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Colonel Blotto Game



Colonel Blotto Game

Two colonels A and B are playing a game.
Colonels A and B have 1 and 7 troops respectively.

There are i battlefields.
Colonels distribute their troops across battlefields.

The payoff of each battlefield is decided by policy.



Colonel Blotto Game

» Colonels A and B have /71 and 7 troops respectively.

e There are k battlefields.

* Pure strategies of each player:

e A of the available troops.



Colonel Blotto Game

» Colonels A and B have /71 and 7 troops respectively.

e There are k battlefields.

 Randomized (mixed) strategies:

A probability distribution vector X over all feasible pure strategies.



Colonel Blotto Game

» Colonels A and B have /71 and 7 troops respectively.

* There are k battlefields.
* Constant-sum game:

* The total payoff of both colonels is always constant (at each battlefield)

 Maxmin strategies = Minmax strategies = Nash equilibria



Colonel Blotto Game

» Colonels A and B have /71 and 7 troops respectively.

* There are « battlefields.

e Applications:
* Political Campaigns: U.S. presidential election
 Marketing Campaigns: Apple vs Samsung

o Sport Competitions



Colonel Blotto Game

Colonels A and B have 1 and 7 troops respectively.

There are i battlefields.

Introduced by

Many attempts to solve the problem:
* Continuous resources
* Special cases

First polynomial solution



Colonel Blotto Game

Colonels A and B have 1 and 7 troops respectively.

There are k battlefields.

First polynomial solution
Linear Program to model the problem.
Exponential number of variables and constraints.

method.



Colonel Blotto Game

Colonels A and B have 1 and 7 troops respectively.

There are k battlefields.

First polynomial solution

Key idea: Reduce finding a maxmin strategy to
finding a best response strategy.



Colonel Blotto Game

» Colonels A and B have /71 and 7 troops respectively.

* There are i battlefields.
» Limitations of the original setting:

* [roops are w.r.t. different battlegrounds.

» Although we can assign weights (¢, i, ..., ;) to battlefields, and it
doesn’t change the set of pure strategies.



Colonel Blotto Game

» Colonels A and B have /71 and 7 troops respectively.

* There are k battlefields.
» Limitations of the original setting:
* All troops have the same strength.
* [roops are w.r.t. different battlegrounds.

* The payoff of each battleground is determined by policy.



Colonel Blotto Game

With Multifaceted Resources




Colonel Blotto Game

» Colonels A and B have 1 and 7 troops respectively, and there are
battlefields.

+ Ak X (m+ n)matrix W is given, where w;, ; shows the strength of the 7’th
troop in battlefield b.

* The strength of troops Is - For colonel A, the total strength of the
subset of troops § C [m] assigned to battlefield b is equal to:

2",



Colonel Blotto Game

» Colonels A and B have 1 and 7 troops respectively, and there are
battlefields.

e Ak X (m+ n)matrix W is given.

e [wo sets of utility functions and which
determine the payoff in a battlefield based on the total strength of troops.

* The utility functions are , , and

« The domain of utility functions is {0,1,..., maxf}z, where is an
upper-bound on the total strength of the troops over all battlefields.



Colonel Blotto Game

 Denote a pure strategy, which again is a of the available troops,
by a vector X where X, specifies the set of troops assigned to battlefield b.

» Define Y similarly for player B.

* The total payoff of each player for given pure strategies X and ¥ equals to:

{MA(Xa Y) =3y u(wp(Xs), w (V)
pB(X,Y) = Y, pf (wyp(Xs), wy(Y5))



Colonel Blotto Game

» Denote a mixed strategy for player A and B by

* The total payoff of each player for given mixed strategies

XX Y ~NY

X AX Y ~Y

1%
u”

and

(X,Y)]
(X,Y)]

respectively.

and

equals to:



Applications




U.S. Presidential Election

Rep Dem

1 1-2elections




U.S. Presidential Election

e Swing states

 Maine and Nebraska

* Troops may include the following:
 Money

e Candidate’s time

* On-the-ground staff

 Campaign managers



» Battlegrounds

Tech companies competition

 Smartphone
o Jablet

e [aptop




Approximation Hardness



Hardness Result

e |t is hard to approximate the best response strategy within factor.

* Reduction from the Welfare Maximization for Single-minded Bidders problem.

* The approximation hardness of this problem is known by a reduction from Set
Packing.



Weltare Maximization for Single-minded Bidders

Allocation of a set of 72 indivisible items among 772 bidders.
Each bidder 1 has a subset / of items which values v.(7).
For a subset 1", v.(T") equals:

e vi(T)) if 7. C T

e O otherwise

Find an allocation which maximizes the total utility of bidders.



Weltare Maximization for Single-minded Bidders

 An example of reduction to an instance of Colonel Blotto.

Battlefields

‘ Bidders




Hardness Result

find an O(min(m, n))-approximate best response in the multifaceted Colonel

Blotto game.

T heorem. Unless NP = P, there is no polynomialtime algorithm that can always




From

Approximate Best Response

to approximate Maxmin strategies



Bicriteria Approximation

Multiplicative

e Astrategy Y is an -approximate best response strategy to a strategy X
of opponent If:

» Y is allowed to use up to o copies of each troop.

 The payoff is at least fraction of the optimal best response against X.



Bicriteria Approximation

Additive

A strategy X is an -approximate maxmin strategy If:
« X is allowed to use up to & copies of each troop.
» Let u be the X’s minimum utility against opponent’s strategies.

» Let u™ be the optimal maxmin strategy’s minimum utility against an
opponent who is allowed to use up to & copies of each troop.

e Ut —u <9



Bicriteria Approximation

Additive

A strategy X is an -approximate maxmin strategy If:
« X is allowed to use up to & copies of each troop.
» Let u be the X’s minimum utility against opponent’s strategies.

» Let u™ be the optimal maxmin strategy’s minimum utility against an
opponent who is allowed to use up to & copies of each troop.

e Ut —u <9

. W.l.o.g. Assumption: #2(X,Y) =1 — u?(X,Y)



-approximate Best Response

* Given an exact best response oracle the solution of finds a
maxmin strategy.

* |t leverages the ellipsoid method to find a maxmin strategy.



-approximate Best Response

* Given an exact best response oracle the solution of finds a
maxmin strategy.

e \We don’t have access to such oracle here.

e However, as we show later, we construct an -approximate best response
oracle.



-approximate Best Response

* Given an exact best response oracle the solution of finds a
maxmin strategy.

e \We construct an -approximate best response oracle.

. We obtain -approximate maxmin strategies using an -

approximate best response oracle.



Reduction from approximate
to approximate

* The following models the problem:
« A mixed strategy x denotes a point in k. maxs dimensions.

. Each dimension (s, b) shows the probability of putting troops with total
strength s° In battlefield

max. U
s.t. &€ S(A) Membership constraints

u(2,9) > U, vy € S(B) Payoft constraints



Reduction from approximate
to approximate

* The following models the problem:

. denotes the set of all feasible strategies for player A.
. denotes the set of all feasible strategies for player B.
max. U
st. &€ S(A) Membership constraints

u(2,9) > U, vy € S(B) Payoft constraints



Membership constraints

« We are given a convex polytope Z whose vertices
are the pure strategies of the game.

 We wish to find a hyperplane which separates a
given point X from Z.

max. 0 The set of feasible strategies S(A),

d -
s.t. ag+ Zi_l a;z; >0 specified by polytope Z.

d
ap+ ), ai% <0, Vi€ Z



Membership constraints

 We wish to find a hyperplane which separates a
given point X from Z.

» Point X is inside Z Iff no such hyperplane exists.

max. 0 The set of feasible strategies S(A),

d -
s.t. ag+ Zi_l a;z; >0 specified by polytope Z.

d
ap+ ), ai% <0, Vi€ Z



Membership constraints

 We wish to find a hyperplane which separates a
given point X from Z.

» The hyperplane is formulated by {ay, ay, ..., a,}.

max. 0 The set of feasible strategies S(A),

d -
s.t. ag+ Zi_l a;z; >0 specified by polytope Z.

d
ap+ ), ai% <0, Vi€ Z



Membership constraints

 We wish to find a hyperplane which separates a
given point X from Z.

 We can simplify the second set of constraints by

only considering . the vertex which
maximizes the summation.

max. 0 The set of feasible strategies S(A),

d -
s.t. ag+ Zi_l a;z; >0 specified by polytope Z.

d
ap+ ), ai% <0, Vi€ Z



Membership constraints

 We can simplify the second set of constraints by

only considering , the vertex which
maximizes the summation.

e |t is possible to find INn polynomial time if
we have access to an exact best response oracle.

max. 0 The set of feasible strategies S(A),

d -
s.t. ag+ Zi_l a;z; >0 specified by polytope Z.

d
ap+ ), ai% <0, Vi€ Z



Membership constraints

 We can simplify the second set of constraints by

only considering , the vertex which
maximizes the summation.

 Instead of Z, .. (a), we find

* A feasible strategy if we have a copies of each
troop

7 The set of feasible strategies S(A),

A 1 : specified by polytope Z.
. 26 @; 2 5 ) (@)
=1 i=1



Membership constraints

 We can simplify the second set of constraints by

only considering , the vertex which
maximizes the summation.

 Instead of Z, .. (a), we find

 \We define an instance of -approximate best
response oracle as following: p
R The set of feasible strategies S(A),
« The utility of a strategy Z equals: Z diZi specified by polytope Z.
i=1
o |et be the best response strategy returned

by the oracle.



Membership constraints

* We try to solve our LP using Ellipsoid method and
. the oracle only checks if the current
hyperplane satisfies Z*(a).

o |et denote the set of points that this
algorithm admits.

max. 0O
The set of strategies S'(A), which

d . .
s.t.  ag+ Zi_l a;z; > 0 are admitted by our algorithm.

d
ap+ ), ai% <0, V2 € Z°



Membership constraints

o |et denote the set of points that this
algorithm admits.
. IS not necessarily convex.
.0
HHax ] The set of strategies 5'(A), which
s.t. ag + Z 1 0@ >0 are admitted by our algorithm.
1=

d
ap+ ), ai% <0, V2 € Z°



Membership constraints

o |et denote the set of points that this
algorithm admits.

 But we have the following properties for any
x' e SA):

» X'is a feasible strategy if we allow o copies of

each troop.

The set of strategies S'(A), which
are admitted by our algorithm.

Va\

. IfX € S(A), then ; e S'(A).




Membership constraints

S'(A) S(A) SA)/p



Payotf constraints

e |n order to use -approximate best response oracle for our payoft
constraints, we need to reformulate it as a minmax LP:

min. U
s.t. € S(A)
uo (&, B4 (2)) <U



Payotf constraints

 We show that by using approximate best response in the last constraint, the
total loss in approximation is bounded by 2 — 2/p.

min. U
s.t. € S(A)
uo (&, B4 (2)) <U



Reduction from approximate minmax
to approximate best response

2
best-response for the generalized Colonel Blotto game, one can find an (a, 2 — —)-

p

T heorem. Given a polynomial time algorithm that finds an (a,/)-approximate

approximate minmax solution for the game in polynomial time.




Approximate Best Response



Heterogenous troops w.r.t battlegrounds

Inl/e

€
in the heterogenous setting.

Theorem. For any € > 0, There exists a polynomialtime algorithm which

obtains an (0( ),26>-maxmin strategy for the generalized Colonel Blotto game




Heterogenous troops w.r.t battlegrounds

Inl/e

€
in the heterogenous setting.

Theorem. For any € > 0, There exists a polynomialtime algorithm which

obtains an (0( ),2e>-maxmin strategy for the generalized Colonel Blotto game

1

1 —¢€

. Obtained by plugging an (0(111;/ 6), )-best response into the reduction.



Heterogenous troops w.r.t battlegrounds

Inl/e

€
in the heterogenous setting.

Theorem. For any € > 0, There exists a polynomialtime algorithm which

obtains an (0( ),2e>-maxmin strategy for the generalized Colonel Blotto game

 The number of copies of each troop we need is 1 in expectation.

. But in the worst case we may require 0(1111/6) copies of each troop.
€




Improved solutions for
Homogenous
battlegrounds




troops w.r.t battlegrounds

» Search space dimensions reduces from k - (max + 1) to (max, + 1).

» \We can represent the best response with a vector p of probability coefficients
with length (max, + 1).

 Reduce to problem.



Prize-collecting Knapsack

A set of bag types &# = {1,2,...,| | } is given.
Each bag type 1 has size v: and prize

Unlimited copies of each bag is available.

A set of items ./ = {1,2,..., |/ | } is given each with size

We gain profit of p, whenever we fill a bag of type 1 by a subset of items with
total size of at least v..



Prize-collecting Knapsack

« We obtain a (1 + €,1)-approximation of prize-collecting knapsack using

» Key ideas:
. Discretize the size of items by rounding to the nearest (1 + €)X value.

» O(log(maxy)) different sizes.



Prize-collecting Knapsack

« We obtain a (1 + €,1)-approximation of prize-collecting knapsack using

» Key ideas:
« Divide items into three groups based on their size w.r.t each bag type i:

 Largeitems (-£): v; < a;

» Regular items (%): ev; < a; <,

« Small items (o): a; < €v;



Prize-collecting Knapsack
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7 R Lz S; R,
£ o o g 5 ote . A~ A
i i $ $ { $
qu/\ AN AN AN AN /U'I, G'UZ ,U’I:

EVi—14 4+ v ¥ 4 Ui—1 EVi—1 V-1
~ = ~ L —— e ggf 0 N
82_1 Ri_1 ﬁi_l Sz’—lRi—l Lz—l



Reduction to Prize-collecting Knapsack

 Randomly permuting the battlegrounds of an optimal solution preserves

optimality.

X*
0_-0
Y

X°,
Y




Homogenous troops w.r.t battlegrounds

Colonel Blotto game within a bi-criteria approximation factor of (1 + £,0) in the
homogenous setting in polynomial time.

Theorem. We can approximate the maxmin strategy of the generalized




Beyond
Zero-sum and Linearity




Are all assumptions necessary?

* A more generalized version of problem covering a broad range of multi-
battlefield two player games.

 What happens if we eliminate each assumption of our current formulation?
. of utilities

. payoffs



Removing Linearity Constraint

wide zero-sum two-player-multi-battlefield games is PPAD-hard.

T heorem. The problem of computing an equilibrium in non-linear battlefield-




Removing Zero-Sum Constraint

two-player-multi-battlefield games is PPAD-hard.

Theorem. The problem of computing an equilibrium in linear non-zero- sum




Thank You!




