Massively Parallel Algorithms for String Matching with Wildcards

MohammadTaghi Hajiaghayi¹, Hamed Saleh¹, Saeed Seddighin¹, Xiaorui Sun² [CoRR'19]

Sublinear Space

Have you ever had a dataset so big that it doesn't fit in the memory?

Sublinear Space Algorithms!

Sublinear Space

Have you ever had a dataset so big that it doesn't fit in the memory?

Sublinear Space Algorithms! RAM model

Sublinear Space

Have you ever had a dataset so big that it doesn't fit in the memory?

Alternative models

Alternative Models of Computation

- Modern frameworks for Large-scale parallel/distributed data processing: MapReduce, Hadoop, Spark.
- o Key Idea: distribute the workload among several machines.
- The MPC model: A theoretical model to abstract out the computational power of these frameworks.

[Karloff et. al 2010] [Goodrich et. al 2011] [Beame et. al 2013] [Andoni et. al 2014]

- There are *M* machines each with memory *S*.
- The input of length **N** is initially (randomly) distributed among the machines.
 - Sublinear space S = o(N).
 - Usually $N = O(S \cdot M)$.
- The data is processed in several **synchronous rounds**.

- There are *M* machines each with memory *S*.
- The data is processed in several **synchronous rounds**. In each round,
 - Machines perform arbitrary computation on their **local** data.
 - Machines communicate with each other.
 Total incoming/outgoing messages of each machine is bounded by O(S) words.

- There are *M* machines each with memory *S*.
- The data is processed in several **synchronous rounds**.
- Main bottleneck: Communication. We wish for algorithms with very small number of rounds.
 Often sub-logarithmic rounds.

Related **distributed**/parallel models

o The **PRAM** model (shared memory)

• Any PRAM algorithm running in time t = t(n) can be simulated in O(t) MPC rounds.

[Karloff et. al 2010]

- o The LOCAL, CONGEST, and congested-clique models
 - o Similar techniques can be used for both MPC and these distributed models.
 - o Congested-clique is almost equivalent to MPC (in terms of the number of rounds).

[Behnezhad et. al 2018]

String Matching

Massively Parallel Algorithms for String Matching with Wildcards **[arXiv]** Hajiaghayi, me, Seddighin, Sun

The String Matching problem

- o An essential problem in bio-informatics and many other areas.
- Given a **text** *T* and a **pattern** *P*, we wish to find all substrings of *T* that match *P*.

The String Matching problem

- Given a **text** *T* and a **pattern** *P*, we wish to find all substrings of *T* that match *P*.
- In the simplest form both T and P are using the same alphabet Σ , and there is no special character.

The String Matching problem

- Given a **text** *T* and a **pattern** *P*, we wish to find all substrings of *T* that match *P*.
- We also study the case when *P* can have special characters known as **wildcards**. In particular {**'?'**, **'+'**, **'*'**}.

String Matching in MPC

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq \Sigma^m$ are given.
- There is a **constant**-round MPC algorithm, with $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T.

[H<mark>S</mark>SS 2019]

String Matching in MPC

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq \Sigma^m$ are given.
- There is a **constant**-round MPC algorithm, with $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T. [HSSS 2019]
- Easy when $m = O(n^{1-x})$: **Double**-covering.

String Matching in MPC

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq \Sigma^m$ are given.
- There is a **constant**-round MPC algorithm, with $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T. [HSSS 2019]
- o Also easy for general **m**: Partial **hash**ing.

String Matching

with **??** wildcard

String Matching with ?? wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup ??)^m$ are given.
- The special character ?? can be replaced with any arbitrary character.

String Matching with ?? wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup ??)^m$ are given.
- There is a **constant**-round MPC algorithm, with $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T. [HSSS 2019]

String Matching with ?? wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup ??)^m$ are given.
- There is a **constant**-round MPC algorithm, with $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T. [HSSS 2019]
- This can be improved to any constant x < 1 at the cost of $O\left(\frac{1}{1-x}\right)$ rounds.

" wildcard and convolution

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup ??)^m$ are given.
- This variant of the string matching problem can be reduced to the convolution of two arrays. [Fischer et. al 1974]

$$T^{\dagger} = \langle mp_{T_1}, mp_{T_1}^{-1}, mp_{T_2}, mp_{T_2}^{-1}, \dots, mp_{T_n}, mp_{T_n}^{-1} \rangle$$

$$P^{\dagger} = \langle mp_{P_1}, mp_{P_1}^{-1}, mp_{P_2}, mp_{P_2}^{-1}, \dots, mp_{P_n}, mp_{P_n}^{-1} \rangle$$

$$mp_{?} = mp_{?}^{-1} = 0, mp_{?} = 3, mp_{?}^{-1} = 1/3$$

" wildcard and convolution

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup ??)^m$ are given.
- This variant of the string matching problem can be reduced to the convolution of two arrays. [Fischer et. al 1974]

$$\begin{split} T^{\dagger} &= \langle 1, \frac{1}{1}, 2, \frac{1}{2}, 18, \frac{1}{18}, 1, \frac{1}{1}, 3, \frac{1}{3}, 1, \frac{1}{1}, 4, \frac{1}{4}, 1, \frac{1}{1}, 2, \frac{1}{2}, 18, \frac{1}{18}, 1, \frac{1}{1} \rangle \\ P^{\dagger} &= \langle 1, \frac{1}{1}, 0, 0, 1, \frac{1}{1} \rangle \end{split}$$

" wildcard and convolution

• A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup ??)^m$ are given.

$$\begin{split} T^{\dagger} &= \langle 1, \frac{1}{1}, 2, \frac{1}{2}, 18, \frac{1}{18}, 1, \frac{1}{1}, 3, \frac{1}{3}, 1, \frac{1}{1}, 4, \frac{1}{4}, 1, \frac{1}{1}, 2, \frac{1}{2}, 18, \frac{1}{18}, 1, \frac{1}{1} \rangle \\ P^{\dagger} &= \langle 1, \frac{1}{1}, 0, 0, 1, \frac{1}{1} \rangle \end{split}$$

 $C = T^{\dagger} * \operatorname{rev}(P^{\dagger})$

FFT in constant rounds

- Performing a **bit-reversal** operation makes the divide and conquer pattern clean.
- It is easy to decompose the **precedence** graph into the **Butterfly** graphs of different sizes.
- Cooley-Tukey with radix $R = n^{1-x}$.
- o Further implications such as the **knapsack** problem.

String Matching

with '+' wildcard

String Matching with '+' wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup `+`)^m$ are given.
- The special character '+' means that the preceding character can be repeated arbitrary times.

Т	В	0	0	K	K	Е	Е	Ρ	Е	R	
		\uparrow									
F	כ	0	+	0	+	K	+	Е	Е	+	Ρ

String Matching with '+' wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup '+')^m$ are given.
- There is a **constant**-round MPC algorithm, with Ο $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T.

[HSSS 2019]

Т	В	0	0	K	K	Е	Е	Ρ	Е	R	
		\square									
F	5	0	+	0	+	K	+	Е	Е	+	Ρ

Run Length Encoding

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup '+')^m$ are given.
- o Perform Run Length Encoding on both strings.

$$\begin{split} T^{\circ} &= \langle \langle \mathsf{b}, 1 \rangle, \langle \mathsf{o}, 2 \rangle, \langle \mathsf{k}, 2 \rangle, \langle \mathsf{e}, 2 \rangle, \langle \mathsf{p}, 1 \rangle, \langle \mathsf{e}, 1 \rangle, \langle \mathsf{r}, 1 \rangle \rangle \\ P^{\circ} &= \langle \langle \mathsf{o}, 2+ \rangle, \langle \mathsf{k}, 1+ \rangle, \langle \mathsf{e}, 2+ \rangle, \langle \mathsf{p}, 1 \rangle \rangle \end{split}$$

o Reduces to Greater-than matching.

т	В	0	0	K	K	Е	Е	Ρ	Е	R	
		\uparrow					2				
F	C	0	+	0	+	K	+	Е	Е	+	Ρ

Run Length Encoding

- o Reduces to Greater-than matching.
- o A special case of **Subset** matching.
- The Subset matching problem can be solved in $O(n \log^2 m)$ by a careful reduction to sparse convolution.

[Cole et. al 2002]

It's possible to implement it in O(1) MPC rounds.

String Matching

with ****** wildcard

String Matching with ** wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup `*`)^m$ are given.
- The special character '*' can be replaced with any arbitrary string.

Т	Α	В	R	А	С	А	D	А	В	R	A	4
										-		
F	C	В	*	А	С		*	E	3 F	F	*	Α

String Matching with ** wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup `*`)^m$ are given.
- The special character ****** can be replaced with any arbitrary string.
- Unlike '?' and '+', we have no positive result for this wildcard even in $O(\log n)$ rounds...
- There is a conjecture that we can't solve graph **connectivity** in *o*(log *n*) rounds.

т	Α	В	R	А	С	А	D	А	В	R	ļ	۹.	
		\uparrow								-			
F	כ	В	*	А	С		*	E	3 F	F	*	A	L.

String Matching with ** wildcard

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup `*')^m$ are given.
- The special character ****** can be replaced with any arbitrary string.
- Unlike '?' and '+', we have no positive result for this wildcard even in $O(\log n)$ rounds...
- o But we can solve it in special cases.

т	Α	В	R	А	С	А	D	А	В	R	ŀ	4
F	C	В	*	А	С		*	E	3 I	7	*	А

** wildcard in small patterns

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup `*`)^m$ are given such that $m = O(n^{1-x})$.
- There is a $O(\log n)$ -round MPC algorithm, with $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T.

[HSSS 2019]

Т	Α	В	R	А	С	А	D	А	В	R	ŀ	4
		\uparrow										
F	5	В	*	А	С		*	E	3 I	7	*	Α

'*' wildcard in no common prefix case

- A text $T \subseteq \Sigma^n$ and a pattern $P \subseteq (\Sigma \cup `*`)^m$ are given such that no two **sub-patterns** share a common **prefix**.
- There is a $O(\log n)$ -round MPC algorithm, with $S = O(n^{1-x})$ and $M = O(n^x)$ for any x < 0.5, which finds all occurrences of P in T.

[HSSS 2019]

Т	Α	В	R	А	С	А	D	А	В	R	ŀ	4
F	C	В	*	А	С		*	E	3 I	R	*	А

Thanks for watching!

Any questions?