Computational Analyses of the Electoral College: Campaigning Is Hard But Approximately Manageable AAAI'21

Sina Dehghani¹, Hamed Saleh², Saeed Seddighin³, Shanghua Teng⁴

1 Institute for Research in Fundamental Sciences

- 2 University of Maryland
- 3 TTIC
- 4 University of Southern California

- Two colonels A and B are playing a game.
- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Colonels distribute their troops simultaneously across battlefields.
- The payoff of each battlefield is decided by winner-take-all policy.

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Pure strategies of each player:
 - A *k*-partitioning of the available troops.

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Randomized (mixed) strategies:

• A probability distribution vector \mathbf{X} over all feasible pure strategies.

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Constant-sum game:

 - Maxmin strategies \equiv Minmax strategies \equiv Nash equilibria

• The total payoff of both colonels is always constant (at each battlefield)

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Applications:
 - Political Campaigns: U.S. presidential election
 - Marketing Campaigns: Apple vs Samsung
 - Sport Competitions

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Introduced by Borel and Ville (1921).
- Many attempts to solve the problem:
 - Continuous resources Roberson (2006).
 - Special cases Hart(2008).
- First polynomial solution Ahmadineiad et. al (2016).

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- First polynomial solution Ahmadineiad et. al (2016).
- Linear Program to model the problem.
- Exponential number of variables and constraints.
- Ellipsoid method. •

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- First polynomial solution Ahmadineiad et. al (2016).
- Key idea: Reduce finding a maxmin strategy to finding a best response strategy.

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Limitations of the original setting:
 - Troops are homogenous w.r.t. different battlegrounds.
 - doesn't change the set of pure strategies.

• Although we can assign weights $(\mu_1, \mu_2, \dots, \mu_k)$ to battlefields, and it

- Colonels A and B have m and n troops respectively.
- There are k battlefields.
- Limitations of the original setting:
 - All troops have the same strength.
 - Troops are homogenous w.r.t. different battlegrounds.

The payoff of each battleground is determined by winner-take-all policy.

- Colonels A and B have m and n troops respectively, and there are k battlefields.
- A $k \times (m + n)$ matrix W is given, where $w_{b,i}$ shows the strength of the *i*'th troop in battlefield *b*.
 - The strength of troops is additive: For colonel A, the total strength of the subset of troops $S \subseteq [m]$ assigned to battlefield b is equal to:

$$\sum_{i \in S} w_{b,i}$$

- Colonels A and B have m and n troops respectively, and there are k battlefields.
- A $k \times (m + n)$ matrix W is given.

• Two sets of utility functions $\{\mu_1^A, \mu_2^A, \dots, \mu_k^A\}$ and $\{\mu_1^B, \mu_2^B, \dots, \mu_k^B\}$ which determine the payoff in a battlefield based on the total strength of troops.

• The utility functions are constant-sum, monotone, and non-negative.

• The domain of utility functions is $\{0, 1, ..., \max_f\}^2$, where \max_f is an upper-bound on the total strength of the troops over all battlefields.

- Denote a pure strategy, which again is a k-partitioning of the available troops, by a vector X where X_b specifies the set of troops assigned to battlefield b.
- Define Y similarly for player B.
- The total payoff of each player for given pure strategies X and Y equals to:

$$\begin{cases} \mu^A(X,Y) = \sum_{b=1}^k \mu^A_b(w_b(X_b), w_b(Y_b)) \\ \mu^B(X,Y) = \sum_{b=1}^k \mu^B_b(w_b(X_b), w_b(Y_b)) \end{cases}$$

- Denote a mixed strategy for player A and B by X and Y respectively.
- The total payoff of each player for given mixed strategies X and Y equals to:

 $\begin{cases} \mu^{A}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}_{X}, \\ \mu^{B}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}_{X}, \end{cases}$

$$X \sim \mathbf{X}, Y \sim \mathbf{Y} [\mu^A(X, Y)]$$
$$X \sim \mathbf{X}, Y \sim \mathbf{Y} [\mu^B(X, Y)]$$

Applications

U.S. Presidential Election

U.S. Presidential Election

- Swing states
- Maine and Nebraska
- Troops may include the following:
 - Money
 - Candidate's time
 - On-the-ground staff
 - Campaign managers

Tech companies competition

- Battlegrounds
 - Smartphone
 - Tablet
 - Laptop

ν ν ν

Approximation Hardness

Hardness Result

- It is hard to approximate the best response strategy within \sqrt{n} factor.
- Reduction from the Welfare Maximization for Single-minded Bidders problem.
- The approximation hardness of this problem is known by a reduction from Set Packing. Lehmon et. al (2002) Sandholm (1999)

Welfare Maximization for Single-minded Bidders

- Allocation of a set of n indivisible items among m bidders.
- Each bidder i has a subset T_i of items which values $v_i(T_i)$.
- For a subset T', $v_i(T')$ equals:
 - $v_i(T_i)$ if $T_i \subseteq T'$
 - 0 otherwise
- Find an allocation which maximizes the total utility of bidders.

Welfare Maximization for Single-minded Bidders

An example of reduction to an instance of Colonel Blotto.

Hardness Result

Blotto game.

heorem. Unless NP = P, there is no polynomial-time algorithm that can always find an $O(\sqrt{min(m,n)})$ -approximate best response in the multi-faceted Colonel

Approximate Best Response

to approximate Maxmin strategies

Bicriteria Approximation

Multiplicative

- A strategy \mathbf{Y} is an (α, β) -approximate best response strategy to a strategy \mathbf{X} of opponent if:
 - Y is allowed to use up to α copies of each troop.
 - The payoff is at least $1/\beta$ fraction of the optimal best response against X.

Bicriteria Approximation

• A strategy X is an (α, δ) -approximate maxmin strategy if:

• X is allowed to use up to α copies of each troop.

Additive

- Let u be the X's minimum utility against opponent's strategies.
- Let u^* be the optimal maxmin strategy's minimum utility against an opponent who is allowed to use up to α copies of each troop.

•
$$u^* - u \leq \delta$$

Bicriteria Approximation

• A strategy X is an (α, δ) -approximate maxmin strategy if:

• X is allowed to use up to α copies of each troop.

Additive

- Let u be the X's minimum utility against opponent's strategies.
- Let u^* be the optimal maxmin strategy's minimum utility against an opponent who is allowed to use up to α copies of each troop.

•
$$u^* - u \leq \delta$$

• W.I.o.g. Assumption: $\mu^A(\mathbf{X}, \mathbf{Y}) = 1$ -

$$-\mu^{B}(\mathbf{X},\mathbf{Y})$$

- maxmin strategy.
- It leverages the ellipsoid method to find a maxmin strategy.

(α, β) -approximate Best Response

• Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a

- Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a maxmin strategy.
- We don't have access to such oracle here.
- However, as we show later, we construct an (α, β) -approximate best response oracle.

(α, β) -approximate Best Response

(α, β) -approximate Best Response

- maxmin strategy.
- We construct an (α, β) -approximate best response oracle.
- We obtain $(\alpha, 2 \frac{2}{\beta})$ -approximate maxmin strategies using an (α, β) approximate best response oracle.

Given an exact best response oracle the solution of Ahmadine and et. al (2016) finds a

Reduction from approximate minmax to approximate best response

- The following LP models the problem:
 - A mixed strategy \hat{x} denotes a point in k. max_f dimensions.
 - Each dimension (s^A, b) shows the probability of putting troops with total strength s^A in battlefield b.

max.
$$U$$

s.t. $\hat{x} \in S(\mathbf{A})$
 $\mu^{\mathbf{A}}(\hat{x}, \hat{y}) \ge U,$

 $\forall \hat{y} \in S(\mathbf{B})$

Membership constraints Payoff constraints

Reduction from approximate minmax to approximate best response

- The following LP models the problem:
 - S(A) denotes the set of all feasible strategies for player A.
 - S(B) denotes the set of all feasible strategies for player B.

max.
$$U$$

s.t. $\hat{x} \in S(\mathbf{A})$
 $\mu^{\mathbf{A}}(\hat{x}, \hat{y}) \ge U,$

 $\forall \hat{y} \in S(\mathbf{B})$

Membership constraints Payoff constraints

- We are given a convex polytope Z whose vertices are the pure strategies of the game.
- We wish to find a hyperplane which separates a given point \hat{x} from Z.

The set of feasible strategies S(A), specified by polytope Z.

- We wish to find a hyperplane which separates a given point \hat{x} from Z.
- Point \hat{x} is inside Z lff no such hyperplane exists.

$$\begin{array}{ll} \max & & 0 \\ \text{s.t.} & & a_0 + \sum_{i=1}^d a_i \hat{x}_i \ge 0 \\ & & a_0 + \sum_{i=1}^d a_i \hat{z}_i < 0, \end{array}$$

The set of feasible strategies S(A), specified by polytope Z.

- We wish to find a hyperplane which separates a given point \hat{x} from Z.
- The hyperplane is formulated by $\{a_0, a_1, \dots, a_d\}$.

$$\begin{array}{ll} \max & & 0 \\ \text{s.t.} & & a_0 + \sum_{i=1}^d a_i \hat{x}_i \geq 0 \\ & & a_0 + \sum_{i=1}^d a_i \hat{z}_i < 0, \end{array} \end{array}$$

The set of feasible strategies S(A), specified by polytope Z.

- We wish to find a hyperplane which separates a given point \hat{x} from Z.
- We can simplify the second set of constraints by only considering $\hat{z}_{max}(a)$, the vertex which maximizes the summation.

$$\begin{array}{ll} \max & & 0 \\ \text{s.t.} & & a_0 + \sum_{i=1}^d a_i \hat{x}_i \geq 0 \\ & & a_0 + \sum_{i=1}^d a_i \hat{z}_i < 0, \end{array}$$

The set of feasible strategies S(A), specified by polytope Z.

- We can simplify the second set of constraints by only considering $\hat{z}_{max}(a)$, the vertex which maximizes the summation.
- It is possible to find $\hat{z}_{max}(a)$ in polynomial time if we have access to an exact best response oracle.

$$\begin{array}{ll} \max & & 0 \\ \text{s.t.} & & a_0 + \sum_{i=1}^d a_i \hat{x}_i \ge 0 \\ & & a_0 + \sum_{i=1}^d a_i \hat{z}_i < 0, \end{array} \end{array}$$

The set of feasible strategies S(A), specified by polytope Z.

- We can simplify the second set of constraints by only considering $\hat{z}_{max}(a)$, the vertex which maximizes the summation.
- Instead of $\hat{z}_{max}(a)$, we find $\hat{z}^*(a)$:
 - A feasible strategy if we have α copies of each troop

•
$$\sum_{i=1}^{d} a_i \hat{z}^*(a)_i \ge \frac{1}{\beta} \sum_{i=1}^{d} a_i \hat{z}_{\max}(a)_i$$

The set of feasible strategies S(A), specified by polytope Z.

- We can simplify the second set of constraints by only considering $\hat{z}_{max}(a)$, the vertex which maximizes the summation.
- Instead of $\hat{z}_{\max}(a)$, we find $\hat{z}^*(a)$.
- We define an instance of (α, β) -approximate best response oracle as following:
 - The utility of a strategy \hat{z} equals:
- Let $\hat{z}^*(a)$ be the best response strategy returned by the oracle.

The set of feasible strategies S(A), specified by polytope Z.

- We try to solve our LP using Ellipsoid method and $\hat{z}^*(a)$: the oracle only checks if the current hyperplane satisfies $\hat{z}^*(a)$.
- Let S'(A) denote the set of points that this algorithm admits.

max. 0
s.t.
$$a_0 + \sum_{i=1}^d a_i \hat{x}_i \ge 0$$

 $a_0 + \sum_{i=1}^d a_i \hat{z}_i < 0,$

The set of strategies S'(A), which are admitted by our algorithm.

 $\forall \hat{z} \in Z^{\alpha}$

- Let S'(A) denote the set of points that this algorithm admits.
- S'(A) is not necessarily convex.

$$\begin{array}{ll} \max & & 0 \\ \text{s.t.} & & a_0 + \sum_{i=1}^d a_i \hat{x}_i \ge 0 \\ & & a_0 + \sum_{i=1}^d a_i \hat{z}_i < 0 \end{array} \end{array}$$

The set of strategies S'(A), which are admitted by our algorithm.

 $\forall \hat{z} \in Z^{\alpha}$

- Let S'(A) denote the set of points that this algorithm admits.
- But we have the following properties for any $\hat{x}' \in S'(A)$:
 - \hat{x}' is a feasible strategy if we allow α copies of each troop.
 - If $\hat{x} \in S(A)$, then $\frac{\hat{x}}{\beta} \in S'(A)$.

The set of strategies S'(A), which are admitted by our algorithm.

S'(A)

S(A)

• In order to use (α, β) -approximate best response oracle for our payoff constraints, we need to reformulate it as a minmax LP:

$$egin{array}{lll} \min & U \ {
m s.t.} & \hat{x} \in S({f A}) \ & \mu^{f B}(\hat{x},B^{lpha,eta}) \end{array}$$

Payoff constraints

 $(\hat{x})) \leq U$

total loss in approximation is bounded by $2 - 2/\beta$.

$$egin{array}{lll} \min & U \ {
m s.t.} & \hat{x} \in S({f A}) \ & \mu^{f B}(\hat{x},B^{lpha,eta}) \end{array}$$

Payoff constraints

• We show that by using approximate best response in the last constraint, the

 $(\hat{x})) \leq U$

Reduction from approximate minmax to approximate best response

heorem. Given a polynomial time algorithm that finds an (α, β) -approximate best-response for the generalized Colonel Blotto game, one can find an $(\alpha, 2 - \frac{2}{\beta})$ -approximate minmax solution for the game in polynomial time.

Approximate Best Response

Heterogenous troops w.r.t battlegrounds

in the heterogenous setting.

heorem. For any $\epsilon > 0$, There exists a polynomial-time algorithm which obtains an $\left(O\left(\frac{\ln 1/\epsilon}{\epsilon}\right), 2\epsilon\right)$ -maxmin strategy for the generalized Colonel Blotto game

Heterogenous troops w.r.t battlegrounds

heorem. For any $\epsilon > 0$, The obtains an $\left(O\left(\frac{\ln 1/\epsilon}{\epsilon}\right), 2\epsilon\right)$ -maxmin st in the heterogenous setting.

• Obtained by plugging an
$$\left(O\left(\frac{\ln 1/\epsilon}{\epsilon}\right), \frac{1}{1}\right)$$

heorem. For any $\epsilon > 0$, There exists a polynomial-time algorithm which obtains an $\left(O\left(\frac{\ln 1/\epsilon}{\epsilon}\right), 2\epsilon\right)$ -maxmin strategy for the generalized Colonel Blotto game

 $\frac{1}{1-\epsilon}$)-best response into the reduction.

Heterogenous troops w.r.t battlegrounds

in the heterogenous setting.

- The number of copies of each troop we need is 1 in expectation.

heorem. For any $\epsilon > 0$, There exists a polynomial-time algorithm which obtains an $\left(O\left(\frac{\ln 1/\epsilon}{\epsilon}\right), 2\epsilon\right)$ -maxmin strategy for the generalized Colonel Blotto game

• But in the worst case we may require $o\left(\frac{\ln 1/\epsilon}{\epsilon}\right)$ copies of each troop.

Improved solutions for Homogenous battlegrounds

Homogenous troops w.r.t battlegrounds

- Search space dimensions reduces from $k \cdot (\max_f + 1)$ to $(\max_f + 1)$.
- We can represent the best response with a vector p of probability coefficients with length (max_f + 1).
- Reduce to Prize-collecting Knapsack problem.

Prize-collecting Knapsack

- A set of bag types $\mathscr{B} = \{1, 2, ..., |\mathscr{B}|\}$ is given.
- Each bag type *i* has size v_i and prize p_i .
- Unlimited copies of each bag is available.
- A set of items $\mathcal{N} = \{1, 2, \dots, |\mathcal{N}|\}$ is given each with size a_i .
- We gain profit of p_i whenever we fill a bag of type i by a subset of items with total size of at least v_i.

Prize-collecting Knapsack

- We obtain a $(1 + \epsilon, 1)$ -approximation of prize-collecting knapsack using dynamic programming.
- Key ideas:
 - - $O(\log(\max_f))$ different sizes.

• Discretize the size of items by rounding to the nearest $(1 + \epsilon)^k$ value.

Prize-collecting Knapsack

- We obtain a $(1 + \epsilon, 1)$ -approximation of prize-collecting knapsack using dynamic programming.
- Key ideas:
 - - Large items (\mathscr{D}): $v_i < a_i$
 - Regular items (\mathscr{P}): $\epsilon v_i \leq a_i \leq v_i$
 - Small items (S): $a_i < \epsilon v_i$

• Divide items into three groups based on their size w.r.t each bag type i:

Prize-collecting Knapsack DP

$$\epsilon v_i \leq v_{i-1}$$

 $\epsilon v_i > v_{i-1}$

Reduction to Prize-collecting Knapsack

 Randomly permuting the battlegrounds of an optimal solution preserves optimality.

Homogenous troops w.r.t battlegrounds

heorem. We can approximate the maxmin strategy of the generalized Colonel Blotto game within a bi-criteria approximation factor of $(1 + \varepsilon, 0)$ in the homogenous setting in polynomial time.

Beyond Zero-sum and Linearity

Are all assumptions necessary?

- A more generalized version of problem covering a broad range of multibattlefield two player games.
- - Linearity of utilities
 - Zero-sum payoffs

What happens if we eliminate each assumption of our current formulation?

Removing Linearity Constraint

wide zero-sum two-player-multi-battlefield games is PPAD-hard.

heorem. The problem of computing an equilibrium in non-linear battlefield-

Removing Zero-Sum Constraint

two-player-multi-battlefield games is PPAD-hard.

heorem. The problem of computing an equilibrium in linear non-zero- sum

