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Abstract

This summary is mostly based on the work of Saberi et al. [1] on online stochastic matching
problem proposed by Feldman et al. [2] as a model of display ad-allocation. We are given a
bipartite graph; one side of the graph corresponds to a fixed set of bidders with budget limit
of one and the other side represents the set of possible adword types. At each time step, an
adword is sampled independently from the given distribution and it needs to be matched upon
its arrival to an available bidder. The goal is to maximize the size of the matching.

Algorithms with a competitive ratio better than 1 − 1/e are known under the assumption
that the expected number of arriving adwords of each type is integral. In [1] Saberi et al. present
an online algorithm for the general (non-integral) problem with a competitive ratio of 0.702.
A key idea of the algorithm is to collect statistics about the decisions of the optimum offline
solution using Monte Carlo sampling and use those statistics to guide the decisions of the online
algorithm. They also show that no online algorithm can have a competitive ratio better than
0.823.

1 Previous Work

Bipartite matching problems are central in algorithms and combinatorial optimization and arise
naturally in several applications such as resource allocation, scheduling, and online advertising.
We study a natural variation of bipartite matching problem motivated in the context of online
advertising: suppose we are given a bipartite graph G(Y,Z,E) where Y is the set of stochastic
nodes (or adwords) and Z is the set of non-stochastic nodes (or bidders). At times t = 1, 2, . . . , b,
an adword of type y ∈ Y is chosen independently at random from a given distribution. The
algorithm can assign the adword to at most one of the available bidders that are adjacent to it.
Furthermore, each bidder can be matched to at most one adword. The goal is to maximize the
expected number of matched bidders at time b.

The online matching problem was first studied by Karp, Vazirani, and Vazirani [3] in the
adversarial model, i.e. when the adwords are chosen by an adversary instead of a random process.
They gave a simple and elegant randomized algorithm that achieves a competitive ratio of 1− 1/e
and further showed that no algorithm can achieve a better ratio.

A different model is the online, stochastic one called the iid model, where adwords Y arrive
online according some known probability distribution (with repetition). In this iid model, the
greedy algorithm achieves an approximation ratio of 1 − 1/e [4, 5]. Feldman et al.[2] (and later
[6]) used a very interesting combinatorial algorithm to show that it is possible to do better than
1 − 1/e when the arrival rate of every adword, that is the expected number of times it appears,



is integral. This assumption, even though not very restrictive for the display ad allocation, is
somewhat unnatural. For example, when the distribution is uniform, it requires b/|Y | to be an
integer. They also showed that there is no 1− o(1) approximation algorithm for this setting. Later
Bahmani and Kapralov [6] improved the upper and lodwer bounds of Feldman et al. to 0.902
and 0.699 respectively in the same setting. Also, they showed that for d-regular graphs, a simple
randomized algorithm achieves a competitive ratio of 1−O(1/

√
d).

Another stochastic model is the random order model where we assume that the distribution
is unknown, but adwords arrive in a random order. This has proved be an important analytical
construct for other problems such as secretary-type problems where worst cases are inherently
difficult. It is known that in this case even the greedy algorithm has a (tight) competitive ratio of
1 − 1/e [4]. Further, no deterministic algorithm can achieve approximation ratio better than 0.75
and no randomized algorithm better than 0.83 [4].
A close line of work to the online matching is the online b-matching and the Adwords problem
[7, 8]. Mehta et al. [7] developed a 1 − 1/e online algorithm in the adversarial case. Recently,
Devanur and Hayes [8] improved the competitive ratio to 1 − ε in the stochastic case where the
sequence of arrivals is a random permutation or it consists of iid samples.

We present the first algorithm for the stochastic iid version of this problem in its general form
(i.e. the arrival rates are not necessary integral) by Saberi et al [1] which improves the 1 − 1/e
competitive ratio.

2 Problem Definition & Overview

Let G(Y,Z,E) be a bipartite graph where Y is the set of stochastic nodes (or adwords) and Z is the
set of non-stochastic nodes (or bidders). There is a rate ry associated to every type of ball y ∈ Y
. The online stochastic matching problem is as follows: at times t = 1, 2, . . . , b, an adword of type
y ∈ Y is chosen randomly and with probability proportional to ry. The algorithm can assign this
adword to at most one of the available bidders that are adjacent to it; each bidder can be matched
to at most one adword. The goal of the algorithm is to maximize the expected number of matched
bidders at time b.

Without loss of generality, we assume that
∑

y∈Y ry = b, thus the expected number of adwords
of type y in the sequence is ry. Also, we assume that ry ≤ 1; if a node has a rate greater than 1,
we can easily split it into a set of identical nodes with rates at most 1.

We will study two classes of algorithms: non-adaptive and adaptive. A non-adaptive algorithm
is equivalent to an ordering of the neighbors N(y) of every node y ∈ Y . If z1, z2, . . . , z|N(y)| is such
an ordering for y, then the k-th time an adword of type y arrives, the algorithm will allocate it to
bidder zk if it is available. If k > |N(y)| or zk is full then the adword will not be allocated. On the
other hand, adaptive algorithms can choose the assignment of every adword when it arrives.

We will present the two algorithms in [1] and will compare them to the optimum offline solution.
Given the sequence of arrived adwords ω = (y1, y2, . . . , yb), one can compute the optimum allocation,
OPT(ω), in polynomial time by solving a maximum matching problem. Fix a particular maximum
matching algorithm and let F (ω) : E → {0, 1} be the vector indicating which edges are used in the
optimum allocation given ω. Clearly, OPT(ω) = 1TF (ω) and the competitive ratio of an online

algorithm ALG is defined as E[ALG]
E[OPT] . In our case, both ALG and OPT are concentrated around

their expected values, therefore the above competitive ratio is fairly robust (see Feldman et al. [2]
for a more detailed discussion).

One of the key ideas in designing the two algorithms in [1] is to approximately compute the
distribution imposed by the optimum offline solution and use that distribution to guide the decisions
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of the online algorithm. Using Monte Carlo sampling, one can compute f(y, z), the probability
that the optimum offline algorithm allocates an adword of type y to a bidder z, for every y and z.
Without loss of generality, we can assume f is fractional matching.

In section 3 we will present the first algorithm in [1] for the special case when ∀y∈Y ry = 1. The
algorithm writes f as a distribution over integral matchings and samples two matchings M1 and
M2 from it. Then, in the online phase, it will use these two matchings for allocating the arriving
adwords to the bidders. The analysis of the algorithm is much shorter and simpler than both
[2, 6]. All these algorithms are non-adaptive, in the sense that they decide the allocation of all
the adword types in advance before they appear. We present a simple example to show that no
non-adaptive algorithm can achieve a competitive ratio better than 1− 1/e when the arrival rates
are non-integral.

In section 4 we will present the second result of [1] which is an adaptive algorithm that obtains
a competitive ratio of 0.702 for arbitrary rates. Unlike the non-adaptive algorithms, the adaptive
algorithm decides the allocation of each arriving adword based on the current state of the bidders.
In particular, when an adword arrives the algorithm samples two neighbor bidders from a joint
distribution and tries to match it to the first bidder; if the bidder is already matched the algorithm
tries the second bidder. This is the first algorithm that beats the 1 − 1/e ratio in the general
form. The adaptivity of the algorithm imposes a lot of dependencies in the distribution of matched
bidders and because of that our analysis is somewhat intricate and for the proof we will only refer
to [1].

Saberi et. al [1] presented an example that gives an upper bound of 0.823 on the competitive
ratio of any deterministic or randomized online algorithm. For analyzing this example, they used
the expected size of a maximum matching of a random bipartite graph recently computed by [9]
in the context of Random SAT and cuckoo hashing. In section 5 we will only present a simpler
example in the same paper for the problem with integral rate. This example shows an upper bound
of 0.86 on any online algorithm in that settings.

The algorithms will crucially use the optimum offline solution for making decisions. In partic-
ular, define

f =
∑

ω

F (ω)P(ω) (1)

where P(ω) is the probability of the sequence ω = (y1, y2, . . . , yb). By definition, f is a convex
combination of matchings and therefore it is in the convex hull of the matchings of G. We will refer
to f as the fractional matching defined by OPT. For each edge e = (y, z) ∈ E, fe is the probability
that an adword of type y is allocated to bidder z by the optimum offline algorithm. Similarly we
define the fractional degree of a node to be fv =

∑

e∼v fe for v ∈ Y ∪ Z.

Proposition 1 (Proposition 2.1 [1]) The vector f is a fractional matching in G. i.e.

fy ≤ ry ≤ 1, y ∈ Y, and fz ≤ 1, z ∈ Z (2)

Moreover, for e = (y, z), we have fe ≤ 1− e−ry + o(1/b).

Proof. Given ω, let Ny(ω) be the number of adwords of type y in ω. Clearly
∑

e∼y Fe(ω) ≤ Ny(ω).
Taking expectations from both sides results in the first inequality in 2. Similarly, the second
inequality in 2 can be proved by noting that in any instance of the problem, z can be matched to
at most one adword. Finally, for e = (y, z), we have

fe ≤ P(Ny(ω) ≥ 1) = 1− (1− ry
b
)b ≤ 1− e−ry + o(1/b)
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Throughout the paper, we will assume that b is sufficiently large so that o(1/b) is negligible.
We will need to compute fe for every edge e. Obviously, fes can be computed by enumeration in
time O(|Y |b). It is also easy to see that E[OPT] and f(e) for all e ∈ E, can be approximated
with great accuracy using Monte Carlo method. OPT is an integral random variable which is in
interval [0, b], hence its variance is upper-bounded by b2. Therefore, E[OPT] can be estimated with
error of o(1/b), by averaging over O(b3) independent samples of the process. A similar argument
shows that with O(|E|2b4) samples of ω in equation 1, with high probability, one can compute the
vector f with accuracy within o(1/b|E|). In the rest of the paper, for simplicity of notation, we
will assume that we have estimated f accurately and ignore o(.) terms.

Since f is a fractional matching, it can be written as a convex combination of at most |Y | +
|Z|+1 integral matchings. The following corollary is therefore trivial but very essential for the two
algorithms:

Corollary 1 (Corollary 2.1 [1])It is possible to efficiently and explicitly construct (and sample
from) a distribution µ on the set of matchings in G such that

∑

M3e

µ(M) = fe,∀e∈E

3 A Non-Adaptive Algorithm

In this section, we will analyze a simple non-adaptive algorithm for the special case where all rates
are one, i.e., ry = 1,∀y∈Y given in [1]. This is the setting studied in Feldman et al. [2]. This
algorithm and its analysis is simpler and more intuitive than [2]. It also gives a slightly better
competitive ratio. This non-adaptive algorithm has some similarities with the online algorithm
that Feldman et al. Both algorithms start by computing two matchings M1 and M2 offline; we use
the first matching, only for the first arrived adword of each type and the second one only for the
second arrivals. In particular, when the first adword of type y arrives it will be allocated to the
bidder matched to y in M1, and when the second adword arrives, we will allocate it via M2. If
the corresponding bidders are already full, the adwords will be dropped. Note that the probability
that there are more than two adwords of each type y in the sequence of arrivals is very small.

On the other hand, the method used for constructing these matchings is different from [2].
Feldman et al. find M1 and M2 by decomposing the solution of a maximum 2-flow of G into two
disjoint matchings (since all the rates are one, the expected graph is simply G). However, we will
sample our matchings from the distribution µ defined by the optimum solution f .

Algorithm 1 The Online Non-adaptive Algorithm

• Offline Phase

1. Compute the fractional matching f , and the distribution µ using Corollary 1.

2. Sample two matchings M1 and M2 from µ independently; set M1 (M2) to be the first
(second) priority matching.

• Online Phase

4



1. When the first adword of type y arrives, allocate it through the first priority matching,
M1.

2. Similarly, when an adword of type y arrives for the second time, allocate it through the
second priority matching, M2.

In the rest of this section, we analyze Algorithm 1, and show that its approximation ratio is
0.684. Let Xz be the random variable indicating the event that bidder z is matched with an adword
during the run of the algorithm. We analyze the competitive ratio of the algorithm by comparing
E[Xz] with fz:

E[ALG]

E[OPT]
=

∑

z∈Z E[Xz]
∑

z∈Z fz
≥ min

z∈Z

E[Xz]

fz

Consider any z ∈ Z, and with a slight abuse of notation let M1(z) denote the stochastic node
matched to it in M1. More precisely, if (y, z) ∈ M1, define M1(z) = {y}, and if z is not saturated
in M1, define M1(z) = φ; similarly define M2(z). Note that z is saturated by M1 (or M2) with
probability fz, but if M1(z) = M2(z), bidder z will only be used for the first arrived ball and
effectively it is not saturated by M2. Given M1 and M2, E[Xz|M1,M2] can be computed similar to
[[2], section 4.2.2] by considering the following cases:

E[Xz|M1,M2] =























0 if M1(z) = M2(z) = φ
1− 1/e if M1(z) 6= φ, {M1(z) = M2(z)}
1− 1/e if M1(z) 6= φ,M2(z) = φ
1− 2/e if M1(z) = φ,M2(z) 6= φ
1− 1/e2 if M1(z) 6= φ,M2(z) 6= φ,M1(z) 6= M2(z)

By substituting this into E[Xz] we get:

E[Xz] = fz(2− 3/e) − f2
z (1 + 2/e2 − 3/e) − (1/e− 2/e2)

∑

e∼z

f2
e

It remains to prove a lower bound on the value of the last equation. Lemma 3.1 in [1] shows
that the value of last equation is at least 0.684 × fz resulting the first theorem:

Theorem 1 Assuming all the rates are 1, the solution of Algorithm 1 is within 0.684 of the opti-
mum offline solution.

4 The Adaptive Algorithm

In the analysis of the non-adaptive algorithm presented in the previous section, we assumed that
the arrival rates of all adwords are integral and in particular, they are at least one. This is a crucial
assumption. If the rates ry’s are not bounded from below, the probability of receiving a second
adword of the same type can become arbitrary low and the competitive ratio of the algorithm can
get very close to 1 − 1/e. This is the case for all non-adaptive algorithms: In Proposition 5.1 in
[1], Saberi et al. show that no non-adaptive algorithm can achieve a competitive ratio better than
(1− 1/e) when the sampling rates are not necessarily integral.

In this section, we will analyze a simple adaptive algorithm that will have a better performance
when the sampling rates are arbitrary. The algorithm is very simple: when an adword of type y
arrives, it samples two neighboring bidders z1 and z2 from a joint distribution. If z1 is available
then y is matched to z1. Otherwise, the algorithms will check z2 and match y to it if it is available.
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The joint distribution from which z1 and z2 are chosen, is determined in advance for every
adword type y and it has the following properties: (i) The probability that z1 is equal to z is equal
to f(y, z). The same is true for z2. Recall that rates are normalized such that

∑

y∈Y ry = b and
thus f is a fractional matching. (ii) Given (i), the joint distribution is such that the probability
of z1 = z2 is minimized. In what follows, we will present one simple joint distribution with these
properties.

Suppose e1, . . . , ek are the edges incident to y, and without loss of generality assume fe1 ≥ . . . ≥
fek . Also define a dummy edge ek+1, that is connected to a dummy non-stochastic node zk+1, with
fek+1

= ry − fy. Note that fek + 1 is the probability that OPT drops a ball of type y. We will
construct two different partitions of the interval Iy = [0, ry ], Iy and Jy. In order to get property (i),
Iy is divided between ei’s proportional to fei ’s. And to get property (ii), Jy is obtained by shifting
the subintervals of Iy to the left by fe1 . Formally, partitions Iy and Jy are defined as follows:

• Partition Iy: let Iy,l = [
∑l−1

j=1 fej ,
∑l

j=l fej ], 1 ≤ l ≤ k + 1.

• Partition Jy: let Jy,l = [
∑l−1

j=2 fej ,
∑l

j=2 fej ], 2 ≤ l ≤ k + 1, and Jy,1 = [ry − fe1 , ry].

The outline of the algorithm is presented in Algorithm

Algorithm 2 The Online adaptive Algorithm

• Offline Phase

1. Compute the fractional matching f .

2. For each y ∈ Y construct the two functions z1(.) and z2(.) by defining the corresponding
partitions Iy and Jy.

• Online Phase

1. If an adword of type y ∈ Y arrives, choose a number x uniformly at random from interval
[0, ry ].

2. First try to match it with z1(x), if it was full, try to match it with z2(x).

In Theorem 4.1 of [1], Saberi et al. proved that this algorithm guarantees a competitive ration
of 0.702.

Theorem 2 For any graph G and arbitrary set of rates {ry, y ∈ Y }, the competitive ratio of
Algorithm 2 is at least 0.702.

5 Upper Bounds for Online Algorithms

Saberi et al. proved different upper bounds by presenting three examples. The results of these
examples are presented below:

• Integral Setting: There exists an instance of the online stochastic matching problem with
integral rates for which no online algorithm can achieve an expected competitive ratio better
than 1− 1/e2 ' 0.86. [Proposition 5.2 [1]]
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• General Setting There is an instance of the online stochastic matching problem with small
rates, ry = o(1), for which no non-adaptive randomized algorithm can achieve a competitive
ratio better than 1− 1/e. [Proposition 5.1 [1]]

• General Setting There is an instance of the online stochastic matching problem for which
no algorithm can achieve a competitive ratio better than 0.823. [Proposition 5.3 [1]]
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