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Massively Parallel Computation

o Modern frameworks for Large-scale parallel/distributed 
data processing: MapReduce, Hadoop, Spark.

o Key Idea: distribute the workload among several machines.

o The MPC model: A theoretical model to abstract out the 
computational power of these frameworks.  

[Karloff et. al 2010]
[Goodrich et. al 2011]

[Beame et. al 2013]
[Andoni et. al 2014]



Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The input of length 𝑵 is initially (randomly) 
distributed among the machines.
o Sublinear space  𝑺 = 𝑜(𝑵).
o Usually 𝑵 = 𝑂(𝑺 ⋅ 𝑴).

o The data is processed in several synchronous 
rounds.  



Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The data is processed in several synchronous 
rounds.  In each round, 

o Machines perform arbitrary computation on 
their local data.

o Machines communicate with each other. 
Total incoming/outgoing messages of each 
machine is bounded by O(𝑺)words.



Massively Parallel Computation

o There are 𝑴machines each with memory 𝑺.

o The data is processed in several synchronous 
rounds.

o Main bottleneck: Communication. We wish for 
algorithms with very small number of rounds.
o Often sub-logarithmic rounds.



Related distributed/parallel models

o The PRAM model (shared memory)

o Any PRAM algorithm running in time 𝑡 = 𝑡(𝑛) can be simulated in O(𝑡)MPC rounds. 
[Karloff et. al 2010]

o The LOCAL, CONGEST, and congested-clique models

o Similar techniques can be used for both MPC and these distributed models.

o Congested-clique is almost equivalent to MPC (in terms of the number of rounds).
[Behnezhad et. al 2018]



Streaming

o There is a single machines with memory 𝑺.

o The input of length 𝑵 is streamed into the 
machine.
o Sublinear space  𝑺 = 𝑜(𝑵).

o The data is processed in several passes.



Streaming

o There is a single machines with memory 𝑺.

o The data is processed in several passes. In each 
pass:

o The input entries arrive sequentially and 
one by one in a specific order.

o The order can be either random or 
adversarial.



Streaming

o There is a single machines with memory 𝑺.

o The data is processed in several passes. 

o There is a trade-off between the number of 
passes and the space of the machine.



W-streaming

o There is a single machines with memory 𝑺.

o What if the output also doesn’t fit in the 
memory?

o We use the W-streaming model.
o The output is also streamed.



Semi-streaming and Semi-MPC

o In many graph problems, we assume 𝑺 = 𝑂 𝑉 , where the input graph is given as 𝐺 = (𝑉, 𝐸).

o The variant of the streaming model in which 𝑺 = 𝑂 𝑉 is called Semi-streaming.
[Feigenbaum et. al 2005]

[McGregor 2014]
o This restriction is stricter on dense graphs and less strict on sparse graphs.

o The standard variants are either too trivial or too hard on sparse graphs. 

o Similarly, the Semi-MPC model is also defined.



Edge Coloring

Streaming and Massively Parallel Algorithms for Edge Coloring [ESA’19]
Behnezhad, Derakhshan, Knittel, Hajiaghayi, me



The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 ,  a valid “edge-coloring” is a 
function COL: 𝐸 → 𝚿 so that no two incident edges have 
a common color.

o We wish to minimize 𝚿, i.e., the number of colors.



The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 ,  a valid “edge-coloring” is a 
function COL: 𝐸 → 𝚿 so that no two incident edges have 
a common color.

o Let Δ be the maximum degree of graph 𝐺.

o Then, we know Δ ≤ 𝚿 ≤ Δ + 1.  
[Vizing 1964]

o An odd cycle (Δ = 2) needs 3 colors.  



The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 ,  a valid “edge-coloring” is a 
function COL: 𝐸 → 𝚿 so that no two incident edges have 
a common color.

o However, (Δ + 1)-coloring algorithms are highly sequential.

o There is a greedy (2Δ − 1)-coloring algorithm.



The Edge Coloring problem

o Given a graph 𝐺 = 𝑉, 𝐸 ,  a valid “edge-coloring” is a 
function COL: 𝐸 → 𝚿 so that no two incident edges have 
a common color.

o There is a greedy (2Δ − 1)-coloring algorithm.

o Process edges in an arbitrary order.

o Color each edge with an available color.



Related work

o Vertex Coloring: Assadi et. Al

o Distributed Ghaffari et al

o Harvey et. Al

o Streaming?



Edge Coloring
Massively Parallel Computation



MPC Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 
𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛) and 𝑺 ⋅ 𝑴 = 𝑂 𝑚 , which computes 
an edge-coloring so that 𝚿 = Δ + >𝑂(Δ!/#). 

[BDKHS 2019]



Semi-MPC Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 
𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛) and 𝑺 ⋅ 𝑴 = 𝑂 𝑚 , which computes 
an edge-coloring so that 𝚿 = Δ + >𝑂(Δ!/#). 

[BDKHS 2019]

o It is technically a Semi-MPC algorithm.



Semi-MPC Edge Coloring

o It is technically a Semi-MPC algorithm, but we 
can achieve 𝑜(𝑛) space in dense graphs. 

o The exact space-per-machine is equal to

𝑺 = 𝑂
𝑛Δ
𝒌$ +

𝑛
𝒌

Δ
𝒌 log 𝑛

o Set 𝒌 = Δ + log 𝑛. 



Vertex Partitioning

o Set 𝒌 = Δ + log 𝑛. 

o Random vertex partitioning: 𝑉 = 𝑉% ∪ 𝑉$ ∪ … ∪ 𝑉𝒌.



Vertex Partitioning

o Set 𝒌 = Δ + log 𝑛. 

o Random vertex partitioning : 𝑉 = 𝑉% ∪ 𝑉$ ∪ … ∪ 𝑉𝒌.

o 𝐺',' = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉' : the induced subgraph of each partition



Vertex Partitioning

o Random vertex partitioning : 𝑉 = 𝑉% ∪ 𝑉$ ∪ … ∪ 𝑉).

o 𝐺',' = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉' : the induced subgraph of each partition

o 𝐺',* = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉* : the bipartite induced subgraph of pairs of partitions



Local Coloring

o 𝐺',' = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉' : the induced subgraph of each partition

o 𝐺',* = 𝑢, 𝑣 𝑢 ∈ 𝑉' ⋀𝑣 ∈ 𝑉* : the bipartite induced subgraph of pairs of partitions

o Run Vizing’s (Δ + 1)-coloring algorithm on each machine.



Merging Colored Subgraphs

o 𝑘 + 1 disjoint color palettes are enough.

o The number of colors in each palette needs needs to be 
as large as the maximum degree in subgraphs.

o The maximum degree in each subgraphs is concentrated.

o For 𝒌 = Δ + log 𝑛, we have 𝚿 = Δ + >𝑂(Δ!/#).



Edge Coloring
Random Streaming



Random Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring 
so that 𝚿 = (2𝑒 + 𝜖)Δ. 

[BDKHS 2019]



Random Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring 
so that 𝚿 = (2𝑒 + 𝜖)Δ. 

[BDKHS 2019]
o The algorithm is straight-forward.

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.



Random Streaming Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

o Upon arrival of (𝑢, 𝑣) color it max(𝑐+ , 𝑐,). 



Random Streaming Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

o Upon arrival of (𝑢, 𝑣) color it max(𝑐+ , 𝑐,). 



Random Streaming Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.

o Upon arrival of (𝑢, 𝑣) color it max(𝑐+ , 𝑐,). 

o Set both 𝑐+ and 𝑐, to max(𝑐+ , 𝑐,) + 1.



Longest Monotone Path

o Lemma:𝚿 is equal to the length of the longest monotone path in the line graph after the 
algorithm finishes.

o We can construct a monotone path of length 𝚿 starting from an edge colored 𝚿.



Longest Monotone Path

o Lemma:𝚿 is equal to the length of the longest monotone path in the line graph after the 
algorithm finishes.

Pr Ψ ≥ 𝛼Δ ≤
2Δ -.

𝛼Δ !



Longest Monotone Path

o Lemma:𝚿 is equal to the length of the longest monotone path in the line graph after the 
algorithm finishes.

Pr Ψ ≥ (2𝑒 + 𝜖)Δ ≤ 𝑛/0



Edge Coloring
Adversarial Streaming



Adversarial Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring 
so that 𝚿 = O(Δ$). 

[BDKHS 2019]



Adversarial Streaming Edge Coloring

o A graph 𝐺 = (𝑉, 𝐸) is given where 𝑉 = 𝑛 and 𝐸 = 𝑚, i.e. 𝑵 = 𝑂(𝑛 + 𝑚).

o There is a one-pass W-streaming algorithm, with 𝑺 = 𝑂(𝑛), which streams a valid edge-coloring 
so that 𝚿 = O(Δ$). 

[BDKHS 2019]
o The algorithm is very similar to the random stream algorithm.

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1.



Bipartite Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1. Also assume the graph is 
bipartite.

o Upon arrival of (𝑢, 𝑣) color it (𝑐,, 𝑐+).



Bipartite Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1. Also assume the graph is 
bipartite.

o Upon arrival of (𝑢, 𝑣) color it (𝑐,, 𝑐+). 



Bipartite Edge Coloring

o Maintain a counter variable 𝑐+ for each vertex, initially set to 1. Also assume the graph is 
bipartite.

o Upon arrival of (𝑢, 𝑣) color it (𝑐,, 𝑐+).

o Increase both 𝑐, and 𝑐+ by 1.



General Edge Coloring

o A bipartite graph is colored with Δ$ colors using this method. 

o Decompose the graph into 𝑂 log 𝑛 random bipartite graphs, and color each with a different 
palette.



General Edge Coloring

o A bipartite graph is colored with Δ$ colors using this method. 

o Decompose the graph into 𝑂 log 𝑛 random bipartite graphs, and color each with a different 
palette.

o In total, 𝚿 = 𝑂 Δ$ .



String Matching

Massively Parallel Algorithms for String Matching with Wildcards [arXiv]
Hajiaghayi, me, Seddighin, Sun 



The String Matching problem

o An essential problem in bio-informatics and many other areas.

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of 
𝑇 that match 𝑃.



The String Matching problem

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of 
𝑇 that match 𝑃.

o In the simplest form both 𝑇 and 𝑃 are using the same alphabet Σ, 
and there is no special character. 



The String Matching problem

o Given a text 𝑇 and a pattern 𝑃, we wish to find all substrings of 
𝑇 that match 𝑃.

o We also study the case when 𝑃 can also have special characters 
known as wildcards. We are interested in {‘?’, ‘+’, ‘*’}.



String Matching in MPC

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ Σ2 are given.

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]



String Matching in MPC

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ Σ2 are given.

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o Easy when m = 𝑂 𝑛%/3 : Double-covering.



String Matching in MPC

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ Σ2 are given.

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o Also easy for general m: Partial hashing.



String Matching
with ‘?’wildcard



String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o The special character ‘?’ can be replaced with 
any arbitrary character.



String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]



String Matching with ‘?’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]

o This can be improved to any constant 𝑥 < 1 at 
the cost of 𝑂 𝑥/% rounds.



‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o This variant of the string matching problem can 
be reduced to the convolution of two arrays.

[Fischer et. al 1974]

𝑇! = mp"! , mp"!
#$, mp"" , mp""

#$, … ,mp"# , mp"#
#$

𝑃! = mp%! , mp%!
#$, mp%" , mp%"

#$, … ,mp%# , mp%#
#$

mp‘?’ = mp‘?’
#$ = 0, mp‘C’ = 3,mp‘C’

#$ = 1/3



‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

o This variant of the string matching problem can 
be reduced to the convolution of two arrays.

[Fischer et. al 1974]



‘?’ wildcard and convolution

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘?’)2
are given.

𝐶 = 𝑇4 ∗ rev(𝑃4)



FFT in constant rounds

o Performing a bit-reversal operation makes the 
divide and conquer pattern clean.

o It is easy to decompose the precedence graph 
into the Butterfly graphs of different sizes.

o Cooley-Tukey with radix 𝑅 = 𝑛%/3. 

o Further implications such as the knapsack
problem.



String Matching
with ‘+’wildcard



String Matching with ‘+’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)2
are given.

o The special character ‘+’ means that the 
preceding character can be repeated arbitrary 
times.



String Matching with ‘+’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)2
are given.

o There is a constant-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]



Run Length Encoding

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘+’)2
are given.

o Perform Run Length Encoding on both strings.

o Reduces to Greater-than matching.



Run Length Encoding

o Reduces to Greater-than matching.

o A special case of Subset matching.

o The Subset matching problem can be solved in
𝑂(𝑛 log$𝑚) by a careful reduction to sparse 
convolution.

[Cole et. al 2002]

o It’s possible to implement it in 𝑂(1)MPC 
rounds.



String Matching
with ‘*’wildcard



String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given.

o The special character ‘*’ can be replaced with 
any arbitrary string.



String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given.

o The special character ‘*’ can be replaced with 
any arbitrary string.

o Unlike ‘∗’ and ‘∗’, we have no positive result for 
this wildcard even in 𝑂(log 𝑛) rounds…

o There is a conjecture that we can’t solve graph 
connectivity in 𝑜(log 𝑛) rounds.



String Matching with ‘*’ wildcard

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given.

o The special character ‘*’ can be replaced with 
any arbitrary string.

o Unlike ‘∗’ and ‘∗’, we have no positive result for 
this wildcard even in 𝑂(log 𝑛) rounds…

o But we can solve it in special cases.



‘*’ wildcard in small patterns

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given such that 𝒎 = 𝑂 𝑛%/3 .

o There is a 𝑂(log 𝑛)-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]



‘*’ wildcard in no common prefix case

o A text 𝑇 ⊆ Σ1 and a pattern 𝑃 ⊆ (Σ ∪ ‘*’)2
are given such that no two sub-patterns share 
a common prefix.

o There is a 𝑂(log 𝑛)-round MPC algorithm, with 
𝑺 = 𝑂(𝑛%/3) and 𝑴 = 𝑂 𝑛3 for any 𝑥 < 0.5, 
which finds all occurrences of 𝑃 in 𝑇.

[HSSS 2019]



Future work

o The Hypergraph matching problem in MPC.

o Improving the edge-coloring bound in adversarial streams.

o A constant round MPC algorithm for weighted exact knapsack.
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Thanks for watching!

Any questions?


