
Sublinear Algorithms for
Processing Massive Datasets

Hamed Saleh
May 2020

Publications

o Externalities and Fairness [WWW’19]

o Streaming and Massively Parallel Algorithms for Edge Coloring [ESA’19]
(also appeared in [DISC’19] as a brief announcement)

o Massively Parallel Algorithms for String Matching with Wildcards [arXiv]

o Computational Analyses of the Electoral College: Campaigning is Hard But
Approximately Manageable [preprint]

Publications

o Externalities and Fairness [WWW’19]

o Streaming and Massively Parallel Algorithms for Edge Coloring [ESA’19]
(also appeared in [DISC’19] as a brief announcement)

o Massively Parallel Algorithms for String Matching with Wildcards [arXiv]

o Computational Analyses of the Electoral College: Campaigning is Hard But
Approximately Manageable [preprint]

Sublinear Space

𝑜(𝑛)
Have you ever had a dataset so big
that it doesn’t fit in the memory?

Sublinear Space Algorithms!

Sublinear Space

𝑜(𝑛)
Have you ever had a dataset so big
that it doesn’t fit in the memory?

Sublinear Space Algorithms!

RAM model

Sublinear Space

𝑜(𝑛)
Have you ever had a dataset so big
that it doesn’t fit in the memory?

Sublinear Space Algorithms!

Alternative models

Alternative Models
of Computation

Massively Parallel Computation

o Modern frameworks for Large-scale parallel/distributed
data processing: MapReduce, Hadoop, Spark.

o Key Idea: distribute the workload among several machines.

o The MPC model: A theoretical model to abstract out the
computational power of these frameworks.

[Karloff et. al 2010]
[Goodrich et. al 2011]

[Beame et. al 2013]
[Andoni et. al 2014]

Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The input of length 𝑵 is initially (randomly)
distributed among the machines.
o Sublinear space 𝑺 = 𝑜(𝑵).
o Usually 𝑵 = 𝑂(𝑺 ⋅ 𝑴).

o The data is processed in several synchronous
rounds.

Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The data is processed in several synchronous
rounds. In each round,

o Machines perform arbitrary computation on
their local data.

o Machines communicate with each other.
Total incoming/outgoing messages of each
machine is bounded by O(𝑺)words.

Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The data is processed in several synchronous
rounds.

o Main bottleneck: Communication. We wish for
algorithms with very small number of rounds.
o Often sub-logarithmic rounds.

Related distributed/parallel models

o The PRAM model (shared memory)

o Any PRAM algorithm running in time 𝑡 = 𝑡(𝑛) can be simulated in O(𝑡)MPC rounds.
[Karloff et. al 2010]

o The LOCAL, CONGEST, and congested-clique models

o Similar techniques can be used for both MPC and these distributed models.

o Congested-clique is almost equivalent to MPC (in terms of the number of rounds).
[Behnezhad et. al 2018]

Streaming

o There is a single machines with memory 𝑺.

o The input of length 𝑵 is streamed into the
machine.
o Sublinear space 𝑺 = 𝑜(𝑵).

o The data is processed in several passes.

Streaming

o There is a single machines with memory 𝑺.

o The data is processed in several passes. In each
pass:

o The input entries arrive sequentially and
one by one in a specific order.

o The order can be either random or
adversarial.

Streaming

o There is a single machines with memory 𝑺.

o The data is processed in several passes.

o There is a trade-off between the number of
passes and the space of the machine.

W-streaming

o There is a single machines with memory 𝑺.

o What if the output also doesn’t fit in the
memory?

o We use the W-streaming model.
o The output is also streamed.

Semi-streaming and Semi-MPC

o In many graph problems, we assume 𝑺 = 𝑂 𝑉 , where the input graph is given as 𝐺 = (𝑉, 𝐸).

o The variant of the streaming model in which 𝑺 = 𝑂 𝑉 is called Semi-streaming.
[Feigenbaum et. al 2005]

[McGregor 2014]
o This restriction is stricter on dense graphs and less strict on sparse graphs.

o The standard variants are either too trivial or too hard on sparse graphs.

o Similarly, the Semi-MPC model is also defined.

Edge Coloring

Streaming and Massively Parallel Algorithms for Edge Coloring [ESA’19]
Behnezhad, Derakhshan, Knittel, Hajiaghayi, me

The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 , a valid “edge-coloring” is a
function COL: 𝐸 → 𝚿 so that no two incident edges have
a common color.

o We wish to minimize 𝚿, i.e., the number of colors.

The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 , a valid “edge-coloring” is a
function COL: 𝐸 → 𝚿 so that no two incident edges have
a common color.

o Let Δ be the maximum degree of graph 𝐺.

o Then, we know Δ ≤ 𝚿 ≤ Δ + 1.
[Vizing 1964]

o An odd cycle (Δ = 2) needs 3 colors.

The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 , a valid “edge-coloring” is a
function COL: 𝐸 → 𝚿 so that no two incident edges have
a common color.

o However, (Δ + 1)-coloring algorithms are highly sequential.

o There is a greedy (2Δ − 1)-coloring algorithm.

The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 , a valid “edge-coloring” is a
function COL: 𝐸 → 𝚿 so that no two incident edges have
a common color.

o There is a greedy (2Δ − 1)-coloring algorithm.

o Process edges in an arbitrary order.

o Color each edge with an available color.

Related work

o Vertex Coloring: Assadi et. Al

o Distributed Ghaffari et al

o Harvey et. Al

o Streaming?

Edge Coloring
Massively Parallel Computation

MPC Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and
𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛) and 𝑺 ⋅ 𝑴 = 𝑂 𝑚 , which computes
an edge-coloring so that 𝚿 = Δ + >𝑂(Δ!/#).

[BDKHS 2019]

Semi-MPC Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and
𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛) and 𝑺 ⋅ 𝑴 = 𝑂 𝑚 , which computes
an edge-coloring so that 𝚿 = Δ + >𝑂(Δ!/#).

[BDKHS 2019]

o It is technically a Semi-MPC algorithm.

Semi-MPC Edge Coloring

o It is technically a Semi-MPC algorithm, but we
can achieve 𝑜(𝑛) space in dense graphs.

o The exact space-per-machine is equal to

𝑺 = 𝑂
𝑛Δ
𝒌$ +

𝑛
𝒌

Δ
𝒌 log 𝑛

o Set 𝒌 = Δ + log 𝑛.

Vertex Partitioning

o Set 𝒌 = Δ + log 𝑛.

o Random vertex partitioning: 𝑉 = 𝑉% ∪ 𝑉$ ∪ … ∪ 𝑉𝒌.

Vertex Partitioning

o Set 𝒌 = Δ + log 𝑛.

o Random vertex partitioning : 𝑉 = 𝑉% ∪ 𝑉$ ∪ … ∪ 𝑉𝒌.

o 𝐺',' = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉' : the induced subgraph of each partition

Vertex Partitioning

o Random vertex partitioning : 𝑉 = 𝑉% ∪ 𝑉$ ∪ … ∪ 𝑉).

o 𝐺',' = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉' : the induced subgraph of each partition

o 𝐺',* = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉* : the bipartite induced subgraph of pairs of partitions

Local Coloring

o 𝐺',' = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉' : the induced subgraph of each partition

o 𝐺',* = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉* : the bipartite induced subgraph of pairs of partitions

o Run Vizing’s (Δ + 1)-coloring algorithm on each machine.

Merging Colored Subgraphs

o 𝑘 + 1 disjoint color palettes are enough.

o The number of colors in each palette needs needs to be
as large as the maximum degree in subgraphs.

o The maximum degree in each subgraphs is concentrated.

o For 𝒌 = Δ + log 𝑛, we have 𝚿 = Δ + >𝑂(Δ!/#).

Edge Coloring
Random Streaming

Random Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring
so that 𝚿 = (2𝑒 + 𝜖)Δ.

[BDKHS 2019]

Random Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring
so that 𝚿 = (2𝑒 + 𝜖)Δ.

[BDKHS 2019]
o The algorithm is straight-forward.

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

Random Streaming Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

o Upon arrival of (𝑢, 𝑣) color it max(𝑐+ , 𝑐,).

Random Streaming Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

o Upon arrival of (𝑢, 𝑣) color it max(𝑐+ , 𝑐,).

Random Streaming Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

o Upon arrival of (𝑢, 𝑣) color it max(𝑐+ , 𝑐,).

o Set both 𝑐+ and 𝑐, to max(𝑐+ , 𝑐,) + 1.

Longest Monotone Path

o Lemma:𝚿 is equal to the length of the longest monotone path in the line graph after the
algorithm finishes.

o We can construct a monotone path of length 𝚿 starting from an edge colored 𝚿.

Longest Monotone Path

o Lemma:𝚿 is equal to the length of the longest monotone path in the line graph after the
algorithm finishes.

Pr Ψ ≥ 𝛼Δ ≤
2Δ -.

𝛼Δ !

Longest Monotone Path

o Lemma:𝚿 is equal to the length of the longest monotone path in the line graph after the
algorithm finishes.

Pr Ψ ≥ (2𝑒 + 𝜖)Δ ≤ 𝑛/0

Edge Coloring
Adversarial Streaming

Adversarial Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring
so that 𝚿 = O(Δ$).

[BDKHS 2019]

Adversarial Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring
so that 𝚿 = O(Δ$).

[BDKHS 2019]
o The algorithm is very similar to the random stream algorithm.

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

Bipartite Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1. Also assume the graph is
bipartite.

o Upon arrival of (𝑢, 𝑣) color it (𝑐,, 𝑐+).

Bipartite Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1. Also assume the graph is
bipartite.

o Upon arrival of (𝑢, 𝑣) color it (𝑐,, 𝑐+).

Bipartite Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1. Also assume the graph is
bipartite.

o Upon arrival of (𝑢, 𝑣) color it (𝑐,, 𝑐+).

o Increase both 𝑐, and 𝑐+ by 1.

General Edge Coloring

o A bipartite graph is colored with Δ$ colors using this method.

o Decompose the graph into 𝑂 log 𝑛 random bipartite graphs, and color each with a different
palette.

General Edge Coloring

o A bipartite graph is colored with Δ$ colors using this method.

o Decompose the graph into 𝑂 log 𝑛 random bipartite graphs, and color each with a different
palette.

o In total, 𝚿 = 𝑂 Δ$.

String Matching

Massively Parallel Algorithms for String Matching with Wildcards [arXiv]
Hajiaghayi, me, Seddighin, Sun

The String Matching problem

o An essential problem in bio-informatics and many other areas.

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of
𝑇 that match 𝑃.

The String Matching problem

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of
𝑇 that match 𝑃.

o In the simplest form both 𝑇 and 𝑃 are using the same alphabet Σ,
and there is no special character.

The String Matching problem

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of
𝑇 that match 𝑃.

o We also study the case when 𝑃 can also have special characters
known as wildcards. We are interested in {‘?’, ‘+’, ‘*’}.

String Matching in MPC

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ Σ2 are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

String Matching in MPC

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ Σ2 are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o Easy when m = 𝑂 𝑛%/3 : Double-covering.

String Matching in MPC

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ Σ2 are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o Also easy for general m: Partial hashing.

String Matching
with ‘?’wildcard

String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o The special character ‘?’ can be replaced with
any arbitrary character.

String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o This can be improved to any constant 𝑥 < 1 at
the cost of 𝑂 𝑥/% rounds.

‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o This variant of the string matching problem can
be reduced to the convolution of two arrays.

[Fischer et. al 1974]

𝑇! = mp"! , mp"!
#$, mp"" , mp""

#$, … ,mp"# , mp"#
#$

𝑃! = mp%! , mp%!
#$, mp%" , mp%"

#$, … ,mp%# , mp%#
#$

mp‘?’ = mp‘?’
#$ = 0, mp‘C’ = 3,mp‘C’

#$ = 1/3

‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o This variant of the string matching problem can
be reduced to the convolution of two arrays.

[Fischer et. al 1974]

‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

𝐶 = 𝑇4 ∗ rev(𝑃4)

FFT in constant rounds

o Performing a bit-reversal operation makes the
divide and conquer pattern clean.

o It is easy to decompose the precedence graph
into the Butterfly graphs of different sizes.

o Cooley-Tukey with radix 𝑅 = 𝑛%/3.

o Further implications such as the knapsack
problem.

String Matching
with ‘+’wildcard

String Matching with ‘+’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)2
are given.

o The special character ‘+’ means that the
preceding character can be repeated arbitrary
times.

String Matching with ‘+’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)2
are given.

o There is a constant-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

Run Length Encoding

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)2
are given.

o Perform Run Length Encoding on both strings.

o Reduces to Greater-than matching.

Run Length Encoding

o Reduces to Greater-than matching.

o A special case of Subset matching.

o The Subset matching problem can be solved in
𝑂(𝑛 log$𝑚) by a careful reduction to sparse
convolution.

[Cole et. al 2002]

o It’s possible to implement it in 𝑂(1)MPC
rounds.

String Matching
with ‘*’wildcard

String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given.

o The special character ‘*’ can be replaced with
any arbitrary string.

String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given.

o The special character ‘*’ can be replaced with
any arbitrary string.

o Unlike ‘∗’ and ‘∗’, we have no positive result for
this wildcard even in 𝑂(log 𝑛) rounds…

o There is a conjecture that we can’t solve graph
connectivity in 𝑜(log 𝑛) rounds.

String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given.

o The special character ‘*’ can be replaced with
any arbitrary string.

o Unlike ‘∗’ and ‘∗’, we have no positive result for
this wildcard even in 𝑂(log 𝑛) rounds…

o But we can solve it in special cases.

‘*’ wildcard in small patterns

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given such that 𝒎 = 𝑂 𝑛%/3 .

o There is a 𝑂(log 𝑛)-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

‘*’ wildcard in no common prefix case

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given such that no two sub-patterns share
a common prefix.

o There is a 𝑂(log 𝑛)-round MPC algorithm, with
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5,
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

Future work

o The Hypergraph matching problem in MPC.

o Improving the edge-coloring bound in adversarial streams.

o A constant round MPC algorithm for weighted exact knapsack.

Acknowledgements

Committee Members:

Prof. Hajiaghayi
Prof. Dickerson
Prof. Mount

Co-Authors:

S. Behnezhad
S. Dehghani
M. Derakhshan
M. Ghodsi
M. Hajiaghayi
M. Knittel
S. Seddighin
M. Seddighin
X. Sun
S. Teng

Thanks for watching!

Any questions?

