
Massively Parallel Algorithms for
String Matching with Wildcards

MohammadTaghi Hajiaghayi1, Hamed Saleh1, Saeed Seddighin1,
Xiaorui Sun2 [CoRR’19]

Sublinear Space

𝑜(𝑛)
Have you ever had a dataset so big
that it doesn’t fit in the memory?

Sublinear Space Algorithms!

Sublinear Space

𝑜(𝑛)
Have you ever had a dataset so big
that it doesn’t fit in the memory?

Sublinear Space Algorithms!

RAM model

Sublinear Space

𝑜(𝑛)
Have you ever had a dataset so big
that it doesn’t fit in the memory?

Sublinear Space Algorithms!

Alternative models

Alternative Models
of Computation

Massively Parallel Computation

o Modern frameworks for Large-scale parallel/distributed
data processing: MapReduce, Hadoop, Spark.

o Key Idea: distribute the workload among several machines.

o The MPC model: A theoretical model to abstract out the
computational power of these frameworks.

[Karloff et. al 2010]
[Goodrich et. al 2011]

[Beame et. al 2013]
[Andoni et. al 2014]

Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The input of length 𝑵 is initially (randomly)
distributed among the machines.
o Sublinear space 𝑺 = 𝑜(𝑵).
o Usually 𝑵 = 𝑂(𝑺 ⋅ 𝑴).

o The data is processed in several synchronous
rounds.

Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The data is processed in several synchronous
rounds. In each round,

o Machines perform arbitrary computation on
their local data.

o Machines communicate with each other.
Total incoming/outgoing messages of each
machine is bounded by O(𝑺)words.

Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The data is processed in several synchronous
rounds.

o Main bottleneck: Communication. We wish for
algorithms with very small number of rounds.
o Often sub-logarithmic rounds.

Related distributed/parallel models

o The PRAM model (shared memory)

o Any PRAM algorithm running in time 𝑡 = 𝑡(𝑛) can be simulated in O(𝑡)MPC rounds.
[Karloff et. al 2010]

o The LOCAL, CONGEST, and congested-clique models

o Similar techniques can be used for both MPC and these distributed models.

o Congested-clique is almost equivalent to MPC (in terms of the number of rounds).
[Behnezhad et. al 2018]

String Matching

Massively Parallel Algorithms for String Matching with Wildcards [arXiv]
Hajiaghayi, me, Seddighin, Sun

The String Matching problem

o An essential problem in bio-informatics and many other areas.

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of
𝑇 that match 𝑃.

The String Matching problem

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of
𝑇 that match 𝑃.

o In the simplest form both 𝑇 and 𝑃 are using the same alphabet Σ,
and there is no special character.

The String Matching problem

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of
𝑇 that match 𝑃.

o We also study the case when 𝑃 can have special characters
known as wildcards. In particular {‘?’, ‘+’, ‘*’}.

String Matching in MPC

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ Σ" are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

String Matching in MPC

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ Σ" are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o Easy when m = 𝑂 𝑛#$% : Double-covering.

String Matching in MPC

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ Σ" are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o Also easy for general m: Partial hashing.

String Matching
with ‘?’wildcard

String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)"
are given.

o The special character ‘?’ can be replaced with
any arbitrary character.

String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)"
are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)"
are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o This can be improved to any constant 𝑥 < 1 at
the cost of 𝑂 #

#$%
rounds.

‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)"
are given.

o This variant of the string matching problem can
be reduced to the convolution of two arrays.

[Fischer et. al 1974]

𝑇! = mp"! , mp"!
#$, mp"" , mp""

#$, … ,mp"# , mp"#
#$

𝑃! = mp%! , mp%!
#$, mp%" , mp%"

#$, … ,mp%# , mp%#
#$

mp‘?’ = mp‘?’
#$ = 0, mp‘C’ = 3,mp‘C’

#$ = 1/3

‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)"
are given.

o This variant of the string matching problem can
be reduced to the convolution of two arrays.

[Fischer et. al 1974]

‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)"
are given.

𝐶 = 𝑇& ∗ rev(𝑃&)

FFT in constant rounds

o Performing a bit-reversal operation makes the
divide and conquer pattern clean.

o It is easy to decompose the precedence graph
into the Butterfly graphs of different sizes.

o Cooley-Tukey with radix 𝑅 = 𝑛#$%.

o Further implications such as the knapsack
problem.

String Matching
with ‘+’wildcard

String Matching with ‘+’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)"
are given.

o The special character ‘+’ means that the
preceding character can be repeated arbitrary
times.

String Matching with ‘+’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)"
are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

Run Length Encoding

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)"
are given.

o Perform Run Length Encoding on both strings.

o Reduces to Greater-than matching.

Run Length Encoding

o Reduces to Greater-than matching.

o A special case of Subset matching.

o The Subset matching problem can be solved in
𝑂(𝑛 log'𝑚) by a careful reduction to sparse
convolution.

[Cole et. al 2002]

o It’s possible to implement it in 𝑂(1)MPC
rounds.

String Matching
with ‘*’wildcard

String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘∗’)"
are given.

o The special character ‘∗’ can be replaced with
any arbitrary string.

String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘∗’)"
are given.

o The special character ‘∗’ can be replaced with
any arbitrary string.

o Unlike ‘?’ and ‘+’, we have no positive result for
this wildcard even in 𝑂(log 𝑛) rounds…

o There is a conjecture that we can’t solve graph
connectivity in 𝑜(log 𝑛) rounds.

String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘∗’)"
are given.

o The special character ‘∗’ can be replaced with
any arbitrary string.

o Unlike ‘?’ and ‘+’, we have no positive result for
this wildcard even in 𝑂(log 𝑛) rounds…

o But we can solve it in special cases.

‘*’ wildcard in small patterns

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘∗’)"
are given such that 𝒎 = 𝑂 𝑛#$% .

o There is a 𝑂(log 𝑛)-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

‘*’ wildcard in no common prefix case

o A text 𝑇 ⊆ Σ! and a pattern 𝑃 ⊆ (Σ ∪ ‘∗’)"
are given such that no two sub-patterns share
a common prefix.

o There is a 𝑂(log 𝑛)-round MPC algorithm, with
𝑺 = 𝑂(𝑛#$%) and 𝑴 = 𝑂 𝑛% for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

Thanks for watching!

Any questions?

