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Introduction. 
Most of today's computing is highly dependent on networks. The resources and files are 
shared over the network. There are servers to which the users connect to and access their 
valuable data. Motefs is such a system that aims at providing ubiquitous access to files, at 
minimal cost. Ubiquitous connectivity is becoming more of a reality, but ubiquitous access 
to files by the file system has not matured completely. Of course file systems like NFS [1] 
and AFS [2] have not been popular on the wide area network because of administrative 
and security issues. Systems like Oceanstore [3] have a very complex model for data 
storage and location, which might have severe performance hits. Motefs on the other hand 
uses a combination of hoarding and pre-fetching with some intelligent analysis of both file 
reference patterns and network connections.  
 
Hoarding has primarily been identified as a solution for disconnected mode operations. In 
the absence of proper network connections the user is forced to work in a disconnected 
mode or resort to the worst case - stop all work. The solution to this is to "hoard" the files 
into the client computer. Hoarding eases disconnected operation by selecting a subset of 
the user's files for local storage. A hoarding system works by observing user activity and 
predicting future needs. Thus a hoard database is built and all hoarded files are 
downloaded onto the client machine. 
 
The other alternative is pre-fetching of files, which is used there is a network connection. A 
critical architectural feature of such systems is the caching of data at clients. It has been 
recognized that client side caching can be exploited to address the performance and 
availability issues. In particular, pre-fetching increases cache hit rate and reduces file read 
latency. 
 
Motefs uses both these techniques effectively. Hoarding databases are built on the server 
side and on the client side pre-fetching is done based on the files in the hoard database in 
the server. Further, Motefs uses a new clustering algorithm, which creates clusters based 
on network conditions in a dynamic fashion. We believe that such dynamic clustering has 
not been looked into before, but nonetheless is very important because of fluctuation 
network conditions.  
 

Related Work 
Hoarding of files had been pioneered by the Coda [4] file system, which used Venus (the 
cache manager of coda) for hoarding files. After that the SEER [5] system had tried to 
build hoard databases based on semantic information between files. We simulate their 
method in our experiments. There has been more recent work on using access trees [6] 
that focuses on better semantic relationships between files. We are looking into these 
methods currently. Our work primarily focuses on network-conditions-adaptive clustering 
and also on semantic relationships between files and this can greatly benefit from better 
semantic clustering algorithms. 
 
 



 

 

Design and Implementation 

File trace collection 
We built a system call logger in Linux, which traps system calls related to the file system 
and logs them. We also use a script that generates file access patterns for multiple users. 
Once multiple users have run the script, we separate the log into per user logs. We also 
ensure that the logs are more or less stable by rerunning the scripts till the difference 
between the logs is minimal. We use the standard Unix diff for this purpose. We use this 
log to generate clusters and also use it for the reference stream. 

Clustering algorithms. 
The difficult challenge is the ``hoard database building problem''-i.e. of selecting which 
files should be stored locally. The simplest way is to ask the user, which files to hoard. But 
this method involves the expertise and involvement of the user. A more elegant solution 
would involve the hoarding of files without involving the user directly 
Automated predictive hoarding is based on the idea that a system can observe user 
behavior, make inferences about the semantic relationships between files, and use those 
inferences to aid the user. We have looked into three different types of algorithms that 
could automate it. 

a. Temporal clustering   
Temporal clustering clusters files together based on timestamps of access. We however 
believe that it is incorrect because it depends on user's access times, which varies 
between users and also between different sessions for the same user. Though we have it 
incorporated as a part of our simulator, we are not presenting results for these because of 
correctness issues. 

b. Semantic clustering- the SEER system. 
The SEER system developed by Geoffrey H. Kuenning and Gerald Popek calculates a 
new measure, semantic distance, between individual files, and uses this to feed a 
clustering algorithm that chooses which files should be hoarded.  
 
SEER considers the user's activities to be composed of projects, rather than individual 
files, which greatly enhances the accuracy of its predictions. The system watches the 
user's file access pattern and records each access according to whether it is an open or a 
close. The file reference patterns are evaluated and are used for calculating the semantic 
distances among various files. These semantic distances drive a clustering algorithm that 
assigns each file to one or more cluster. 
 To detect semantic locality,  
 
SEER defines a new concept known as semantic distance. Conceptually, semantic 
distance attempts to quantify a user's intuition about the relationship between files. A low 
semantic distance suggests that the files are closely related and thus are probably 
involved in the same project, while a large value indicates relative independence and 
different projects. Semantic distance is based on measurements of individual file 



 

 

references, rather than looking at the files themselves. In the system, a file reference is 
considered to be a high-level operation, such as an open or status inquiry because doing 
so would obscure the information being extracted. The idea is to get whole files, rather 
than individual bytes, so it is more informative to look at whole-file operations.  
 
The lifetime semantic distance between an open of file A and an open of file B is defined 
as 0 if A has not been closed before B is opened, and the number of intervening file opens 
(including the open of B) otherwise. For example, consider the reference sequence {Ao, 
Bo, Bc, Co, Cc, Ac, Do, Dc}, where the letters o and c indicate opens and closes 
respectively. The lifetime-based semantic distance from Ao to each of Bo and Co will be 0, 
while the distance from Ao to Do will be 3. Similarly, the distances Bo to Co, Bo to Do, and 
Co to Do will be 1, 2, and 1, respectively. All other distances (Bo to Ao, Co to Ao, Do to 
Ao, Co to Bo, Do to Bo, and Do to Co) are undefined.  
 
Once we have generated the file reference pattern of the user, we are ready to calculate 
the semantic distance. But now comes the problem that there could be multiple references 
to files when the distance is compared with on file. There are two ways to handle it 
1.) Perhaps the simple way to do it is to use arithmetic mean of the distances. But this 
suffers from the problem that if there are many distances that are small values, but one 
that has a very big value, this big value affects the distance. The problem is that small 
number is more indicative of a relationship. 
2.) Use geometric mean, which gives smaller, values more importance.  
So we use either of the methods to find the semantic distance of each file w.r.t the other 
files. This is now used to feed the clustering algorithm and generate clusters. 
 
The algorithm developed is a modified version of one originated by Jarvis and Patrick. 
This algorithm is bottom-up, or agglomerative, starting with each data point assigned to an 
individual cluster and then combining clusters according to a shared-neighbors criterion. In 
this algorithm, the 'n' nearest distances to a file is got from the semantic distance 
calculation. There are two thresholds, Kn(Knear) and Kf(Kfar), Kn > Kf.  If two files share 
at least Kn neighbors, then their clusters are combined into one. If the two files share 
fewer than Kn but at least Kf neighbors, their clusters are not combined, but instead are 
overlapped. In the overlapping operation, each of the closely related files is added to the 
other file's containing cluster. Files, which share less than Kf, are left as is in their clusters. 
 
 

 

 

Table 1. Deciding when to clustering files. 

c. Bandwidth adaptive clustering 
We believe that for a ubiquitous file system has to base its clustering algorithms on both 
user access patters and also on bandwidth. The network bandwidth is an important factor 
because when entire clusters are being transferred over the network large clusters take a 

Relationship Action 
Kn <= x Clusters combined into one 

Kf <= x < Kn Files inserted, but clusters not combined 
x < Kf No action 



 

 

long time to arrive and more importantly might cause the client cache to be filled up and 
possibly be even overwritten by the same cluster(if a cluster is bigger than the cache). In 
bandwidth adaptive clustering, we initially form clusters based on weights for ordering. In 
the reference stream used to build clusters, for each file we have a weight vector for 
"cluster-size" of nearest files. In other words we give weights in descending order for files, 
which occur near this file. The weight is based on the overall nearness of the file  
throughout the entire reference pattern. This is pretty similar to the first step in the SEER 
method.  
 
In the next phase we change weights based on size and bandwidth considerations. The 
initial transfer time for a cluster is known and the client based on its perception of 
bandwidth can specify the desired transfer time. When we mean perception of bandwidth 
it is the client's instantaneous bandwidth calculated by measuring the roundtrip time and 
the amount of data transferred (b/w= amount of data/(RTT/2)).  
 
But the above measurement is prone to error, so the client can use a much better long 
term estimate of bandwidth using a cheap application layer technique where the 
bandwidth is calculated by measuring application layer latency by using packet probes 
and resending the packets until a confidence bound of 95% can be established. We found 
that it was not necessary to send more than 100 packets to get a good confidence bound.  
 
Based on the desired transfer time the clusters is recomputed so that the total size of 
clusters is reduced or the clusters are merged together if the desired transfer time is 
greater than the current transfer time. In our current implementation we only support the 
former, but we are looking at the other option also. 
 

Experiments  
We conducted our experiments in two phases. We ran a simulator where we could specify 
both the cache size and also the bandwidth. We also implemented a user level client and 
server and estimated bandwidth over the real internet. For the bandwidth adaptive 
clustering method, there were in-band signals sent to the server for re-clustering. Right 
now the in-band clustering is also a user specified parameter.   

Simulating the transfer of files.  
Once we generate the cluster, we have to use it to send files according to need. In order 
to simulate a request, we observed the access pattern of the user and logged it. This log 
was replayed to hoard the files. There was a specific amount of cache that was allocated. 
As the request came, we checked if the file was already in the cache. If not, a request was 
sent for the file. This request was satisfied in the form of the sending the entire cluster 
over, in the anticipation that the user will reference some other file of the same cluster. We 
noted the number of misses to the cache and the time to transfer the files over the 
network. During the calculation, we work under the assumption that the entire cluster is 
transferred before the file is available. So the order is unimportant.  
 



 

 

Our experience with the real internet 
We simulated the above behavior with a restricted cache size and also with an 
unrestricted cache size and observed the times taken for our clustering algorithm based 
on bandwidth adaptive clustering. Like mentioned before we have used both the long-term 
bandwidth and instantaneous bandwidth calculation for re-clustering. The long-term 
bandwidth though calculated at the application level is done before the client starts 
fetching files. In the future we plan to use a model in between the current models, where 
the bandwidth estimate is based on a model, which uses a few instantaneous samples 
rather than just one. A map of the internet with the four sites we had chosen look as 
follows.     
 
Also because of memory restrictions, we could not transfer the entire file, so we decided 
to just transfer metadata. 
 
 
 
 
 
  
 
  
 
 
 
  

Figure 1.  Map of the internet experiments 

Test Results 
We had a reference pattern for clustering of approximately 2500  files(397 unique ones). 
We also used a reference pattern of approximately 2000 files for the client references. 

Results for SEER 
When fed to this algorithm, with n set to 9 nearest files, Kn as 5 and Kf as 3, we got 
clusters 8 clusters. When n was set to 20 and Kn to 10 and Kf to 5 respectively ., we got 
just 2 clusters. We decided to carry on with 8 clusters because the time to hoard 200 files 
may be enormous.  
 

Test case 512 K  1 M 2 M 4 M 8 M 16 M 32 M 
Transfer with UIUC 4072s 7814s 13013s 21527s 18553s 378s 378s 
Transfer with UKY 3532s 6548s 10740s 17901s 15417s 314s 314s 

 
Table 2: Results of SEER adaptive clustering algorithm. 

429 Kbps

UMD 

UIUC UKY UCSB 

515 Kbps

245 Kbps



 

 

Observations.  
• The miss rate decreased as the size of the cache decreased.  
• The transfer time increased as the size of the cache increased up to a certain value 

and then decreased. This may seem contrary to what one would expect. but the 
reason for this is that some of the files in the access pattern were so large that they 
could not fit into the remaining space of the cache. In our simulation, files that could 
not be stored in the cache are not sent across. So that accounts for increase in 
time as the size increases. But after sometime the time decreases because, the 
cache is able to hold the files instead of throwing the files to replace it with newer 
files. So the number of bytes sent across decreases.  

• Very few clusters, with many files are generated. 
• Cache overflow was a problem.   
• With 32 MB cache we got the same performance as unlimited cache. 
• The threshold at which the times reduce is different for each input set. For eg. In 

this run, the results show just 314 sec. We believe that this is because the size of 
files is small, and since the cache is bigger, the files are transmitted only once, but 
in other instances, the files keep getting trashed. Due to this there are a lot of 
transfers.  

 

Results for our algorithm 
We conducted experiments for our algorithm in two different manners. First we simulate it 
using estimated bandwidths and compare it with the SEER method and show its 
effectiveness for varying cache sizes. We also show that the method stabilizes at a pretty 
low cache size on the client side(stabilization means that the cache size performance is 
the same as an infinite cache).  We then show the effectiveness of adaptive clustering as 
compared with our normal clustering algorithm. We then show how the same results vary 
when instantaneous bandwidth calculation is used on the real internet. In the online 
algorithm re-clustering is done based on a percentage reduction, which is desired. By a 
percentage reduction we mean that the smaller files in a cluster are given higher weight by 
the percentage amount and then re-clustering is done so that some smaller files are also 
included in the cluster, which reduces the cluster size and hence the transfer time. We 
also reduce the size of each cluster by K files (after all weights have been normalized, k 
can again be specified.). In our simulations we entrust the intelligence of making a re-
clustering decision to the user who specifies as a part of his feed file the desired 
percentage reduction.  The results given below are shown for the worst-case behavior of 
the normalized algorithm with respect to the  SEER algorithm where the access pattern  
causes severe trashing . Besides many of the big files have been removed from the 
reference patterns to favor the SEER algorithm. This favors the SEER method, which 
builds bigger clusters.  
 
As can be seen from the results in table 3, the initial time taken for the transfer is low 
(because of the compulsory misses). But the access times stabilize at around a 1M cache 
(note that again here the we have many small files ). Though the performance of this 



 

 

method when compared with   the SEER method is not very   big (purely because of the 
nature of tests chosen to favor seer), it still does better than the SEER algorithm. 
 
Method 64k 128k 256k 512k 1M 2M 4M 8M 
Normalized 
clustering for UIUC 

6417s 8399s 8399s 8321s 8314s 8314s 8314s 8314s 

Bandwidth 
Normalized(5%) for 
UIUC 

- 8219s 8247s 8267s 8214s 8214s 8214s 8214s 

Table 3. Times for entire network transfer (in seconds). 
 
Bandwidth normalized clustering performs better than simple clustering because of the 
fact that the size of the cluster gets reduced. Again here we have chosen a very small 
percentage for adaptiveness.  
 
Percentage 5% 10% 20% 25% 
Value for 1M cache 8214s 8211s 8201s 8268s 

Table 2. percentage 
 
We have found out that there is a threshold point of percentage decrease in size, which is 
beneficial, and this is around the 20% mark. However it must be noted that percentage 
reduction in our internet experiments are also user specified values and the online 
mechanism uses specific targets in the feed file to recognize it. 
 

Conclusions and future work 
This paper talked about a bandwidth adaptive scheme for a file pre-fetching model. 
Previous work laid importance on hoarding and clustering algorithms, which form one side 
of the story. We really believe that that bandwidth adaptiveness or in general 
adaptiveness to network characteristics are very important for ubiquitous file systems of 
the future. We are investigating further areas like adaptiveness to other network conditions 
and also at some better clustering algorithms, which use context sensitive information for 
identifying clusters.   
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