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Colonel Blotto Game



• Two colonels  and  are playing a game.


• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Colonels distribute their troops simultaneously across battlefields.


• The payoff of each battlefield is decided by winner-take-all policy.
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Pure strategies of each player:


• A -partitioning of the available troops.
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Randomized (mixed) strategies:


• A probability distribution vector  over all feasible pure strategies.
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Constant-sum game:


• The total payoff of both colonels is always constant (at each battlefield)


• Maxmin strategies  Minmax strategies  Nash equilibria
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Applications:


• Political Campaigns: U.S. presidential election


• Marketing Campaigns: Apple vs Samsung


• Sport Competitions
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Introduced by Borel and Ville (1921). 

• Many attempts to solve the problem:


• Continuous resources Roberson(2006). 

• Special cases Hart(2008). 

• First polynomial solution Ahmadinejad et. al (2016).
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• First polynomial solution Ahmadinejad et. al (2016). 

• Linear Program to model the problem.


• Exponential number of variables and constraints.


• Ellipsoid method.
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• First polynomial solution Ahmadinejad et. al (2016). 

• Key idea: Reduce finding a maxmin strategy to 
finding a best response strategy.

A B m n

k

Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Limitations of the original setting:


• Troops are homogenous w.r.t. different battlegrounds.


• Although we can assign weights  to battlefields, and it 
doesn’t change the set of pure strategies.
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Colonel Blotto Game



• Colonels  and  have  and  troops respectively. 


• There are  battlefields.


• Limitations of the original setting:


• All troops have the same strength.


• Troops are homogenous w.r.t. different battlegrounds.


• The payoff of each battleground is determined by winner-take-all policy.
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Colonel Blotto Game
With Multifaceted Resources



• Colonels  and  have  and  troops respectively, and there are  
battlefields.


• A  matrix  is given, where  shows the strength of the ’th 
troop in battlefield .


• The strength of troops is additive: For colonel , the total strength of the 
subset of troops  assigned to battlefield  is equal to:
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Colonel Blotto Game
With Multifaceted Resources
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• Colonels  and  have  and  troops respectively, and there are  
battlefields.


• A  matrix  is given.


• Two sets of utility functions  and  which 
determine the payoff in a battlefield based on the total strength of troops.


• The utility functions are constant-sum, monotone, and non-negative.


• The domain of utility functions is , where  is an 
upper-bound on the total strength of the troops over all battlefields.
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Colonel Blotto Game
With Multifaceted Resources



• Denote a pure strategy, which again is a -partitioning of the available troops, 
by a vector  where  specifies the set of troops assigned to battlefield .


• Define  similarly for player .


• The total payoff of each player for given pure strategies  and  equals to:
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Colonel Blotto Game
With Multifaceted Resources



• Denote a mixed strategy for player  and  by  and  respectively.


• The total payoff of each player for given mixed strategies  and  equals to:

A B X Y

X Y

Colonel Blotto Game
With Multifaceted Resources



Applications



U.S. Presidential Election



U.S. Presidential Election

• Swing states


• Maine and Nebraska


• Troops may include the following:


• Money


• Candidate’s time


• On-the-ground staff


• Campaign managers



Tech companies competition

• Battlegrounds


• Smartphone


• Tablet


• Laptop



Approximation Hardness



Hardness Result

• It is hard to approximate the best response strategy within  factor.


• Reduction from the Welfare Maximization for Single-minded Bidders problem.


• The approximation hardness of this problem is known by a reduction from Set 
Packing. Lehman et. al (2002) Sandholm (1999)

n



Welfare Maximization for Single-minded Bidders

• Allocation of a set of  indivisible items among  bidders.


• Each bidder  has a subset  of items which values .


• For a subset ,  equals:


•            if 


• 0                  otherwise


• Find an allocation which maximizes the total utility of bidders.

n m

i Ti vi(Ti)

T′ vi(T′ )

vi(Ti) Ti ⊆ T′ 



Welfare Maximization for Single-minded Bidders

Bidders

Items

Battlefields

Troops

• An example of reduction to an instance of Colonel Blotto.



Hardness Result

Theorem. Unless NP = P, there is no polynomial-time algorithm that can always 
find an -approximate best response in the multi-faceted Colonel 
Blotto game. 

O( min(m, n))



Approximate Best Response
to approximate Maxmin strategies 

From



• A strategy  is an -approximate best response strategy to a strategy  
of opponent if:


•  is allowed to use up to  copies of each troop.


• The payoff is at least  fraction of the optimal best response against .

Y (α, β) X

Y α

1/β X

Bicriteria Approximation
Multiplicative



• A strategy  is an -approximate maxmin strategy if:


•  is allowed to use up to  copies of each troop.


• Let  be the ’s minimum utility against opponent’s strategies.


• Let  be the optimal maxmin strategy’s minimum utility against an 
opponent who is allowed to use up to  copies of each troop.


•

X (α, δ)

X α

u X

u*
α

u* − u ≤ δ

Bicriteria Approximation
Additive



• A strategy  is an -approximate maxmin strategy if:


•  is allowed to use up to  copies of each troop.


• Let  be the ’s minimum utility against opponent’s strategies.


• Let  be the optimal maxmin strategy’s minimum utility against an 
opponent who is allowed to use up to  copies of each troop.


• 


• W.l.o.g. Assumption: 

X (α, δ)

X α

u X

u*
α

u* − u ≤ δ

μA(X, Y) = 1 − μB(X, Y)

Bicriteria Approximation
Additive



• Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a 
maxmin strategy. 

• It leverages the ellipsoid method to find a maxmin strategy.

-approximate Best Response(α, β)



• Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a 
maxmin strategy. 

• We don’t have access to such oracle here.


• However, as we show later, we construct an ( , )-approximate best response 
oracle.

α β

-approximate Best Response(α, β)



• Given an exact best response oracle the solution of Ahmadinejad et. al (2016) finds a 
maxmin strategy. 

• We construct an ( , )-approximate best response oracle.


• We obtain ( , )-approximate maxmin strategies using an ( , )-
approximate best response oracle.

α β

α 2 −
2
β

α β

-approximate Best Response(α, β)



Reduction from approximate minmax  
to approximate best response

Membership constraints
Payoff constraints

• The following LP models the problem:


• A mixed strategy  denotes a point in  dimensions.


• Each dimension  shows the probability of putting troops with total 
strength  in battlefield .

̂x k . maxf

(sA, b)
sA b



Reduction from approximate minmax  
to approximate best response

Membership constraints
Payoff constraints

• The following LP models the problem:

•  denotes the set of all feasible strategies for player .


•  denotes the set of all feasible strategies for player .

S(A) A

S(B) B



Membership constraints

• We are given a convex polytope  whose vertices 
are the pure strategies of the game.


• We wish to find a hyperplane which separates a 
given point  from .

Z

̂x Z

The set of feasible strategies , 
specified by polytope .

S(A)
Z



Membership constraints

• We wish to find a hyperplane which separates a 
given point  from .


• Point  is inside  Iff no such hyperplane exists.

̂x Z

̂x Z

The set of feasible strategies , 
specified by polytope .

S(A)
Z



Membership constraints

• We wish to find a hyperplane which separates a 
given point  from .


• The hyperplane is formulated by .

̂x Z

{a0, a1, …, ad}

The set of feasible strategies , 
specified by polytope .

S(A)
Z



Membership constraints

• We wish to find a hyperplane which separates a 
given point  from .


• We can simplify the second set of constraints by 
only considering , the vertex which 
maximizes the summation. 

̂x Z

̂zmax(a)

The set of feasible strategies , 
specified by polytope .

S(A)
Z



Membership constraints

• We can simplify the second set of constraints by 
only considering , the vertex which 
maximizes the summation. 


• It is possible to find  in polynomial time if 
we have access to an exact best response oracle.

̂zmax(a)

̂zmax(a)

The set of feasible strategies , 
specified by polytope .

S(A)
Z



Membership constraints

• We can simplify the second set of constraints by 
only considering , the vertex which 
maximizes the summation. 


• Instead of , we find :


• A feasible strategy if we have  copies of each 
troop


•

̂zmax(a)

̂zmax(a) ̂z*(a)

α

d

∑
i=1

ai ̂z*(a)i ≥
1
β

d

∑
i=1

ai ̂zmax(a)i

The set of feasible strategies , 
specified by polytope .

S(A)
Z



Membership constraints

• We can simplify the second set of constraints by 
only considering , the vertex which 
maximizes the summation. 


• Instead of , we find .


• We define an instance of ( , )-approximate best 
response oracle as following:


• The utility of a strategy  equals:


• Let  be the best response strategy returned 
by the oracle.

̂zmax(a)

̂zmax(a) ̂z*(a)

α β

̂z

̂z*(a)

The set of feasible strategies , 
specified by polytope .

S(A)
Z

d

∑
i=1

ai ̂zi



Membership constraints

• We try to solve our LP using Ellipsoid method and 
: the oracle only checks if the current 

hyperplane satisfies .


• Let  denote the set of points that this 
algorithm admits.

̂z*(a)
̂z*(a)

S′ (A)

The set of strategies , which 
are admitted by our algorithm.

S′ (A)



Membership constraints

• Let  denote the set of points that this 
algorithm admits.


•  is not necessarily convex.

S′ (A)

S′ (A)

The set of strategies , which 
are admitted by our algorithm.

S′ (A)



Membership constraints

• Let  denote the set of points that this 
algorithm admits.


• But we have the following properties for any 
:


•  is a feasible strategy if we allow  copies of 
each troop.


• If , then .

S′ (A)

̂x′ ∈ S′ (A)

̂x′ α

̂x ∈ S(A) ̂x
β

∈ S′ (A)
The set of strategies , which 
are admitted by our algorithm.

S′ (A)



Membership constraints

S′ (A) S(A) S(A)/β



Payoff constraints

• In order to use ( , )-approximate best response oracle for our payoff 
constraints, we need to reformulate it as a minmax LP:

α β



Payoff constraints

• We show that by using approximate best response in the last constraint, the 
total loss in approximation is bounded by .2 − 2/β



Reduction from approximate minmax  
to approximate best response

Theorem. Given a polynomial time algorithm that finds an ( , )-approximate 

best-response for the generalized Colonel Blotto game, one can find an ( , )-

approximate minmax solution for the game in polynomial time.  

α β
α 2 −

2
β



Approximate Best Response



Heterogenous troops w.r.t battlegrounds

Theorem. For any , There exists a polynomial-time algorithm which 
obtains an -maxmin strategy for the generalized Colonel Blotto game 

in the heterogenous setting.  

ϵ > 0

(O( ln 1/ϵ
ϵ ),2ϵ)



Heterogenous troops w.r.t battlegrounds

Theorem. For any , There exists a polynomial-time algorithm which 
obtains an -maxmin strategy for the generalized Colonel Blotto game 

in the heterogenous setting.  

ϵ > 0

(O( ln 1/ϵ
ϵ ),2ϵ)

• Obtained by plugging an -best response into the reduction.(O( ln 1/ϵ
ϵ ),

1
1 − ϵ )



Heterogenous troops w.r.t battlegrounds

Theorem. For any , There exists a polynomial-time algorithm which 
obtains an -maxmin strategy for the generalized Colonel Blotto game 

in the heterogenous setting.  

ϵ > 0

(O( ln 1/ϵ
ϵ ),2ϵ)

• The number of copies of each troop we need is 1 in expectation.


• But in the worst case we may require  copies of each troop.O( ln 1/ϵ
ϵ )



Improved solutions for 
Homogenous 
battlegrounds



Homogenous troops w.r.t battlegrounds

• Search space dimensions reduces from  to .


• We can represent the best response with a vector  of probability coefficients 
with length .


• Reduce to Prize-collecting Knapsack problem.

k ⋅ (maxf + 1) (maxf + 1)

p
(maxf + 1)



Prize-collecting Knapsack

• A set of bag types  is given.


• Each bag type  has size  and prize .


• Unlimited copies of each bag is available.


• A set of items  is given each with size .


• We gain profit of  whenever we fill a bag of type  by a subset of items with 
total size of at least .

ℬ = {1,2,…, |ℬ |}

i vi pi

𝒩 = {1,2,…, |𝒩 |} ai

pi i
vi



Prize-collecting Knapsack

• We obtain a -approximation of prize-collecting knapsack using 
dynamic programming.


• Key ideas:


• Discretize the size of items by rounding to the nearest  value.


•  different sizes.

(1 + ϵ,1)

(1 + ϵ)k

O(log(maxf))



Prize-collecting Knapsack

• We obtain a -approximation of prize-collecting knapsack using 
dynamic programming.


• Key ideas:


• Divide items into three groups based on their size w.r.t each bag type :


• Large items ( ): 


• Regular items ( ): 


• Small items ( ): 

(1 + ϵ,1)

i

ℒ vi < aj

ℛ ϵvi ≤ aj ≤ vi

𝒮 aj < ϵvi



Prize-collecting Knapsack DP

ϵvi ≤ vi−1 ϵvi > vi−1



Reduction to Prize-collecting Knapsack

• Randomly permuting the battlegrounds of an optimal solution preserves 
optimality.



Homogenous troops w.r.t battlegrounds

Theorem. We can approximate the maxmin strategy of the generalized 
Colonel Blotto game within a bi-criteria approximation factor of  in the 
homogenous setting in polynomial time.  

(1 + ε,0)



Beyond 
Zero-sum and Linearity



Are all assumptions necessary?

• A more generalized version of problem covering a broad range of multi-
battlefield two player games.


• What happens if we eliminate each assumption of our current formulation?


• Linearity of utilities


• Zero-sum payoffs



Removing Linearity Constraint

Theorem. The problem of computing an equilibrium in non-linear battlefield-
wide zero-sum two-player-multi-battlefield games is PPAD-hard.  



Removing Zero-Sum Constraint

Theorem. The problem of computing an equilibrium in linear non-zero- sum 
two-player-multi-battlefield games is PPAD-hard.  



Thank You!


