Computational Analyses of the Electoral College: Campaigning Is Hard But Approximately Manageable

AAAI'21

Sina Dehghani ${ }^{1}$, Hamed Saleh², Saeed Seddighin ${ }^{3}$, Shanghua Teng ${ }^{4}$
1 Institute for Research in Fundamental Sciences
2 University of Maryland
3 TTIC
4 University of Southern California

Colonel Blotto Game

Colonel Blotto Game

- Two colonels A and B are playing a game.
- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Colonels distribute their troops simultaneously across battlefields.
- The payoff of each battlefield is decided by winner-take-all policy.

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Pure strategies of each player:
- A k-partitioning of the available troops.

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Randomized (mixed) strategies:
- A probability distribution vector \mathbf{X} over all feasible pure strategies.

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Constant-sum game:
- The total payoff of both colonels is always constant (at each battlefield)
- Maxmin strategies \equiv Minmax strategies \equiv Nash equilibria

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Applications:
- Political Campaigns: U.S. presidential election
- Marketing Campaigns: Apple vs Samsung
- Sport Competitions

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Introduced by Borel and Ville (1921).
- Many attempts to solve the problem:
- Continuous resources Roberson(2006).
- Special cases Hart(2008).
- First polynomial solution Ahmadinejad et. al (2016).

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- First polynomial solution Ahmadinejad et. al (2016).
- Linear Program to model the problem.

- Exponential number of variables and constraints.
- Ellipsoid method.

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- First polynomial solution Ahmadinejad et. al (2016).
- Key idea: Reduce finding a maxmin strategy to finding a best response strategy.

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Limitations of the original setting:
- Troops are homogenous w.r.t. different battlegrounds.
- Although we can assign weights $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)$ to battlefields, and it doesn't change the set of pure strategies.

Colonel Blotto Game

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Limitations of the original setting:
- All troops have the same strength.
- Troops are homogenous w.r.t. different battlegrounds.
- The payoff of each battleground is determined by winner-take-all policy.

Colonel Blotto Game

With Mulififaceted Resources

Colonel Blotto Game

With Multifaceted Resources

- Colonels A and B have m and n troops respectively, and there are k battlefields.
- A $k \times(m+n)$ matrix W is given, where $w_{b, i}$ shows the strength of the i 'th troop in battlefield b.
- The strength of troops is additive: For colonel A, the total strength of the subset of troops $S \subseteq[m]$ assigned to battlefield b is equal to:

$$
\sum_{i \in S} w_{b, i}
$$

Colonel Blotto Game

With Multifaceted Resources

- Colonels A and B have m and n troops respectively, and there are k battlefields.
- A $k \times(m+n)$ matrix W is given.
- Two sets of utility functions $\left\{\mu_{1}^{A}, \mu_{2}^{A}, \ldots, \mu_{k}^{A}\right\}$ and $\left\{\mu_{1}^{B}, \mu_{2}^{B}, \ldots, \mu_{k}^{B}\right\}$ which determine the payoff in a battlefield based on the total strength of troops.
- The utility functions are constant-sum, monotone, and non-negative.
- The domain of utility functions is $\left\{0,1, \ldots, \max _{f}\right\}^{2}$, where $\max _{f}$ is an upper-bound on the total strength of the troops over all battlefields.

Colonel Blotto Game

With Multifaceted Resources

- Denote a pure strategy, which again is a k-partitioning of the available troops, by a vector X where X_{b} specifies the set of troops assigned to battlefield b.
- Define Y similarly for player B.
- The total payoff of each player for given pure strategies X and Y equals to:

$$
\left\{\begin{array}{l}
\mu^{A}(X, Y)=\sum_{b=1}^{k} \mu_{b}^{A}\left(w_{b}\left(X_{b}\right), w_{b}\left(Y_{b}\right)\right) \\
\mu^{B}(X, Y)=\sum_{b=1}^{k} \mu_{b}^{B}\left(w_{b}\left(X_{b}\right), w_{b}\left(Y_{b}\right)\right)
\end{array}\right.
$$

Colonel Blotto Game

With Multifaceted Resources

- Denote a mixed strategy for player A and B by X and \mathbb{Y} respectively.
- The total payoff of each player for given mixed strategies X and Y equals to:

$$
\left\{\begin{array}{l}
\mu^{A}(\mathbf{X}, \mathbf{Y})=\mathbb{E}_{X \sim \mathbf{X}, Y \sim \mathbf{Y}}\left[\mu^{A}(X, Y)\right] \\
\mu^{B}(\mathbf{X}, \mathbf{Y})=\mathbb{E}_{X \sim \mathbf{X}, Y \sim \mathbf{Y}}\left[\mu^{B}(X, Y)\right]
\end{array}\right.
$$

Applications

U.S. Presidential Election

U.S. Presidential Election

- Swing states
- Maine and Nebraska
- Troops may include the following:
- Money
- Candidate's time
- On-the-ground staff
- Campaign managers

Tech companies competition

- Battlegrounds
- Smartphone
- Tablet
- Laptop

Approximation Hardness

Hardness Result

- It is hard to approximate the best response strategy within \sqrt{n} factor.
- Reduction from the Welfare Maximization for Single-minded Bidders problem.
- The approximation hardness of this problem is known by a reduction from Set Packing. Lehman et. al (2002) Sandholm (1999)

Welfare Maximization for Single-minded Bidders

- Allocation of a set of n indivisible items among m bidders.
- Each bidder i has a subset T_{i} of items which values $v_{i}\left(T_{i}\right)$.
- For a subset $T^{\prime}, v_{i}\left(T^{\prime}\right)$ equals:
- $v_{i}\left(T_{i}\right) \quad$ if $T_{i} \subseteq T^{\prime}$
- 0 otherwise
- Find an allocation which maximizes the total utility of bidders.

Welfare Maximization for Single-minded Bidders

- An example of reduction to an instance of Colonel Blotto.

Hardness Result

> heorem. Unless NP = P, there is no polynomial-time algorithm that can always find an $O(\sqrt{\min (m, n)})$-approximate best response in the multi-faceted Colonel Blotto game.

From

Approximate Best Response

to approximate Maxmin strategies

Bicriteria Approximation

Multiplicative

- A strategy \mathbf{Y} is an (α, β)-approximate best response strategy to a strategy \mathbf{X} of opponent if:
- \mathbf{Y} is allowed to use up to α copies of each troop.
- The payoff is at least $1 / \beta$ fraction of the optimal best response against \mathbf{X}.

Bicriteria Approximation

Additive

- A strategy \mathbf{X} is an (α, δ)-approximate maxmin strategy if:
- \mathbf{X} is allowed to use up to α copies of each troop.
- Let u be the \mathbf{X} 's minimum utility against opponent's strategies.
- Let u^{*} be the optimal maxmin strategy's minimum utility against an opponent who is allowed to use up to α copies of each troop.
- $u^{*}-u \leq \delta$

Bicriteria Approximation

Additive

- A strategy \mathbf{X} is an (α, δ)-approximate maxmin strategy if:
- \mathbf{X} is allowed to use up to α copies of each troop.
- Let u be the \mathbf{X} 's minimum utility against opponent's strategies.
- Let u^{*} be the optimal maxmin strategy's minimum utility against an opponent who is allowed to use up to α copies of each troop.
- $u^{*}-u \leq \delta$
- W.l.o.g. Assumption: $\mu^{A}(\mathbf{X}, \mathbf{Y})=1-\mu^{B}(\mathbf{X}, \mathbf{Y})$

(α, β)-approximate Best Response

- Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a maxmin strategy.
- It leverages the ellipsoid method to find a maxmin strategy.

(α, β)-approximate Best Response

- Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a maxmin strategy.
- We don't have access to such oracle here.
- However, as we show later, we construct an (α, β)-approximate best response oracle.

(α, β)-approximate Best Response

- Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a maxmin strategy.
- We construct an (α, β)-approximate best response oracle.
- We obtain $\left(\alpha, 2-\frac{2}{\beta}\right)$-approximate maxmin strategies using an (α, β) approximate best response oracle.

Reduction from approximate minmax to approximate best response

- The following LP models the problem:
- A mixed strategy \hat{x} denotes a point in k. max $_{f}$ dimensions.
- Each dimension $\left(s^{A}, b\right)$ shows the probability of putting troops with total strength s^{A} in battlefield b.

```
max. U
    s.t. }\hat{x}\inS(\mathbf{A}
        \mu
        \forall\hat{y}\inS(\mathbf{B})
        Membership constraints
        Payoff constraints
```


Reduction from approximate minmax to approximate best response

- The following LP models the problem:
- $S(A)$ denotes the set of all feasible strategies for player A.
- $S(B)$ denotes the set of all feasible strategies for player B.

```
max. U
    s.t. }\hat{x}\inS(\mathbf{A}
    \mu}\mathbf{A}(\hat{x},\hat{y})\geqU
    \forall\hat{y}\inS(\mathbf{B})
        Membership constraints
    Payoff constraints
```


Membership constraints

- We are given a convex polytope Z whose vertices are the pure strategies of the game.
- We wish to find a hyperplane which separates a given point \hat{x} from Z.
$\max .0$
s.t. $a_{0}+\sum_{i=1}^{d} a_{i} \hat{x}_{i} \geq 0$

$$
a_{0}+\sum_{i=1}^{d} a_{i} \hat{z}_{i}<0
$$

$$
\forall \hat{z} \in Z
$$

Membership constraints

- We wish to find a hyperplane which separates a given point \hat{x} from Z.
- Point \hat{x} is inside Z Iff no such hyperplane exists.
max. 0
s.t. $a_{0}+\sum_{i=1}^{d} a_{i} \hat{x}_{i} \geq 0$

$$
a_{0}+\sum_{i=1}^{d} a_{i} \hat{z}_{i}<0
$$

$$
\forall \hat{z} \in Z
$$

Membership constraints

- We wish to find a hyperplane which separates a given point \hat{x} from Z.
- The hyperplane is formulated by $\left\{a_{0}, a_{1}, \ldots, a_{d}\right\}$.
$\max .0$
s.t. $a_{0}+\sum_{i=1}^{d} a_{i} \hat{x}_{i} \geq 0$

$$
a_{0}+\sum_{i=1}^{d} a_{i} \hat{z}_{i}<0
$$

$$
\forall \hat{z} \in Z
$$

Membership constraints

- We wish to find a hyperplane which separates a given point \hat{x} from Z.
- We can simplify the second set of constraints by only considering $\hat{z}_{\max }(a)$, the vertex which maximizes the summation.

$\max .0$

$$
\text { s.t. } \quad a_{0}+\sum_{i=1}^{d} a_{i} \hat{x}_{i} \geq 0
$$

The set of feasible strategies $S(A)$, specified by polytope Z.

$$
a_{0}+\sum_{i=1}^{d} a_{i} \hat{z}_{i}<0
$$

$$
\forall \hat{z} \in Z
$$

Membership constraints

- We can simplify the second set of constraints by only considering $\hat{z}_{\max }(a)$, the vertex which maximizes the summation.
- It is possible to find $\hat{z}_{\max }(a)$ in polynomial time if we have access to an exact best response oracle.

$$
\begin{array}{ll}
\max . & 0 \\
\text { s.t. } & a_{0}+\sum_{i=1}^{d} a_{i} \hat{x}_{i} \geq 0 \\
& a_{0}+\sum_{i=1}^{d} a_{i} \hat{z}_{i}<0
\end{array}
$$

The set of feasible strategies $S(A)$, specified by polytope Z.

$$
\forall \hat{z} \in Z
$$

Membership constraints

- We can simplify the second set of constraints by only considering $\hat{z}_{\max }(a)$, the vertex which maximizes the summation.
- Instead of $\hat{z}_{\text {max }}(a)$, we find $\hat{z}^{*}(a)$:
- A feasible strategy if we have α copies of each troop
- $\sum_{i=1}^{d} a_{i} \hat{z}^{*}(a)_{i} \geq \frac{1}{\beta} \sum_{i=1}^{d} a_{i} \hat{z}_{\text {max }}(a)_{i}$

The set of feasible strategies $S(A)$, specified by polytope Z.

Membership constraints

- We can simplify the second set of constraints by only considering $\hat{z}_{\max }(a)$, the vertex which maximizes the summation.
- Instead of $\hat{z}_{\text {max }}(a)$, we find $\hat{z}^{*}(a)$.
- We define an instance of (α, β)-approximate best response oracle as following:
- The utility of a strategy \hat{z} equals: $\sum_{i=1}^{d} a_{i} \hat{z}_{i}$

The set of feasible strategies $S(A)$, specified by polytope Z.

- Let $\hat{z}^{*}(a)$ be the best response strategy returned by the oracle.

Membership constraints

- We try to solve our LP using Ellipsoid method and $\hat{z}^{*}(a)$: the oracle only checks if the current hyperplane satisfies $\hat{z}^{*}(a)$.
- Let $S^{\prime}(A)$ denote the set of points that this algorithm admits.

```
max. 0
```

$$
\text { s.t. } \quad a_{0}+\sum_{i=1}^{d} a_{i} \hat{x}_{i} \geq 0
$$

The set of strategies $S^{\prime}(A)$, which are admitted by our algorithm.

$$
a_{0}+\sum_{i=1}^{d} a_{i} \hat{z}_{i}<0
$$

$$
\forall \hat{z} \in Z^{\alpha}
$$

Membership constraints

- Let $S^{\prime}(A)$ denote the set of points that this algorithm admits.
- $S^{\prime}(A)$ is not necessarily convex.
$\max .0$
s.t. $a_{0}+\sum_{i=1}^{d} a_{i} \hat{x}_{i} \geq 0$

$$
a_{0}+\sum_{i=1}^{d} a_{i} \hat{z}_{i}<0
$$

$\forall \hat{z} \in Z^{\alpha}$

Membership constraints

- Let $S^{\prime}(A)$ denote the set of points that this algorithm admits.
- But we have the following properties for any $\hat{x}^{\prime} \in S^{\prime}(A):$
- \hat{x}^{\prime} is a feasible strategy if we allow α copies of each troop.
- If $\hat{x} \in S(A)$, then $\frac{\hat{x}}{\beta} \in S^{\prime}(A)$.

The set of strategies $S^{\prime}(A)$, which are admitted by our algorithm.

Membership constraints

$S^{\prime}(A)$
$S(A)$
$S(A) / \beta$

Payoff constraints

- In order to use (α, β)-approximate best response oracle for our payoff constraints, we need to reformulate it as a minmax LP:
$\min . U$

$$
\begin{array}{ll}
\text { s.t. } & \hat{x} \in S(\mathbf{A}) \\
& \mu^{\mathbf{B}}\left(\hat{x}, B^{\alpha, \beta}(\hat{x})\right) \leq U
\end{array}
$$

Payoff constraints

- We show that by using approximate best response in the last constraint, the total loss in approximation is bounded by $2-2 / \beta$.
min. U

$$
\begin{array}{ll}
\text { s.t. } & \hat{x} \in S(\mathbf{A}) \\
& \mu^{\mathbf{B}}\left(\hat{x}, B^{\alpha, \beta}(\hat{x})\right) \leq U
\end{array}
$$

Reduction from approximate minmax to approximate best response

heorem. Given a polynomial time algorithm that finds an (α, β)-approximate
best-response for the generalized Colonel Blotto game, one can find an $\left(\alpha, 2-\frac{2}{\beta}\right)$ approximate minmax solution for the game in polynomial time.

Approximate Best Response

Heterogenous troops w.r.t battlegrounds

. heorem. For any $\epsilon>0$, There exists a polynomial-time algorithm which obtains an $\left(O\left(\frac{\ln 1 / \epsilon}{\epsilon}\right), 2 \epsilon\right)$-maxmin strategy for the generalized Colonel Blotto game in the heterogenous setting.

Heterogenous troops w.r.t battlegrounds

T heorem. For any $\epsilon>0$, There exists a polynomial-time algorithm which obtains an $\left(O\left(\frac{\ln 1 / \epsilon}{c}\right), 2 \epsilon\right)$-maxmin strategy for the generalized Colonel Blotto game in the heterogenous setting.

- Obtained by plugging an $\left(o\left(\frac{\ln 1 / \epsilon}{\epsilon}\right), \frac{1}{1-\epsilon}\right)$-best response into the reduction.

Heterogenous troops w.r.t battlegrounds

. heorem. For any $\epsilon>0$, There exists a polynomial-time algorithm which obtains an $\left(O\left(\frac{\ln 1 / \epsilon}{\epsilon}\right), 2 \epsilon\right)$-maxmin strategy for the generalized Colonel Blotto game in the heterogenous setting.

- The number of copies of each troop we need is 1 in expectation.
- But in the worst case we may require $o\left(\frac{\ln 1 / \epsilon}{\epsilon}\right)$ copies of each troop.

Improved solutions for Homogenous battlegrounds

Homogenous troops w.r.t battlegrounds

- Search space dimensions reduces from $k \cdot\left(\max _{f}+1\right)$ to $\left(\max _{f}+1\right)$.
- We can represent the best response with a vector p of probability coefficients with length $\left(\max _{f}+1\right)$.
- Reduce to Prize-collecting Knapsack problem.

Prize-collecting Knapsack

- A set of bag types $\mathscr{B}=\{1,2, \ldots,|\mathscr{B}|\}$ is given.
- Each bag type i has size v_{i} and prize p_{i}.
- Unlimited copies of each bag is available.
- A set of items $\mathcal{N}=\{1,2, \ldots,|\mathcal{N}|\}$ is given each with size a_{i}.
- We gain profit of p_{i} whenever we fill a bag of type i by a subset of items with total size of at least v_{i}.

Prize-collecting Knapsack

- We obtain a $(1+\epsilon, 1)$-approximation of prize-collecting knapsack using dynamic programming.
- Key ideas:
- Discretize the size of items by rounding to the nearest $(1+\epsilon)^{k}$ value.
- $O\left(\log \left(\max _{f}\right)\right)$ different sizes.

Prize-collecting Knapsack

- We obtain a $(1+\epsilon, 1)$-approximation of prize-collecting knapsack using dynamic programming.
- Key ideas:
- Divide items into three groups based on their size w.r.t each bag type i :
- Large items (L): $v_{i}<a_{j}$
- Regular items (\mathscr{R}): $\epsilon v_{i} \leq a_{j} \leq v_{i}$
- Small items (S): $a_{j}<\epsilon v_{i}$

Prize-collecting Knapsack DP

$$
\epsilon v_{i} \leq v_{i-1}
$$

$$
\epsilon v_{i}>v_{i-1}
$$

Reduction to Prize-collecting Knapsack

- Randomly permuting the battlegrounds of an optimal solution preserves optimality.

Homogenous troops w.r.t battlegrounds

[^0]
Beyond

Zero-sum and Linearity

Are all assumptions necessary?

- A more generalized version of problem covering a broad range of multibattlefield two player games.
- What happens if we eliminate each assumption of our current formulation?
- Linearity of utilities
- Zero-sum payoffs

Removing Linearity Constraint

[^1]
Removing Zero-Sum Constraint

[^2]
Thank You!

[^0]: heorem. We can approximate the maxmin strategy of the generalized Colonel Blotto game within a bi-criteria approximation factor of $(1+\varepsilon, 0)$ in the homogenous setting in polynomial time.

[^1]: Weorem. The problem of computing an equilibrium in non-linear batilefieldwide zero-sum two-player-multi-battlefield games is PPAD-hard.

[^2]: . heorem. The problem of computing an equilibrium in linear non-zero- sum two-player-multi-batilefield games is PPAD-hard.

