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Abstract

The connections between Game Theory and the subjects of Privacy
and Economics are an active field of research. Some topics considered
by game theorists include valuing private information, and modeling
the behavior of non-standard utility functions (eg. altruists, malicious
players) in classic settings such as auctions and congestion games. We
present the dynamics of players in a virus inoculation game as an
example of current research in this area. Our independent research
extends this work using a mechanism called imitation dynamics and
analyzes the interplay of altruistic and selfish players. We show analyt-
ical bounds and initial conditions that result in the spread of altruism.

1 Background

1.1 Motivations

Privacy in the colloquial sense has many different meanings; the term is
applied to everything from heavy window curtains to the defense of abortion
rights. The goal of game theorists and economists is to provide a more formal
setting to study privacy. One way of formalizing the question of privacy is
to assign a value to private information an agent possesses. Specifically, if
sharing private information can help achieve a social optimum, how much
should each agent be compensated for contributing his or her information?

A more game theoretical approach to the question of privacy is to con-
sider non-standard utility functions, or cases where player’s utilities are in-
terdependent. Two such cases are altruism, where agents seek to maximize
the utility of other players, and malice, where players try to minimize the
utility of other players. A related concept is the Stackelberg Threshold, or
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the fraction of agents that must be controlled by a central authority to
achieve some desired social outcome. The impact of these utility functions
is evaluated in common game theoretic scenarios such as congestion games,
network formation, and auctions.

Popular metrics used in these studies are the ”Price of Malice” or the
ratio of social cost with malicious players to the Price of Anarchy, as well as
the price of altruism, the ratio of the social cost with altruistic players to the
Price of Anarchy. In some cases, adding malicious players can improve the
social cost, and this situation is called ”the Windfall of Malice”. In addition
to studying these quantities, game theorists try to characterize the existence
of equilibria, convergence of games, hardness of computing equilibria, as
well as understand how to better design mechanisms to converge to a social
optimum.

1.2 Key Findings

We present findings from three papers representing current research in the
field of Privacy and Economics.

On the Value of Private Information
Kleinberg et al. seek to characterize the value of information using the
Shapely Value [4]. Specifically, the calculate the value of agent i’s informa-
tion xi by looking at the average contribution of i’s information over all (n!)
possible arrival orders (π).

xi =
1
n!

∑
π∈Sn

v(S(π, i))− v(S(π, i)− {i})

This contribution of private information is evaluated in three scenarios: a
marketing survey, recommendation systems, and collaborative filtering. An
intuitive result from this analysis is that the agents who benefit from sharing
information depends greatly on the setting. In the case of a marketing sur-
vey, where a company seeks to offer a new product, the agents who are in the
majority benefit from sharing their preferences. Conversely, when attempt-
ing to recommend interesting products, those agents with novel preferences
are best-compensated.

Congestion Games with Malicious Players

In [1], Babaioff et al. present the scenario of a congestion game where
some fraction ε of flow is controlled by a malicious player. Rather than
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Figure 1: Nash flow with no malicious flow

using the usual definition of Price of Malice, this paper uses a different
computation - the change of the Nash delay in graph G with total flow v as
the malicious flow approaches 0, or:

limε→0
D(G, εv)−D(G)

εD(G)
=

∆ε
delay

ε · delay

In some cases they show that malicious players seeking to increase the la-
tency across edges maximally can cause selfish players to make choices that
decrease the total delay, which they term the ”Windfall of Malice”. As seen
in Figure 1, players suffer a delay of 1.5 by choosing the upper path, split-
ting over the two downward connections, and the combining in the last link
to the destination. A malicious player can route their flow over all variable
cost links (upper path, Z connector, lower path) to maximally increase the
delay on each link. However the Nash equilibrium of selfish players, shown
in Figure 2, results in a delay of 1.483 which is lower than the Nash delay,
even with additional malicious flow added to the network.

Babaioff et. al present some interesting results on the problem of ma-
licious flow in congestion games. They prove that in such games, an equi-
librium always exists (given strictly increasing delay functions). For certain
classes of delay functions (continuous, weakly concave) they show that a
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Figure 2: Nash flow with malicious flow of .1

pure equilibrium exists. They also prove bounds for both the price of malice
and the windfall of malice. The upper bound on the price of malice for a
game with m edges and relative slope d (defined in terms of delay function
l, as d = supx

xl′(x)
l(x) ), of d(m-1). They also prove that for a game with m

edges, the windfall of malice is − m2

2(m+2) . Open problems in this area in-
clude proving hardness and convergence results, characterizing games that
can result in a windfall of malice, and proving a lower bound on the price
of malice.

Spiteful Bidding in Sealed-Bid Auctions
Brandt et al. have explored malicious players in auctions with both complete
information and private information [2]. For their analysis, they assume each
agent has a utility function of the form Ui = (1 − α)ui − α

∑
i 6=j uj , where

the utility is a sum of the agent’s valuation and the negative utility of the
other agent’s utilities. The parameter α is called the ”spite” parameter.
When α = 0, the usual results for selfish agents hold, while α = 1 models
purely malicious players. Considering the case of sealed-bid auctions, they
model the valuation of agents using a distribution and prove their results
using the Bayes Nash Equilibrium. They find that, surprisingly, a first-price
sealed-bid spiteful auction is truthful when players are malicious. They also
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show that as the spite parameter α increases, the revenue of the auction also
increases. Finally, they compare the case of private information (sealed-bid
auctions) to a situation where complete information is available. They find
that the revenue of a first-price auction increases when private information
is revealed, however second-price auctions have a decreased revenue relative
to the sealed-bid auction.

2 Inoculation Game

One area of particular interest to our group was the behavior of players when
their interactions are governed by the topology of the game. We present a
paper by Moscibroda et al. that examines the behavior of a network facing
a virus attack [5].

2.1 Model Setup

The inoculation game consists of n players on a grid, where the neighbors of
each player are the fellow players in each of the four cardinal directions (eg.
up, down, left, right). Players are either inoculated, and secured against
virus attacks, or insecure and susceptible to damage if infected by a virus.
Each player will choose to inoculate at a cost of 1 or risk suffering a loss of
L should they be attacked by a virus. At some point a virus will infect a
random node. A player infected by a virus will spread the virus to each of his
insecure neighbors, and those neighbors, in turn, will spread to their insecure
neighbors. As a result any insecure member of a connected component
of insecure nodes will spread the infection to all nodes in the component.
Note that the game is only interesting when L < n, otherwise everyone will
inoculate, and so we will only consider that case in the discussion.

The social cost of the game can be expressed as the sum of the inocu-
lation costs and the infection costs. Since the cost of inoculation is 1, the
inoculation costs are simply the number of inoculated nodes. To express
the infection costs requires considering each component. The probability
of a component of size k will be infected is k

n . In equilibrium, we expect
all components to have the same size, K. Note that in equilibrium, the
inoculation cost must equal the expected cost of infection, so 1 = K

n L, and
the size of each component is n

L (but the optimal conditions favor smaller
components to minimize the total expected cost). If γ nodes are secured,
the remaining n−γ nodes must be insecure. The probability of infection for
any component is K

n and the loss suffered for each node is L. Since all nodes
are in equal-sized components, we assume they have the same probability of
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Figure 3: Examples of the socially optimal upper bound, a Nash equilibrium,
and the result when players fear a group of malicious players

suffering loss L. Hence:

Cost = Inoculation Cost + Total Infection Cost

Cost = Inoculated Nodes +
∑

components
P (Infection) · Size · Infection Cost

Cost = Inoculated Nodes +
∑

i∈components

Sizei
n
· Sizei · L

Cost = γ + (n− γ) · K
n
· L

2.2 Social Optimum

To derive the bounds for the social optimum, we start by finding the bounds
for γ. The upper bound for γ is n

2 , in the case that alternating diagonal
stripes of nodes are secure, the remaining nodes will have no insecure neigh-
bors. For the lower bound of γ, we consider that all insecure components
are circles of size K. The radius of such a circle would be r =

√
K
π . The

circumference of each circle would be secure nodes, so that each compo-
nent would have 2π

√
K
π = 2

√
Kπ secure nodes on its boundary. Since each

secure node can border at most two components, we must have at least√
Kπ secure nodes per component. How many such components are there?

We can divide the insecure nodes by the component size, n−γ
K . Solving

γ ≥ n−γ
K ·
√
Kπ = (n− γ)

√
π
K results in γ ≥ n ·

√
π
K

1+
√

π
K

.
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Now we can derive the lower bound for the social optimum. Using the
lower bound of γ for the inoculation cost and the upper bound of γ in the
infection cost, we can derive the lower bound for the optimal social cost:

Costopt ≥ n ·

√
π
K

1 +
√

π
K

+ (n− n

2
)
LK

n

We can also solve the equation to find the optimal K under these lower
bound assumptions, arriving at K = 2

3

√
π · (nL)

2
3 . Plugging this back into

the cost equation, the bound for cost is

Costopt ≥
1
3
√
π · n

2
3L

1
3

Using a similar technique, but assuming that all components are squares,
we can find an upper bound of Costopt ≤ 4n

2
3L

1
3 . This scenario is depicted

in the leftmost diagram of Figure 3.

2.3 Nash Equilibrium

The Nash equilibrium is relatively straightforward in this game. As men-
tioned earlier, we know that in equilibrium the expected cost of infection
must equal the cost of inoculation, so components will be sized n

L . Consider
the middle diagram of Figure 3. Each component is of size n

L and half the
nodes are inoculated. The inoculation cost is n

2 and the expected infection
cost is 1

2
n
LL = n

2 , yielding a total cost of n. As an upper bound, we know the
inoculation cost can be at most n when all nodes are inoculated. Similarly,
the infection cost of a component of size n

L is n, so the infection cost is also
bounded by n. Hence the upper bound of the Nash equilibrium is 2n.

2.4 Price of Anarchy

Deriving the Price of Anarchy using the results from the previous two sec-
tions is easy. Choosing the lower bound of the Nash equilibrium and the
upper bound of the social optimum yields n

4n
2
3L

1
3

. Using the upper bound of

the Nash cost and the lower bound of the social optimum yields 2n
1
3

√
π·n

2
3L

1
3

.

Simplifying, we have:

1
4

(
n

L
)

1
3 ≤ PoA ≤ 6√

π
(
n

L
)

1
3
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2.5 Bounds with Malicious Players

Moscibroda et al. extended their analysis to an inoculation game with ma-
licious players. These players could lie about their inoculation state to de-
grade the outcome of players. Two scenarios are considered: the first where
the non-malicious players are unaware of the existence of malicious players
(oblivious) and the other where the non-malicious players are aware of the
number of malicious players but not their identities (non-oblivious). Using
a similar means of analysis, they derive bounds for both scenarios.

Intuitively, in the oblivious case, each malicious player can, at best,
connect two connected components of size n

L , increasing both the likelihood
that the nodes will get infected and the infection cost for the component.
At worst, they can saturate the grid causing each insecure player to pay a
loss of L. Following this intuition, they find that if the number of malicious
players b is less than L

2 −1 and there are s non-malicious players, the price of
malice is s+ nb2

L + nb
L + b2, and sL otherwise. Hence the upper bound of the

social cost with is O(min{sL, s + nb2

L }). The price of malice for b < L
2 − 1

is Θ(1 + b2

L + b3

sL) (or Θ(L) otherwise).
In the non-oblivious case, the analysis is more complex. Using the ra-

tionale above, if players know there are more than n
L malicious players, all

non-malicious players will inoculate, resulting in a cost of s which is no
worse than the Nash cost. Considering the other cases, where b < n

L is more
complex. Moscibroda et al. prove that the social cost in such situations is
at least 2s+bL

4 and the Price of Malice is at least
√
π

48 (1 + bL
2s ). Note that this

implies that in some situations the Price of Malice is below 1, corresponding
to the same type of result shown for the Windfall of Malice earlier. Since
the cost of secure nodes is fixed, as more insecure nodes choose to inoculate
for fear of malicious players, both the probability of an infection striking an
insecure node and the loss should such an infection occur diminish.

2.6 Stability with Malicious Players

Another topic considered by the paper was the stability of an equilibrium in
the face of malicious players. If an equilibrium can survive with b malicious
players, the game is defined to be b-stable. In this case, malicious players can
repeatedly change their reported state (secure or insecure) to destabilize the
equilibrium. Intuitively, the equilibrium will not be stable with malicious
players, since by changing their reported state a malicious player can join two
insecure components. Indeed, the inoculation game is not 1-stable in general.
However in non-grid scenarios (such as an n-clique), a single malicious node
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cannot destabilize the equilibrium. However, if there are 2 malicious nodes,
they can always destabilize the equilibrium, and hence the inoculation game
is always 2-instable.

3 Local Interaction Models

3.1 Motivation

We will expand on the inoculation game by considering a local public good
provision game to be repeated for multiple rounds, where players’ future
decisions determined by what they learned from the previous round. Such
a game models several interesting real world phenomena:

• Public goods are often provided on a local scale

• Proximity may determine individual benefit

• Typically, people interact again and again, learning from past interac-
tions

Eshel, Samuelson, and Shaked [3] consider a local interaction model on a
circle, where each player has only two neighbors. We will consider a different
topology: players located in a grid, choosing to provide (or not provide) a
public good, and learning by repeated interaction whether to provide the
public good in future rounds.

3.2 Model

The game is played by m× n players, where each player pjk is the jk node
on an m × n grid, where j = 1, · · · ,m and k = 1, · · · , n. In the initial
round, each player chooses a strategy from the set {A,E}. A player who
selects strategy A (“altruist”) provides 1 unit of public good, shared equally
among his vertical and horizontal neighbors, at a cost c ∈ [0, 1]. If a player
selects strategy E (“egoist”), he provides no units of public good and incurs
no cost. An altruist does not receive any of the public good he provides,
and an egoist still stands to benefit from public good, if any, provided by
his neighbors, even though the egoist has not made any contribution to his
neighbors.

After each round, each player receives payoff equal to the total public
good received from their neighbors (if any) minus the cost of providing
public good (if that player provided public good). Also after each round,
all strategies and payoffs become common knowledge to all players. In
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subsequent rounds, each player looks at himself and his neighbors, and see
whether among that group altruists or egoists did better, on average. If
the altruist neighbors of an egoist player had higher utility than the egoist
neighbors (self included), the egoist will become an altruist, and vice versa.
This process is known as imitation dynamics. We will now give several
examples to clarify the development of this game.

Note that if the game is played only once, there is a unique Nash equilib-
rium in dominant strategies, namely all players choose “E”, so the system
dynamics are crucial to developing a long term population of altruists.

3.3 Initial Conditions and Payoffs

Consider m×n = 2×3, cost c = 1/10, and suppose that in the initial round
(Round 0), we have the following strategy choices:

A A E
E E E

Consider player p1,1. Since p1,1 is an altruist, he contributes 1 unit of public
good (divided evenly between p1,2 and p2,1) at cost 1/10. He has one altruist
neighbor, p1,2, who provides 1 unit of public good, divided evenly among
p1,1, p2,2, and p1,3. Therefore, the net payoff to p1,1 after round one is 1/3−
1/10 = 7/30. Repeating similar calculations for the other players, we see
that the payoffs after round 1 are:

7/30 12/30 10/30
15/30 10/30 0

3.4 Computing the Imitation Dynamics: Learning

Now we want to understand how each player learns from round n to deter-
mine what it should do in round n+ 1. Rather than using a Nash analysis,
we present the process called ”Imitation Dynamics”. Consider player p1,1.

A A E
E E E

7/30 12/30 10/30
15/30 10/30 0

Player p1,1 and his neighbor p1,2 are altruists, receiving on average (7/30 +
12/30)/2 = 19/60. He has one egoist neighbor, p2,1, receiving on average 1/2.
Since the egoist did better on average than the altruists (since 1/2 > 19/60),
in the next round p1,1 will switch to “E” in the next round.

Repeating similar calculations for the other players, we see that following
system evolution:
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Round 0 Round 1
Player Type Avg. A Payoff Avg. E Payoff Type
p1,1 A 0.317 0.5 E
p1,2 A 0.317 0.333 E
p1,3 E 0.4 0.167 A
p2,1 E 0.233 0.417 E
p2,2 E 0.4 0.278 A
p2,3 E 0 0.222 E

Round 1 Round 2
Player Type Avg. A Payoff Avg. E Payoff Type
p1,1 E 0 0.389 E
p1,2 E −0.1 0.417 E
p1,3 A −0.1 0.833 E
p2,1 E −0.1 0.167 E
p2,2 A −0.1 0.667 E
p2,3 E −0.1 0.833 E

In this case, the system degenerates to all egoists. Alternatively, we
can view the system evolution as follows (with strategies above, and payoffs
below):

A A E
E E E

0.23 0.4 0.33
0.5 0.33 0

→

E E A
E A E

0 0.83 −0.1
0.33 −0.1 0.83

→

E E E
E E E

0 0 0
0 0 0

If the cost of providing the public good falls to c = 1/12 ≈ 0.08, the
altruists survive as shown below:

A A E
E E E

0.25 0.42 0.33
0.5 0.33 0

→

E A A
E A E

0.33 0.75 0.25
0.33 0.25 0.83

→

A A E
E E E

0.25 0.42 0.33
0.5 0.33 0

Now it is cheap enough for the altruists to survive. The system will
alternate between the first and second states shown above.

An increase in the number of altruists in the initial round may be detri-
mental to the system in the long run. Suppose that c = 1/12 ≈ 0.08 and
the initial strategy choices are as follows:

A A E
E E A
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Now, free-riding is more attractive to the egoists at p2,2 and p1,3, so they
will remain egoists in the next round. The system will now degenerate to
all egoists instead of the altruists surviving:

A A E
E E A

0.25 0.42 0.83
0.5 0.83 −0.08

→

E E E
E E E

0 0 0
0 0 0

4 Analysis of Imitation Dynamics

We consider imitation dynamics on the game with general values of the
benefit b of a public good and the cost c of producing it. Intuitively, b and c
are greater than or equal to zero. Recall that we used b=1 and c=0.1 in the
previous chapter. Let us consider larger examples in our local interaction
model.

4.1 Larger Examples

Observation 1 Let b be the benefit of a public good provided by an
Altruist and c be the cost of producing it that the Altruist should pay. As
b gets higher or c gets lower, the Egoist has a greater incentive to be an
Altruist in the next round.

Proof An agent decides to its type, either Egoist or Altruist, by comput-
ing the average payoff of its neighbors for each type and taking the greater
payoff. Since b and c are the only factors in computing payoffs, a change
in behavior can only be caused by the values of b or c. We assume the
values of these parameters to be independent of each other. Since the cost
c is subtracted from the Altruist’s payoff but not from the Egoist payoff,
decreasing c can improve the incentive for Altruists. For a group of Al-
truists, a higher value of b will result in higher payoffs, and so increasing
b can increase the incentive to join a group of Altruists or remain an Altruist.

Let us take an example that we consider the Egoist that has four neigh-
bors in the center.
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E E E E E
E A A A E
E A E E E
E E E E E
E E E E E

We introduce notation for the average payoff for Altruists (A) and Egoists
(E), denoted Payoffavg.

Payoffavg(E) =
1
3
× (

2
4
b+

1
4
b+ 0) =

1
4
b

Payoffavg(A) =
1
2
× [(

2
4
b− c) + (

1
4
b− c)] =

3
8
b− c

To detail this calculation, consider the Egoist highlighted in bold text. This
Egoist computes the average of three Egoists including itself as well as the
average payoff of its two Altruist neighbors. In this case, the benefit of
the public goods offered by each of the underlined Altruists is shared by
four neighbors, so that it has value 1

4b. We compute the average Altruist
payoff Payoffavg(A), based on the payoffs of the two underlined Altruists.
The upper Altruist neighbor of the Egoist obtains the benefits from two
side-neighbors 2 × 1

4b and pays the cost of producing a public good c by
virtue of being an Altruist, resulting in a total payoff of 2

4b − c. Simi-
larly, the left Altruist neighbor of the Egoist gains benefits from its upper
Altruist neighbor providing one public good, so its payoff is 1

4b− c. There-
fore, Payoffavg(A) = 3

8b − c. The Egoist agent will become an Altruist iff
Payoffavg(A) > Payoffavg(E). In other words, when (3

8b− c) >
1
4b⇔

1
8b > c,

the Egoist becomes an Altruist. Otherwise, the agent will remain in an Ego-
ist. To provide a concrete example of this condition, if we have b = 1 then
the agent will become altruist where c < 1

8 = 0.125.
If the Egoist is surrounded by Altruist neighbors, what will the Egoist

become? Can cost influence a transition to Altruism? We consider the
following example:

E E E E E
E A A A E
E A E A E
E E A E E
E E E E E

Interestingly, the answer is No. Rather, it never becomes an Altruist, having

13



Payoffavg(E) = b and Payoffavg(A) = 1
4b− c. We will detail this scenario in

the next section.

4.2 Egoist Islands

We discuss a special case where an Egoist is surrounded by Altruist neigh-
bors.

Definition An Egoist Island is a set of the Egoist agent(s) which is iso-
lated by surrounding Altruist neighbors. Altruist Island is defined as the
reverse case, a group of Altruists surrounded by Egoists.

To determine the type of agent, an Egoist agent in the Egoist Island com-
pares its Payoffavg(E) to Payoffavg(A). You might think that if an agent is
surrounded by neighbors with other types, it will assimilate the type of be-
haviors of neighbors. However, as we show, the Egoist will not change its
type, despite being surrounded by Altruists.

Observation 2.1 An Egoist surrounded by Altruists never converts to
Altruist, as long as b and c are positive.

Let us take an Egoist Island example with the stricter condition of Ego-
ist Island than one in the previous section.

A A A A A
A A A A A
A A E A A
A A A A A
A A A A A

In this case, the average payoffs for both types are

Payoffavg(E) =
1
4
b× 4 = b

Payoffavg(A) =
1
4

[4× (
3
4
b− c)] =

3
4
b− c

The condition that the Egoist becomes an Altruist is 3
4b− c > b⇔ −1

4b > c,
so that it never converts to an Altruist.
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An Egoist Island of size two will also persist.

A A A A A A
A A A A A A
A A E E A A
A A A A A A
A A A A A A

Then,

Payoffavg(E) =
1
2
× (

3
4
b+

3
4
b) =

3
4
b

Payoffavg(A) =
1
3

[3× (
3
4
b− c)] =

3
4
b− c

The condition that the Egoist becomes an Altruist is 3
4b− c >

3
4b⇔ 0 > c.

So it holds.
However, if the size of Egoist Island is greater than or equal to three, and

at least one Egoist that is surrounded by less than three Altruist neighbors,
the group will not survive..

Observation 2.2 An Egoist island will remain intact as long there are
less than three Egoists.

4.3 Stackelberg Threshold for Altruists

Let us consider the case of an Altruist Island with regards to Stackelberg
threshold[6]. The Stackelberg Threshold is the minimum number of players
that must be controlled by a central authority to achieve the social optimum.
In this case, the Stackelberg Threshold is the number of Altruists that must
be part of an Altruist Island before the altruists can convert the entire grid
to altruism.

Observation 3 The minimum size of an Altruist Island that can sur-
vive through successive rounds is 3.

Proof First, take a look at the cases where the number of Altruists is
less than 3.

1. When the number of Altruists N(A) is 0, it is trivial.
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2. When N(A) = 1,
E E E E E
E E E E E
E E A E E
E E E E E
E E E E E

Payoffavg(E) =
1
4
× (4× 1

4
b) =

1
4
b

Payoffavg(A) = −c

To remain in Altruist, −c > 1
4b. It never happens as long as b and c

are positive.

3. When N(A) = 2, the payoffs for two Altruists are same since they are
symetric.

E E E E E E
E E E E E E
E E A A E E
E E E E E E
E E E E E E

Payoffavg(E) =
1
3
× (3× 1

4
b) =

1
4
b

Payoffavg(A) =
1
2
× [2× (

1
4
b− c)] =

1
4
b− c

Likewise Payoffavg(A) is less than Payoffavg(E).

Then, let us consider the case N(A) = 3.

E E E E E E
E E E E E E
E E A1 A E E
E E A E E E
E E E E E E
E E E E E E

1. We compute the left up the Altruist(A1) in the Altruist island which
has two Altruist neighbors.

Payoffavg(E) =
1
2
× (2× 1

4
b) =

1
4
b
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Payoffavg(A) =
1
3
× [(

2
4
b− c) + 2× (

1
4
b− c)] =

1
3
b− c

The Altruist has a greater incentive to become an Altruist where 1
3b−

c > 1
4b⇔

1
12b > c.

2. For the other two Altruists,

Payoffavg(E) =
1
3
× (

2
4
b+ 2× 1

4
b) =

1
3
b

Payoffavg(A) =
1
2
× [(

2
4
b− c) + (

1
4
b− c)] =

3
8
b− c

So they convert to an Altruist, where 3
8b− c >

1
3b⇔

1
24b > c.

Therefore, we conclude that if there exist three Altruists controlled by
a central authority, then they all will survive in next round when 1

24b > c.
It is not difficult to analyze that an Altruist island with more than three
Altruists also survives, since we can control the position of Altruists so they
may have at least one Altruist neighbor(like A1) which takes benefits from its
two Altruist neighbors and that only one Egoist has two Altruist neighbors.

E E E E E E
E E E E E E
E E A1 A E E
E E A E E E
E E E E E E
E E E E E E

In addition, surrounding Egoist neighbors(E) will convert to Altruists at
c > 1

12b. As a result, if 1
24b > c, after repeated rounds, the Altruists dominate

a game and all the positions are taken by them except four corners.

4.4 Corner Effects

Even if the Altruists dominate a game, they cannot completely convert a
grid to Altruism, as Egoists at each of the four corners have an incentive to
maintain their strategies.

Observation 4 If the Egoist is put on the corner surrounded by Al-
truists, its strategy will not change.

E A . .
A A . .
. . . .
. . . .
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We did not go over any details of these cases but an Egoist at a corner
surrounded by Altruists converts to an Altruist.

Payoffavg(E) =
2
3
b

Payoffavg(A) =
1
2
× [2× (

1
3
b+

1
4
b− c)] =

7
12
b− c

Hence, Payoffavg(A)− Payoffavg(A) > 0⇔ ( 7
12b− c)−

2
3b > 0⇔ − 1

12b > c,
and it never changes its type.

However, interestingly, a slight change can result in a different outcome.
How can we make a game where egoists do not exist at all? Have another
egoist beside it!

E1 E2 A .
A A A .
. . . .
. . . .

For E1,

Payoffavg(E) =
1
2
× [

1
2
b+ (

1
3
b+

1
4
b)] =

13
24
b

Payoffavg(A) =
1
3
b+

1
4
b− c =

7
12
b− c

Payoffavg(A)− Payoffavg(E) > 0⇔ ( 7
12b− c)−

13
24b > 0⇔ 1

24b > c.

For E2,

Payoffavg(E) =
1
2
× [

1
2
b+ (

1
3
b+

1
4
b)] =

13
24
b

Payoffavg(A) =
1
2
× [(

1
3
b+

2
4
b− c) + (

1
3
b+

1
4
b− c)] =

17
24
b− c

Payoffavg(A)− Payoffavg(E) > 0⇔ (17
24b− c)−

13
24b > 0⇔ 1

6b > c.

In sum, if c is less than 1
24b for the Egoist island with the size of two

at the corner then the Egoists have a greater incentive to convert to an
Altruist.

5 Conclusion

We presented current research in the area of Privacy and Economics, includ-
ing some interesting open questions. Grid-based models of agent interaction
remain an interesting area of study. Our novel contribution is to model a
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game of Altruists and Egoists using the method of imitation dynamics, il-
lustrate some interesting behaviors, and prove some simple bounds for the
evolution of these games.
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