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Externalities and Fairness [WWW’19]

Streaming and Massively Parallel Algorithms for Edge Coloring [ESA’19]

(also appeared in [DISC'19] as a brief announcement)

Massively Parallel Algorithms for String Matching with Wildcards [arXiv]

Computational Analyses of the Electoral College: Campaigning is Hard But
Approximately Manageable [preprint]
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Sublinear Space

Have you ever had a dataset so hig
that it doesn't fit in the memory?

o(n)

Sublinear Space Algorithms!
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Alternative Models

of Computation



assively Farallel “omputation

Modern frameworks for Large-scale parallel/distributed ¢

data processing: MapReduce, Hadoop, Spark. ‘@ — a[a]a o

Key ldea: distribute the workload among several machines.

The model: A theoretical model to abstract out the

computational power of these frameworks. APACHE ‘%
Karloff et. al 2010] Spqr

[Goodrich et. al 2011]
Beame et. al 2013
Andoni et. al 2014]




assively Farallel

There are '/ machines each with memory .
The input of length ' is initially (randomly)
distributed among the machines.

o Sublinearspace & =o(V).

o Usually v =0( - ).

The data is processed in several

omputation

output eeeeeee 0000000 0000000 0000000
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assively Farallel

o Thereare '/ machines each with memory =.

o Thedatais processed in several
. In each round,

o Machines perform arbitrary computation on

their data.
o Machines with each other.
Total messages of each

machine is bounded by O(") words.

omputation

output eeeeeee 0000000 0000000 0000000

iNpUt  ceeeeee ©0008ee ©000000 0000000



assively Farallel

There are '/ machines each with memory .

The data is processed in several

Main bottleneck: . We wish for
algorithms with very small number of rounds.
o Often rounds.

omputation

OUIPUt ©eeeeee 0000000 0000000 0000000

iNpUt  ceeeeee ©0008ee ©000000 0000000



Related / models

o The model (shared memory)

o Any PRAM algorithm running in time t = t(n) can be simulated in O(t) MPC rounds.
[Karloff et. al 2010]

o The , ,and models
o Similartechniques can be used for both MPC and these distributed models.

o Congested-clique is almost equivalent to MPC (in terms of the number of rounds).

[Behnezhad et. al 2018]



There is a single machines with memory

The input of length /' is streamed into the
machine.

o Sublinearspace © = o(V).
input stream ooooooooooogonm

The data is processed in several



o Thereis asingle machines with memory

o Thedatais processed in several .In each

o Theinputentries arrive and | l
input stream

in a specific order.

o Theordercan be either or



There is a single machines with memory

The data is processed in several

S
Thereis a between the number of -
passes and the space of the machine. ot strearn ,




streaming

o Thereis asingle machines with memory
ouputstream - 9900000080

!

o Whatifthe also doesn’tfitin the
memory?

o Weusethe model. . l
input stream

o Theoutputis also streamed.



streaming ana MPC

In many graph problems, we assume & = O(|V|), where the input graph is given as G = (V, E).

The variant of the streaming model in which & = O(|V]) is called streaming.
[Feigenbaum et. al 2005]
[McGregor 2014]

This restriction is stricter on graphs and less strict on graphs.
The standard variants are either too trivial or too hard on sparse graphs.

Similarly, the MPC model is also defined.



Edge Coloring

Streaming and Massively Parallel Algorithms for Edge Coloring [ESA’19]
Behnezhad, Derakhshan, Knittel, Hajiaghayi, me



The oroblem

o GivenagraphG = (V,E), a “edge-coloring” is a
function COL: E = [''] so that no two have
a common color.

o We wish to minimize ', i.e., the number of colors.



The oroblem

Givenagraph G = (V,E), a “edge-coloring” is a
function COL: E = [''] so that no two have
a common color.

Let A be the maximum degree of graph G.

Then,weknowA < " <A+ 1.
[Vizing 1964]

An odd cycle (A = 2) needs 3 colors.



The oroblem

Givenagraph G = (V,E), a “edge-coloring” is a
function COL: E = [''] so that no two have
a common color.

However, (A + 1)-coloring algorithms are highly

Thereis a greedy (2A — 1)-coloring algorithm.



The oroblem

o GivenagraphG = (V,E), a “edge-coloring” is a
function COL: E = [''] so that no two have
a common color.

o Thereisagreedy (2A — 1)-coloring algorithm.
o Process edgesin an arbitrary order.

o Coloreach edge with an available color.



Related work

Vertex Coloring: Assadi et. Al
Distributed Ghaffari et al
Harvey et. Al

Streaming?



Edge Coloring

Massively Parallel Computation



Fdge Coloring

@) Agraph G = (V, E) S given where |V| = nand output eceeceee 0000000 0000000 0000000
|E| =m,ie. " =0(n+m). -
s
o Thereisa -round MPC algorithm, with
= 0(n)and " - = 0(m), which computes

an edge-coloring so that " = A + 0(A3/%).

[BDKH" 2019]
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Fdge Coloring

Agraph G = (V, E) S given where |V| = nand output eceeceee 0000000 0000000 0000000
|E| =m,ie. " =0(n+m). -
s
Thereis a -round MPC algorithm, with
= 0(n)and " - = 0(m), which computes

an edge-coloring so that " = A + 0(A3/%).

[BDKH" 2019]

Itis technically a MPC algorithm.
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Fdge Coloring

It is technically a MPC algorithm, but we OUIPU! ©Eee8se 0600800 0000800 0000000

can achieve o(n) space in dense graphs.

The exact space-per-machine is equal to

s n [a
=0|—+— |~logn

iNpUt  ceeeeee ©0008ee ©000000 0000000

Set ' = VA + logn.



Partitioning

o Set’m =+/A+logn.

o Random vertex partitioning V=V, U V, U ... UV..
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Partitioning

o Random vertex partitioning:V =V, U V, U ... UV,.

o Gy ={(wv)|ueV; Av eV} the subgraph of each partition
o Gij={(wv)|ueV; AveV}the subgraph of pairs of partitions
Vi V, V.



Coloring

o Gy ={(wv)|ueV; Av eV} the subgraph of each partition

o Gij={(wv)|ueV; AveV}the subgraph of pairs of partitions

o RunVizing’s (A + 1)-coloring algorithm on each machine.

Vi V, V.



Colored Subgraphs

k + 1 disjoint color are enough. . v
The number of colors in each needs needs to be ” \ 5
as large as the maximum degree in subgraphs.
2
The maximum degree in each subgraphs is \

For - = VA + logn, we have " = A + 0(A3/%). 2



Edge Coloring

Random Streaming



Streaming Edge Coloring

o AgraphG = (V,E)isgivenwhere |V| =nand |E| =m,ie. ' = 0(n+ m).

o Thereisa -pass \/-streaming algorithm, with &© = 0(n), which streams a valid edge-coloring
sothat V' = (2e + €)A.
[BDKH" 2019]

ouputstream 900000080

!

input stream oooooooooooimn



Streaming Edge Coloring

Agraph G = (V,E) isgivenwhere |[V| =nand |E| = m,ie. " = 0(n + m).

Thereis a -pass \/-streaming algorithm, with &© = 0(n), which streams a valid edge-coloring
sothat " = (2e + €)A.

[BDKH" 2019]
The algorithm is straight-forward.

Maintain a variable ¢, for each vertex, initially set to 1.



Streaming Edge Coloring

o Maintain a variable ¢, for each vertex, initially set to 1.

o Upon arrival of (u, v) colorit max(c,, c,).

Cy=3 cy=5
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Streaming Edge Coloring

o Maintain a variable ¢, for each vertex, initially set to 1.
o Upon arrival of (u, v) colorit max(c,, c,).

o Setboth ¢, and ¢, to max(c,,cy,) + 1.

Cy=6 cy=6




Longest Path

o Lemma: ' isequal to the length of the longest path in the after the
algorithm finishes.

o We can constructa path of length '/’ starting from an edge colored



Longest Path

o Lemma: ' isequal to the length of the longest path in the after the
algorithm finishes.

Pr¥ > A]<(2A)aA
= 8=




Longest Path

o Lemma: ' isequal to the length of the longest path in the after the
algorithm finishes.

Pr[¥ = (2e + €)A] <n~¢



Edge Coloring

Adversarial Streaming



Streaming Edge Coloring

o AgraphG = (V,E)isgivenwhere |V| =nand |E| =m,ie. ' = 0(n+ m).
o Thereisa -pass \/-streaming algorithm, with &© = 0(n), which streams a valid edge-coloring

sothat " = 0(A?). [ ]
BDKH" 2019

QP STEET 90000000000

=

input stream ooooooooooogmonm



Streaming Edge Coloring

Agraph G = (V,E) isgivenwhere |[V| =nand |E| = m,ie. " = 0(n + m).

Thereis a -pass \/-streaming algorithm, with &© = 0(n), which streams a valid edge-coloring
sothat ' = 0(A?).

[BDKH" 2019]
The algorithm is very similar to the random stream algorithm.

Maintain a variable ¢, for each vertex, initially set to 1.



Edge Coloring

o Maintain a variable ¢, for each vertex, initially set to 1. Also assume the graph is

o Upon arrival of (u, v) colorit (cy, ¢p).

/(’2) (.7)



Edge Coloring

o Maintain a variable ¢, for each vertex, initially set to 1. Also assume the graph is

o Upon arrival of (u, v) colorit (cy, ¢p).

/ ( ’2)

)



Edge Coloring

o Maintain a variable ¢, for each vertex, initially set to 1. Also assume the graph is

o Upon arrival of (u, v) colorit (cy, ¢p).

o Increase both ¢, and ¢, by 1.

/ ( ’2)

)



Fdge Coloring

o A graph is colored with A% colors using this method.

o Decompose the graphinto O(logn) random bipartite graphs, and color each with a different

C——\ (/)
kD:DJ \D:DJ
(O:D\ rD:D\




Fdge Coloring

o A graph is colored with A% colors using this method.

o Decompose the graphinto O(logn) random bipartite graphs, and color each with a different

o Intotal, " = 0(A?).

) (/)
xD:D) kD:DJ
(D:D\ rD:D\




String Matching

Massively Parallel Algorithms for String Matching with Wildcards [arXiv]
Hajiaghayi, me, Seddighin, Sun



The oroblem

o An essential problem in bio-informatics and many other areas.

o Givena T and a P, we wish to find all substrings of
T that match P.

T A G C A T T C G|C|A A G



The oroblem

\/’)
\
Given a T and a P, we wish to find all substrings of )’\
T that match P. l N\
.
In the simplest form both T and P are using the same alphabet 2, \//
and there is no special character. \{
[N\
[\
T A GCATTCGOCAAG \‘_

\
P C A C A Q
L)



The oroblem

\/’)
\
o Givena T and a P, we wish to find all substrings of )’\
T that match P. l N\
- )
o We also study the case when P can also have special characters \//
known as .We areinterested in {77, “+", “*'}. \{
[\
[\
T AGCATTCGTCAAG \‘_

\
P C A C A Q
a

i



String Matching in

o A T cX"anda P € ™ are given. OUIPUt eeeeese 6000800 5000000 0008000

o Thereisa -round MPC algorithm, with

= 0ml ™) and ¥ = 0(n¥) foranyx < 0.5,

which finds all occurrencesof Pin T.
s 20
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String Matching in

o A T cX"anda P € ™ are given. OUIPUt eeeeese 6000800 5000000 0008000

o Thereisa -round MPC algorithm, with

= 0ml ™) and ¥ = 0(n¥) foranyx < 0.5,

which finds all occurrencesof Pin T.
s 20

o Easywhenm = 0(nl™): -covering.
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String Matching in

o A T cX"anda P € ™ are given. OUIPUt eeeeese 6000800 5000000 0008000

o Thereisa -round MPC algorithm, with

= 0ml ™) and ¥ = 0(n¥) foranyx < 0.5,

which finds all occurrencesof Pin T.
s 20

o Also easy for general m: Partial ing.

input  ceeeeee 0000000 0000000 0000000



String Matching

with ¢2? wildcard



String Matching with 7" wildcard

o A T c€X™anda Pc(Zu)m T 'aAB R A C A D A B R A
are given.
o Thespecial character *?" can be replaced with P A 7 A

any arbitrary character.



String Matching with 7" wildcard

o AtextT &X™anda PeEu)™ T A BRACADATBR R A
are given.
o Thereisa -round MPC algorithm, with P A 7?2 A
= 0ml ™) and ¥ = 0(n¥) foranyx < 0.5,
which finds all occurrencesof P in T. A 2?2 A

[H:SS 2019]



String Matching with 7" wildcard

o AtextT € X%anda Pc@Eu )™ T A BRACADABR A
are given.
o Thereisa -round MPC algorithm, with P A 7?2 A
= 0ml ™) and ¥ = 0(n¥) foranyx < 0.5,
which finds all occurrencesof P in T. A 2?2 A
[HSS 2019]

o Thiscan beimproved to any constantx < 1 at
the cost of 0(x~1) rounds.



wildcard and

o AtexiT € X¥'anda Pc@Eu )™ T ABRACADA B R A
are given.
o Thisvariant of the string matching problem can P A 7 A
be reduced to the convolution of two arrays.
[Fischer et. al 1974] A 2?2 A

— -1 -1 -1
T = (mpr, mpz}, mpr,, mpz}, ..., mpy, , mpz’)

— -1 -1 -1
P = (mpp,, mpp?, mpp,, mpzl, ..., mpp_, mpp’)

mp:» = mp = 0, mp¢c> = 3, mp?cl, =1/3



wildcard and

o AtextT € X¥Manda peEu )™ T A BRACADABR A
are given.
o Thisvariant of the string matching problem can P A 7 A
be reduced to the convolution of two arrays.
[Fischer et. al 1974] A 2?2 A
1.1 .1 1.1 1 1_1_1__1 1
f_(1tol18 ~ 123t t42 19 4g L
T _<13132)2318a 1871a1)373a1')174a4a111a2)2)18') 187171>
1 1
L :
Pl =(1,7,0,0,1,7)



wildcard and

o AtextT € X¥Manda peEu )™ T A BRACADABR A
are given.
P A 2?2 A
1.1 1 1.1 1,1 1_1__1 1
t_qloglyglt gt 1, 1,101
T (1?1?272?18’1871’1’3,3’17174’4’171’2727187187171>
PT:(1,%,0,0,1,%> A 2?2 A

C =TT xrev(P)



iNn constant rounds

Performing a operation makes the
divide and conquer pattern clean.

It is easy to decompose the graph
into the graphs of different sizes.

Cooley-Tukey with radix R = n1™*.

Further implications such as the
problem.

- < - - < - < < - - <= - AN hSN AN hSN
o Tod T oo Tod Tk Tk Tk Tk T T T T Toh Toy Tox Toy
w [} — [=] w (%) — [=) [%) [} — [=] w [¥) — o




String Matching

with ¢+’ wildcard



String Matching with “+" wildcard

o A T € X"anda Pc(Xu+)m
are given. T B O O K K E E P E R
o Thespecial character “+" means that the

preceding character can be repeated arbitrary P O + O + K + E E + P
times.



String Matching with “+" wildcard

o A T € X"anda Pc(Xu+)m
are given. T 'B OO KK E E P E R
o Thereisa -round MPC algorithm, with
= 0n'*) and ¥ = 0(n*) forany x < 0.5, P 1O+ 0+ K + E E + P

which finds all occurrences of PinT.

[H:SS 2019]



un Length Encoding

o A T € X"anda Pc(Xu+)m
are given. T B O O K K E E P E R

o Perform Run Length Encoding on both strings.
P O + O + K + E E + P

T° = ({b,1),{0,2), (k, 2), (e,2), (p, 1), (e, 1), {r, 1))
P® = ((0,2+), (k,1+), (e, 2+), {p, 1))

o Reducesto matching.



un Length Encoding

Reduces to matching.
A special case of matching,
The matching problem can be solved in

0(nlog? m) by a careful reduction to sparse
convolution.

[Cole et. al 2002]

It's possible to implementitin O(1) MPC
rounds.

T

P

B O O K K E E P E R

O + O

+

K

+

E E

+

P



String Matching

with ¢*’ wildcard



String Matching with “* wildcard

o A T € X"anda Pc(Xu)m
are given. T A B R A C A DA B R A

o Thespecial character "' can be replaced with
any arbitrary string. p B * A C * B R *



String Matching with

A T €XI™anda Pc(Zu )™
are given.

The special character ** can be replaced with
any arbitrary string.

Unlike “+" and “+’, we have no positive result for
this wildcard even in O (logn) rounds...

There is a conjecture that we can’t solve graph
in o(logn) rounds.

T

wildcard

A B R A|IC A D A B R A



String Matching with

A T €XI™anda Pc(Zu )™
are given.

The special character ** can be replaced with
any arbitrary string.

Unlike “+" and “+’, we have no positive result for
this wildcard even in O (logn) rounds...

But we can solve it in special cases.

T

wildcard

A B R A|IC A D A B R A



wildcard in patterns

o A T € X"anda Pc(Xu)m
aregivensuchthat =0(Tl1_x). T A B R A/C A D A B'R A

o Thereisa0(logn)-round MPC algorithm, with
= 0n'*) and ¥ = 0(n*) forany x < 0.5, P B|" AC ) B/R
which finds all occurrences of P in T.

[H:SS 2019]



wildcard in no case

o A T € X"anda Pc(Xu)m
are given such that no two share T A B R A CA DA B R A
a common

o Thereisa0(logn)-round MPC algorithm, with P 1Bl [A]C ) =

= 0ml ™) and ¥ = 0(n¥) foranyx < 0.5,
which finds all occurrencesof PinT.

[H:SS 2019]



WOrk

o The Hypergraph matching problem in
o Improving the bound in adversarial streams.

o A constant round MPC algorithm for weighted exact
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