Fair Allocation of indivisible goods with externalities

Mohammad Ghodsi, Massoud Seddighin, Hamed Saleh

Presenter: Hamed Saleh
Externalities
Fair division problem

There are objects to be distributed among agent, where each agent gains a utility, when an object is allocated to her.

\[V_i(\{b\}) \]
Fair division problem

With externalities

There are objects to be distributed among agents,
where each agent gains a utility,
when an object is allocated to anyone.

items allocated to other agents is important for each agent.
Fair division problem

With externalities

items allocated to other agents is important for each agent.
Fair division problem

With externalities

items allocated to other agents is important for each agent.
Fair division problem

With externalities

items allocated to other agents is important for each agent.
Model
General Externalities Model

Suppose set S is allocated to agent j,
then agent i gains utility of

$$V_{j,i}(S)$$
General Externalities Model

Suppose set \(S \) is allocated to agent \(j \),

then agent \(i \) gains utility of

\[
V_{j,i}(S) = \sum_{b \in S} V_{j,i}({\{b\}})
\]

Suppose the valuations are additive.
Network Externalities Model

Modeling the externalities based on an influence graph
Network Externalities Model

The utility of each agent is based on the edge weights,

\[V_{j,i}(S) = \sum_{b \in S} V_{i}([{b}]) \cdot w_{j,i} \]
Network Externalities Model

The weights of the edges are normalized,

$$\sum_j w_{j,i} = 1$$

Modeling the externalities based on an influence graph
Normalized weights

Why is it ok to normalize the weights?

• We can scale the weights and define a fairness criteria independent of the absolute value of the weights.
Normalized weights

What do normalized weights mean?

- Normalized weights could be interpreted as the probability that agent j borrows his allocated items to agent i.
Fairness Criteria
Common Criteria

The most common criteria could be extended for the case with externalities, namely

- Proportionality
- Envy-freeness
- Maximin Share
Extended Proportionality

Branzei et al. (2013)

Consider the maximum utility agent i gains by allocating each item to the right agent,

$$
\hat{V}_i = \sum_{b \in M} \max_{j \in N} V_{j,i}(\{b\})
$$
Extended Proportionality

Branzei et al. (2013)

An allocation A is extended-proportional if for each we have

$$U_i(A) \geq \frac{\hat{V}_i}{n}$$
Swap envy-freeness

Velez (2011)
Swap envy-freeness

Velez (2011)
Swap envy-freeness

Velez (2011)

An allocation \mathbf{A} is swap envy-free if for every pair of agents i and j we have

$$V_{i,i}(\mathcal{A}_i) + V_{j,i}(\mathcal{A}_j) \geq V_{i,i}(\mathcal{A}_j) + V_{j,i}(\mathcal{A}_i)$$
Swap Stability

Branzei et al. (2013)
Swap Stability

Branzei et al. (2013)
Swap Stability

Branzei et al. (2013)

An allocation \mathbf{A} is swap stable if for every three agents i, j, and k we have

$$V_{j,i}(\mathcal{A}_j) + V_{k,i}(\mathcal{A}_k) \geq V_{j,i}(\mathcal{A}_k) + V_{k,i}(\mathcal{A}_j)$$
Relationship between criteria

\[\text{Swap Stability} \implies \text{Extended Proportionality} \implies \text{Swap Envy-freeness} \]
But is extended proportionality the best extension of proportionality?
Average Share

Ghodsi et al. (2018)

Consider the average utility agent i gains by allocating item b to each agent,

$$\overline{V}_i(\{b\}) = \frac{1}{n} \sum_{j \in \mathcal{N}} V_{j,i}(\{b\})$$
Average Share

Ghodsi et al. (2018)

Average Share of agent i equals the sum of these average values for all items,

$$\bar{V}_i = \sum_{b \in M} \sum_{j \in N} V_{j,i}(\{b\})$$
Average Share

Ghodsi et al. (2018)

An allocation A is average if for each agent we have

$$U_i(A) \geq \bar{V}_i$$
Average Share vs Extended Proportionality

It is easy to observe that in network externalities model, we have the following:

\[
\frac{\hat{V}_i}{n} = \frac{V_i(M) \cdot (\max_j w_{j,i})}{n}
\]

\[
\bar{V}_i = \frac{V_i(M) \cdot (\sum_j w_{j,i})}{n}
\]
Average Share vs Extended Proportionality

Average Share is more sensitive to externalities in comparison to Extended Proportionality.

\[\hat{V}_i / n = V_i(M) \cdot (\max_j w_{j,i}) / n \]

\[\bar{V}_i = V_i(M) \cdot (\sum_j w_{j,i}) / n \]
Relationship between criteria

- **Average Share** implies **Extended Proportionality**
- **Swap Stability** implies **Swap Envy-freeness**
Extended Maximin Share

Ghodsi et al. (2018)

We can utilize the notion of cut and choose to find a suitable fairness criterion to capture externalities in fair division of indivisible items.
Extended Maximin Share

Ghodsi et al. (2018)

Cut and choose is consisted of two parts:

1. Division
2. Allocation
Extended Maximin Share

Ghodsi et al. (2018)

1. Division:
 Similar to **Maximin share**, we ask agent i to divide items into n bundles in a balanced way.

2. Allocation

 Note that the valuations is from the point of view of agent i.
Extended Maximin Share

Ghodsi et al. (2018)

1. Division

2. Allocation:

 An adversary allocates the bundles to agents in a way that the utility of agent i minimizes.
Extended Maximin Share

Ghodsi et al. (2018)

1. Division

2. Allocation:

 An adversary allocates the bundles to agents in a way that the utility of agent i minimizes.

We call this minimized utility EMMS_i.
Extended Maximin Share

Ghodsi et al. (2018)

An allocation A guarantees Extended Maximin Share, if for each agent we have

$$U_i(A) \geq \text{EMMS}_i = \max_{P \in \Pi} U_i(\mathcal{W}_i(P))$$

$$\mathcal{W}_i(P) = \arg \min_{A \in \Omega_P} U_i(A)$$
Relationship between criteria

Extended Maximin Share \(\implies\) Average Share \(\implies\) Extended Proportionality \(\implies\) Swap Stability \(\implies\) Swap Envy-freeness
Computation Aspects of EMMS in Network Externalities model
Computing EMMS

We can observe that computing EMMS is equivalent to the following problem:

Given a set of items M and a sorted vector of weights w in decreasing order, what is the maximum value of this function if agent i partition M into n bundles where vector x is the sorted values of the bundles in increasing order.

$$w \cdot x = \sum_{i=1}^{n} w_i \cdot x_i$$
Computing EMMS

Given a set of items M and a sorted vector of weights w in decreasing order, what is the maximum value of this function if agent i partition M into n bundles where vector x is the sorted values of the bundles in increasing order.

$$w \cdot x = \sum_{i=1}^{n} w_i \cdot x_i$$

This is the utility agent i gains if an adversary allocates the bundles.
The most common partitioning schemes are the special cases of this problem:

1. Maximin partition
 \[w_1 = 1, w_2 = 0, \ldots, w_n = 0 \]

2. Minimax partition
 \[w_1 = \frac{1}{n-1}, \ldots, w_{n-1} = \frac{1}{n-1}, w_n = 0 \]

3. Leximin partition
 \[w_1 = 1 - \epsilon, w_2 = \epsilon - \epsilon^2, \ldots, w_n = \epsilon^{n-1} - \epsilon^n \]
Computing EMMS

The most common partitioning schemes are the special cases of this problem:

It is **NP-hard** to compute the value of EMMS.
Computing **EMMS**

minimax

\[
\begin{array}{ccc}
4 & 4 \\
4 & 4 \\
6 & 6 \\
\end{array}
\]

= 12.5

\[
\begin{array}{ccc}
11 \\
\end{array}
\]

maximin

\[
\begin{array}{ccc}
6 & 4 \\
6 & 4 \\
6 & 4 \\
\end{array}
\]

= 12

\[
\begin{array}{ccc}
4 \\
11 \\
\end{array}
\]
Computing EMMS

minimax

maximin

= 11

= 12
Greedy Approach

A simple greedy algorithm would achieve a 1/2-approximation of the optimum answer.
LPT Algorithm

5 5 4 4 3 3 3 3
LPT Algorithm
LPT Algorithm

4 4 3 3 3 3

5 5
LPT Algorithm

LPT partition

Optimal partition
Computing EMMS

Ghodsi et al. (2018)

Theorem 4.3. The LPT algorithms provides a partition which approximates EMMS by a factor of 1/2.
Fair Allocation in Network Externalities model
Self Reliance

We say an agent i is β-self-reliant if

$$w_{i,i} \geq \beta$$
Theorem 5.2. If all the agents are β-self-reliant, then there exists an allocation that guarantees $\beta/2EMMS$.

Main result
Fair allocation

Ghodsi et al. (2018)

Corollary 5.6. If all the agents are β-self-relient, then we can find an allocation that guarantees β/4EMMS.

The algorithm depends on the structure of the optimal partition for each agent which we cannot find, but we can use LPT partition instead.
Thank you!