [3].

Cognitive reappraisal training has been shown to increase
functional connectivity within the prefrontal cortex and
downregulate negative affect [5]. We used the model to
explore the potential impacts of increased prefrontal connec-
tivity and found a partial recovery of normal performance,
as well as a significant increase in vmPFC BOLD. Although
cognitive reappraisal training did not lead to changes in
amygdala BOLD response, net activation of the amygdala de-
creased by about 11.7%, indicating that increased prefrontal
connectivity can dampen amygdala response without pro-
ducing noticeable changes in the BOLD signal. This result
highlights potential methodological challenges involved with
interpretation of neuroimaging data, and highlights the value
of computational modeling in integrating neuroanatomical,
functional neuroimaging, and behavioral evidence to under-
stand the etiology of neuropsychiatric illnesses.
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