

Analysis

Clustering algorithms

for pre-fetching

in Motefs

Narendar Shankar Vijay Gopalakrishnan

{narendar,gvijay}@cs.umd.edu

Department of Computer Science,
University of Maryland, College Park.

May, 2001.

Introduction.
Most of today's computing is highly dependent on networks. The resources and files are
shared over the network. There are servers to which the users connect to and access their
valuable data. Motefs is such a system that aims at providing ubiquitous access to files, at
minimal cost. Ubiquitous connectivity is becoming more of a reality, but ubiquitous access
to files by the file system has not matured completely. Of course file systems like NFS [1]
and AFS [2] have not been popular on the wide area network because of administrative
and security issues. Systems like Oceanstore [3] have a very complex model for data
storage and location, which might have severe performance hits. Motefs on the other hand
uses a combination of hoarding and pre-fetching with some intelligent analysis of both file
reference patterns and network connections.

Hoarding has primarily been identified as a solution for disconnected mode operations. In
the absence of proper network connections the user is forced to work in a disconnected
mode or resort to the worst case - stop all work. The solution to this is to "hoard" the files
into the client computer. Hoarding eases disconnected operation by selecting a subset of
the user's files for local storage. A hoarding system works by observing user activity and
predicting future needs. Thus a hoard database is built and all hoarded files are
downloaded onto the client machine.

The other alternative is pre-fetching of files, which is used there is a network connection. A
critical architectural feature of such systems is the caching of data at clients. It has been
recognized that client side caching can be exploited to address the performance and
availability issues. In particular, pre-fetching increases cache hit rate and reduces file read
latency.

Motefs uses both these techniques effectively. Hoarding databases are built on the server
side and on the client side pre-fetching is done based on the files in the hoard database in
the server. Further, Motefs uses a new clustering algorithm, which creates clusters based
on network conditions in a dynamic fashion. We believe that such dynamic clustering has
not been looked into before, but nonetheless is very important because of fluctuation
network conditions.

Related Work
Hoarding of files had been pioneered by the Coda [4] file system, which used Venus (the
cache manager of coda) for hoarding files. After that the SEER [5] system had tried to
build hoard databases based on semantic information between files. We simulate their
method in our experiments. There has been more recent work on using access trees [6]
that focuses on better semantic relationships between files. We are looking into these
methods currently. Our work primarily focuses on network-conditions-adaptive clustering
and also on semantic relationships between files and this can greatly benefit from better
semantic clustering algorithms.

Design and Implementation

File trace collection
We built a system call logger in Linux, which traps system calls related to the file system
and logs them. We also use a script that generates file access patterns for multiple users.
Once multiple users have run the script, we separate the log into per user logs. We also
ensure that the logs are more or less stable by rerunning the scripts till the difference
between the logs is minimal. We use the standard Unix diff for this purpose. We use this
log to generate clusters and also use it for the reference stream.

Clustering algorithms.
The difficult challenge is the ``hoard database building problem''-i.e. of selecting which
files should be stored locally. The simplest way is to ask the user, which files to hoard. But
this method involves the expertise and involvement of the user. A more elegant solution
would involve the hoarding of files without involving the user directly
Automated predictive hoarding is based on the idea that a system can observe user
behavior, make inferences about the semantic relationships between files, and use those
inferences to aid the user. We have looked into three different types of algorithms that
could automate it.

a. Temporal clustering
Temporal clustering clusters files together based on timestamps of access. We however
believe that it is incorrect because it depends on user's access times, which varies
between users and also between different sessions for the same user. Though we have it
incorporated as a part of our simulator, we are not presenting results for these because of
correctness issues.

b. Semantic clustering- the SEER system.
The SEER system developed by Geoffrey H. Kuenning and Gerald Popek calculates a
new measure, semantic distance, between individual files, and uses this to feed a
clustering algorithm that chooses which files should be hoarded.

SEER considers the user's activities to be composed of projects, rather than individual
files, which greatly enhances the accuracy of its predictions. The system watches the
user's file access pattern and records each access according to whether it is an open or a
close. The file reference patterns are evaluated and are used for calculating the semantic
distances among various files. These semantic distances drive a clustering algorithm that
assigns each file to one or more cluster.
 To detect semantic locality,

SEER defines a new concept known as semantic distance. Conceptually, semantic
distance attempts to quantify a user's intuition about the relationship between files. A low
semantic distance suggests that the files are closely related and thus are probably
involved in the same project, while a large value indicates relative independence and
different projects. Semantic distance is based on measurements of individual file

references, rather than looking at the files themselves. In the system, a file reference is
considered to be a high-level operation, such as an open or status inquiry because doing
so would obscure the information being extracted. The idea is to get whole files, rather
than individual bytes, so it is more informative to look at whole-file operations.

The lifetime semantic distance between an open of file A and an open of file B is defined
as 0 if A has not been closed before B is opened, and the number of intervening file opens
(including the open of B) otherwise. For example, consider the reference sequence {Ao,
Bo, Bc, Co, Cc, Ac, Do, Dc}, where the letters o and c indicate opens and closes
respectively. The lifetime-based semantic distance from Ao to each of Bo and Co will be 0,
while the distance from Ao to Do will be 3. Similarly, the distances Bo to Co, Bo to Do, and
Co to Do will be 1, 2, and 1, respectively. All other distances (Bo to Ao, Co to Ao, Do to
Ao, Co to Bo, Do to Bo, and Do to Co) are undefined.

Once we have generated the file reference pattern of the user, we are ready to calculate
the semantic distance. But now comes the problem that there could be multiple references
to files when the distance is compared with on file. There are two ways to handle it
1.) Perhaps the simple way to do it is to use arithmetic mean of the distances. But this
suffers from the problem that if there are many distances that are small values, but one
that has a very big value, this big value affects the distance. The problem is that small
number is more indicative of a relationship.
2.) Use geometric mean, which gives smaller, values more importance.
So we use either of the methods to find the semantic distance of each file w.r.t the other
files. This is now used to feed the clustering algorithm and generate clusters.

The algorithm developed is a modified version of one originated by Jarvis and Patrick.
This algorithm is bottom-up, or agglomerative, starting with each data point assigned to an
individual cluster and then combining clusters according to a shared-neighbors criterion. In
this algorithm, the 'n' nearest distances to a file is got from the semantic distance
calculation. There are two thresholds, Kn(Knear) and Kf(Kfar), Kn > Kf. If two files share
at least Kn neighbors, then their clusters are combined into one. If the two files share
fewer than Kn but at least Kf neighbors, their clusters are not combined, but instead are
overlapped. In the overlapping operation, each of the closely related files is added to the
other file's containing cluster. Files, which share less than Kf, are left as is in their clusters.

Table 1. Deciding when to clustering files.

c. Bandwidth adaptive clustering
We believe that for a ubiquitous file system has to base its clustering algorithms on both
user access patters and also on bandwidth. The network bandwidth is an important factor
because when entire clusters are being transferred over the network large clusters take a

Relationship Action
Kn <= x Clusters combined into one

Kf <= x < Kn Files inserted, but clusters not combined
x < Kf No action

long time to arrive and more importantly might cause the client cache to be filled up and
possibly be even overwritten by the same cluster(if a cluster is bigger than the cache). In
bandwidth adaptive clustering, we initially form clusters based on weights for ordering. In
the reference stream used to build clusters, for each file we have a weight vector for
"cluster-size" of nearest files. In other words we give weights in descending order for files,
which occur near this file. The weight is based on the overall nearness of the file
throughout the entire reference pattern. This is pretty similar to the first step in the SEER
method.

In the next phase we change weights based on size and bandwidth considerations. The
initial transfer time for a cluster is known and the client based on its perception of
bandwidth can specify the desired transfer time. When we mean perception of bandwidth
it is the client's instantaneous bandwidth calculated by measuring the roundtrip time and
the amount of data transferred (b/w= amount of data/(RTT/2)).

But the above measurement is prone to error, so the client can use a much better long
term estimate of bandwidth using a cheap application layer technique where the
bandwidth is calculated by measuring application layer latency by using packet probes
and resending the packets until a confidence bound of 95% can be established. We found
that it was not necessary to send more than 100 packets to get a good confidence bound.

Based on the desired transfer time the clusters is recomputed so that the total size of
clusters is reduced or the clusters are merged together if the desired transfer time is
greater than the current transfer time. In our current implementation we only support the
former, but we are looking at the other option also.

Experiments
We conducted our experiments in two phases. We ran a simulator where we could specify
both the cache size and also the bandwidth. We also implemented a user level client and
server and estimated bandwidth over the real internet. For the bandwidth adaptive
clustering method, there were in-band signals sent to the server for re-clustering. Right
now the in-band clustering is also a user specified parameter.

Simulating the transfer of files.
Once we generate the cluster, we have to use it to send files according to need. In order
to simulate a request, we observed the access pattern of the user and logged it. This log
was replayed to hoard the files. There was a specific amount of cache that was allocated.
As the request came, we checked if the file was already in the cache. If not, a request was
sent for the file. This request was satisfied in the form of the sending the entire cluster
over, in the anticipation that the user will reference some other file of the same cluster. We
noted the number of misses to the cache and the time to transfer the files over the
network. During the calculation, we work under the assumption that the entire cluster is
transferred before the file is available. So the order is unimportant.

Our experience with the real internet
We simulated the above behavior with a restricted cache size and also with an
unrestricted cache size and observed the times taken for our clustering algorithm based
on bandwidth adaptive clustering. Like mentioned before we have used both the long-term
bandwidth and instantaneous bandwidth calculation for re-clustering. The long-term
bandwidth though calculated at the application level is done before the client starts
fetching files. In the future we plan to use a model in between the current models, where
the bandwidth estimate is based on a model, which uses a few instantaneous samples
rather than just one. A map of the internet with the four sites we had chosen look as
follows.

Also because of memory restrictions, we could not transfer the entire file, so we decided
to just transfer metadata.

Figure 1. Map of the internet experiments

Test Results
We had a reference pattern for clustering of approximately 2500 files(397 unique ones).
We also used a reference pattern of approximately 2000 files for the client references.

Results for SEER
When fed to this algorithm, with n set to 9 nearest files, Kn as 5 and Kf as 3, we got
clusters 8 clusters. When n was set to 20 and Kn to 10 and Kf to 5 respectively ., we got
just 2 clusters. We decided to carry on with 8 clusters because the time to hoard 200 files
may be enormous.

Test case 512 K 1 M 2 M 4 M 8 M 16 M 32 M
Transfer with UIUC 4072s 7814s 13013s 21527s 18553s 378s 378s
Transfer with UKY 3532s 6548s 10740s 17901s 15417s 314s 314s

Table 2: Results of SEER adaptive clustering algorithm.

429 Kbps

UMD

UIUC UKY UCSB

515 Kbps

245 Kbps

Observations.
• The miss rate decreased as the size of the cache decreased.
• The transfer time increased as the size of the cache increased up to a certain value

and then decreased. This may seem contrary to what one would expect. but the
reason for this is that some of the files in the access pattern were so large that they
could not fit into the remaining space of the cache. In our simulation, files that could
not be stored in the cache are not sent across. So that accounts for increase in
time as the size increases. But after sometime the time decreases because, the
cache is able to hold the files instead of throwing the files to replace it with newer
files. So the number of bytes sent across decreases.

• Very few clusters, with many files are generated.
• Cache overflow was a problem.
• With 32 MB cache we got the same performance as unlimited cache.
• The threshold at which the times reduce is different for each input set. For eg. In

this run, the results show just 314 sec. We believe that this is because the size of
files is small, and since the cache is bigger, the files are transmitted only once, but
in other instances, the files keep getting trashed. Due to this there are a lot of
transfers.

Results for our algorithm
We conducted experiments for our algorithm in two different manners. First we simulate it
using estimated bandwidths and compare it with the SEER method and show its
effectiveness for varying cache sizes. We also show that the method stabilizes at a pretty
low cache size on the client side(stabilization means that the cache size performance is
the same as an infinite cache). We then show the effectiveness of adaptive clustering as
compared with our normal clustering algorithm. We then show how the same results vary
when instantaneous bandwidth calculation is used on the real internet. In the online
algorithm re-clustering is done based on a percentage reduction, which is desired. By a
percentage reduction we mean that the smaller files in a cluster are given higher weight by
the percentage amount and then re-clustering is done so that some smaller files are also
included in the cluster, which reduces the cluster size and hence the transfer time. We
also reduce the size of each cluster by K files (after all weights have been normalized, k
can again be specified.). In our simulations we entrust the intelligence of making a re-
clustering decision to the user who specifies as a part of his feed file the desired
percentage reduction. The results given below are shown for the worst-case behavior of
the normalized algorithm with respect to the SEER algorithm where the access pattern
causes severe trashing . Besides many of the big files have been removed from the
reference patterns to favor the SEER algorithm. This favors the SEER method, which
builds bigger clusters.

As can be seen from the results in table 3, the initial time taken for the transfer is low
(because of the compulsory misses). But the access times stabilize at around a 1M cache
(note that again here the we have many small files). Though the performance of this

method when compared with the SEER method is not very big (purely because of the
nature of tests chosen to favor seer), it still does better than the SEER algorithm.

Method 64k 128k 256k 512k 1M 2M 4M 8M
Normalized
clustering for UIUC

6417s 8399s 8399s 8321s 8314s 8314s 8314s 8314s

Bandwidth
Normalized(5%) for
UIUC

- 8219s 8247s 8267s 8214s 8214s 8214s 8214s

Table 3. Times for entire network transfer (in seconds).

Bandwidth normalized clustering performs better than simple clustering because of the
fact that the size of the cluster gets reduced. Again here we have chosen a very small
percentage for adaptiveness.

Percentage 5% 10% 20% 25%
Value for 1M cache 8214s 8211s 8201s 8268s

Table 2. percentage

We have found out that there is a threshold point of percentage decrease in size, which is
beneficial, and this is around the 20% mark. However it must be noted that percentage
reduction in our internet experiments are also user specified values and the online
mechanism uses specific targets in the feed file to recognize it.

Conclusions and future work
This paper talked about a bandwidth adaptive scheme for a file pre-fetching model.
Previous work laid importance on hoarding and clustering algorithms, which form one side
of the story. We really believe that that bandwidth adaptiveness or in general
adaptiveness to network characteristics are very important for ubiquitous file systems of
the future. We are investigating further areas like adaptiveness to other network conditions
and also at some better clustering algorithms, which use context sensitive information for
identifying clusters.

References
[1] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D. and Lyon, B., "Design and
Implementation of the Sun Network Filesystem", Proceedings of the Summer 1985
USENIX Conference, Portland, OR, June 1985, 119-130.

[2] L. B. Huston and P. Honeyman. Disconnected Operation for AFS. In Proceedings
USENIX Symposium on Mobile and Location-Independent Computing, pages 1--10,
Cambridge, Massachusetts, August 1993.

[3] J.Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: an architecture
for global-scale persistent storage. In ASPLOS 2000, pages 190-201, November 2000.

[4] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.
ACM Transactions on Computer Systems, 10(1):3, February 1992.

[5] Geoffrey H. Kuenning. The Design of the Seer Predictive Caching System. In
proceedings of Mobile Computing Systems and Applications 1994, Santa Cruz, CA,
December 1994.

[6] Hui Lei and Dan Duchamp. An Analytical Approach to File Prefetching. In Proceedings
of the USENIX 1997 Annual Technical Conference, pages 275--288, January 1997.

