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ABSTRACT

Geotagging is the process of recognizing textual references
to geographic locations, known as toponyms, and resolving
these references by assigning each lat/long values. Typical
geotagging algorithms use a variety of heuristic evidence to
select the correct interpretation for each toponym. A study
is presented of one such heuristic which aids in recognizing
and resolving lists of toponyms, referred to as comma groups.
Comma groups of toponyms are recognized and resolved by
inferring the common threads that bind them together, based
on the toponyms’ shared geographic attributes. Three such
common threads are proposed and studied — population-
based prominence, distance-based proximity, and sibling re-
lationships in a geographic hierarchy — and examples of
each are noted. In addition, measurements are made of these
comma groups’ usage and variety in a large dataset of news
articles, indicating that the proposed heuristics, and in par-
ticular the proximity and sibling heuristics, are useful for
resolving comma group toponyms.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and

Retrieval]: Information Search and Retrieval

General Terms

Algorithms, Design, Performance

Keywords
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1. INTRODUCTION
Geotagging [2] of text, identifying locations in text and as-

signing them lat/long values, is a crucial step for enabling ge-
ographic retrieval of text documents. In particular, geotag-
ging can be considered as enabling the spatial indexing of un-
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structured or semistructured text. This spatial indexing pro-
vides a way to execute both feature-based queries (“Where is
X happening?”) and location-based queries (“What is hap-
pening at location Y?”). Systems using geotagging have
been constructed for processing text in a wide variety of
domains, such as web pages [2, 13, 16, 22], blogs [23], ency-
clopedia articles [6, 15], news articles [4, 20], Twitter mes-
sages [18], spreadsheets [10], and the hidden Web [9].

The process of geotagging consists of finding all textual
references to geographic locations, known as toponyms [7],
and then choosing the correct location interpretation for
each toponym (i.e., assigning lat/long values). These two
steps, known respectively as toponym recognition and to-
ponym resolution, are difficult because of several kinds of
ambiguity present in location names. In particular, many
names of places are also names of other type of entities (e.g.,
“Washington” is the name of many places in the US and is
also a common surname), and many different places have
the same name (e.g., over 60 places around the world are
named “Paris”). In addition, the particular text domain
may pose additional challenges for geotagging. For exam-
ple, geotagging blogs may be more challenging than geo-
tagging newswire simply because blog text may have more
misspellings and grammar mistakes.

Many systems and methods [2, 7, 8, 9, 11, 13, 15, 16,
17, 20, 21] have been developed for geotagging text. These
methods tend to apply a variety of heuristics modeled on the
evidence typically provided by document authors to help
their human readers recognize and resolve toponyms. For
example, one very common technique is to search the text
for names of especially large or populous places (e.g., coun-
try names), as listed in an external database of geographic
locations, and resolve them immediately. Another common
strategy is to recognize“object/container”pairs of toponyms
within the text (e.g., “Paris, France”). Of course, these and
other strategies cannot be used in isolation because of the
significant potential for errors. Consider the following open-
ing sentence from a news article in the Paris News, a small
newspaper based in Paris, Texas:

Madison Sikes, a 5-year-old from Paris, is receiv-
ing one Christmas present early this year.

Clearly, resolving “Paris” to the most populous interpreta-
tion in France would result in an error, and additional infor-
mation is needed to resolve it correctly — in this case, using
other toponyms in the article, or using information about
the source newspaper’s geographic location. More evidence
is needed for most such heuristics used in geotagging text.

In this paper, our aim is to recognize and resolve toponyms
organized using another method commonly employed by au-



thors: lists, which for the purposes of exposition we will
refer to as comma groups (though commas need not always
separate list items). Comma groups are a natural way to or-
ganize groups of related information. In fact, we note that
each comma group unifies the entities it contains through
a common thread — attributes that are shared by all enti-
ties in the group. This reasoning leads to our observation
that for comma groups of toponyms, these common threads
greatly aid in resolving the toponyms correctly. For exam-
ple, despite each toponym in the comma group“Rome, Paris,
Berlin and Brussels” having many possible interpretations
(over 40, 60, 130, and 10, respectively), the common thread
of large, prominent capital cities allows us to select the cor-
rect interpretations. Similarly, the group “Hell’s Kitchen,
Chinatown, Murray Hill, Little Italy, and SoHo”, despite
containing individually ambiguous location names, exhibits
the common thread of neighborhoods in southern Manhat-
tan, New York City, and this allows their correct resolution.

Furthermore, and even more importantly, we also observe
that unlike typical forms of heuristic evidence used in rec-
ognizing and resolving toponyms, comma groups are often
self-specified, in that they can be resolved reliably and ac-
curately by inferring their common threads. That is, for
a comma group, if the common thread is identified cor-
rectly, the group’s toponyms can be resolved without re-
lying on other, potentially erroneous toponym resolutions
made in the rest of the document. This identification is
made easier because of the large number of toponyms in
the comma group (three or more). Since all toponyms ex-
hibit the group’s common thread, each additional toponym
acts as another sample against which a potential common
thread can be compared. These comparisons are especially
useful for large comma groups of five, ten, or even twenty
toponyms, which are not uncommon in a variety of text doc-
uments on the Web. Thus, despite their seeming triviality,
comma groups deserve special attention when geotagging
documents, because they offer a means of high quality to-
ponym resolution.

This paper is intended as a study of comma groups in
their own right. We describe methods to recognize comma
groups of toponyms and to identify their common threads
to effect correct toponym resolution. To do so, we first rec-
ognize comma groups of toponyms (Section 2) by searching
for toponyms in the input text using several methods devel-
oped for geotagging text, and then finding toponyms joined
by suitable separator tokens. Next, we resolve these comma
groups (Section 3) by identifying their common threads us-
ing one of three heuristics based on the geographic attributes
of each group’s contained toponyms: their prominence, their
proximity, and sibling relationships in a geographic hierar-
chy. Being heuristic in nature, these techniques do result
in errors from time to time, and for each heuristic we pro-
vide examples of successes and errors found in news articles
taken from the NewsStand system [20]. We also present the
results of a comma group usage evaluation (Section 4) for a
sampled portion of a large dataset of news articles collected
over a two month period from online news sources, indicat-
ing the utility of each heuristic for recognizing and resolving
comma groups of toponyms. In particular, the proximity
and sibling heuristics play a large role in recognizing and
resolving comma groups of toponyms.

2. COMMA GROUP RECOGNITION
Our comma group recognition process is intended as a

way to find comma groups of entities, regardless of the en-

tities’ types. In addition, we assign potential toponym in-
terpretations to the entities in each comma group. Later, in
our comma group resolution procedure (Section 3), we de-
termine whether comma groups contain toponyms or non-
toponyms, and if they contain toponyms, to choose the cor-
rect interpretations of each toponym using comma group
heuristics.

We employ several strategies to recognize comma groups,
drawing on a variety of internal linguistic structure and ex-
ternal knowledge sources. In general, we found that the
more sources of evidence used for recognizing toponyms and
comma groups, the better the final results will be. In other
words, toponym and comma group recognition most benefit
the entire comma group geotagging process by having high
recall at the cost of precision — that is, reporting as many
potential comma groups as possible, even potentially erro-
neous ones. Furthermore, because written language found
on the Web and in hidden Web text repositories varies in
the way that comma groups are written (e.g., “X and Y
and Z” versus “X, Y, and Z”), some looseness in toponym
and comma group recognition rules is also warranted. Our
recognition procedures reflect this requirement.

The following sections describe our toponym recognition,
comma group recognition, and lat/long assignment proce-
dures.

2.1 Toponym Recognition
Building comma groups of toponyms first requires a ro-

bust toponym recognition procedure. Our goal is to be as
complete as possible and not miss any toponyms present in
the document under consideration. In other words, we need
high recall when recognizing toponyms, possibly at the ex-
pense of recognition precision. That is, we may misclassify
many entities in the document as toponyms when they are
of some other type. However, precision errors will not have
a significant effect on the entire comma group geotagging
process, since we can filter them out when determining the
common threads of toponym comma groups (Section 3).

The first step in recognizing toponyms is to tokenize [5] the
input document’s text. Tokenization involves breaking the
text into meaningful parts, referred to as tokens, and a useful
tokenization is more than simply splitting on whitespace.
Consider the following dateline from a news article:

ALBANY, N.Y. (BP) — In a lengthy debate . . .

A useful tokenization of this text would result in tokens
such as “ALBANY”, “(comma)”, “N.Y.”, “(open parenthe-
sis)”, and so on, which is markedly different from a simple
whitespace-based tokenizer. We use the regular expression-
based tokenizer provided as part of the Stanford NLP pack-
age [3], which contains a grammar with a large number of
rules for English natural language tokenization. After tok-
enization, we determine sentence boundaries in the text so
that we can avoid constructing comma groups across sen-
tence boundaries. Like tokenization, finding these bound-
aries is ordinarily not simply a matter of finding periods.
As our example above shows, periods and other punctuation
sometimes appear in acronyms, abbreviations, and other lin-
guistic forms. However, the tokenizer distinguishes in-token
punctuation such as those present in acronyms from lone
punctuation which makes sentence splitting trivial. Once
we have tokens and sentence boundaries, toponym recog-
nition becomes a matter of grouping adjacent tokens into
toponyms.

To aid in this grouping process, we use several gazetteers,



or databases of various types of entities and their associated
metadata. These databases aid in identifying toponyms and
other types of entities in the document. The gazetteers in-
clude several location-based gazetteers which contain names
of countries, large administrative divisions (e.g., US states),
name abbreviations (e.g., “ROK” for “Republic of Korea”),
and demonyms, or names for people living in particular
places (e.g., “American”). We directly search for these to-
ponyms among groups of tokens in the document. In ad-
dition, we keep several lists of cue words, or phrases that
serve to identify toponyms as well as other types of enti-
ties. For example, “X County” indicates that X is the name
of a county, while the phrase “University of Y” is a strong
clue that it is the name of a school. Other cue words cap-
ture bodies of water (e.g., “X Bay”, “Gulf of Y”), roads (e.g.,
“X Blvd.”, “Y Parkway”), people (e.g., “Mr. X”, “Y, Jr.”)
spot features (e.g., “Mount X”), and directional geography
(e.g., “north of X”). Furthermore, to aid in identifying peo-
ple, we maintain lists of common given names and search
for them among the document’s tokens. Note that identify-
ing entities of all types rather than just toponyms is crucial,
since many toponyms share names with other types of enti-
ties. Knowing entity types can serve as “negative” evidence
to rule out erroneously identified toponyms. For example,
“Washington” is the name of many places in the US and is
also a very common surname, but the presence of a preced-
ing “Mr.” immediately rules out the location interpretation.
All matches for locations are added to a set of toponyms for
the document being processed.

As additional sources of knowledge, we also apply tools
built for problems in natural language processing called part-
of-speech tagging [5] (POS tagging) and named entity recog-
nition [5] (NER). POS tagging’s aim is to assign the correct
grammatical part of speech to each token given as input. For
example, tokens in the phrase “In a lengthy debate” would
be tagged with “preposition”, “article”, “adjective”, “noun”.
A POS tagger is useful for toponym recognition because to-
ponyms, being proper names, should be tagged as proper
nouns. On the other hand, NER’s goal is essentially the
generalization of toponym recognition to arbitrary entities,
rather than just locations, and generally includes at least
people and organizations. State-of-the-art POS and NER
tagging methods generally train and use statistical language
models such as hidden Markov models (HMMs) and condi-
tional random fields (CRFs). We apply a POS tagger to the
tokens and select groups of proper nouns, and also collect
location entities reported by the NER tagger, adding them
to our collection of toponyms for the document. For POS
tagging, we use the TreeTagger package [19] trained on the
Penn Treebank, and for NER we use Stanford’s NER pack-
age [3], using an included model trained on CoNLL, MUC-6,
MUC-7, and ACE data. Note that the POS tagger does not
provide entity types as part of its output, so wherever pos-
sible, we propagate entity type information obtained from
the preceding gazetteer lookups and NER tagger.

Note that in recognizing toponyms, we only consider ex-
act, case-sensitive matches for groups of tokens. This strat-
egy is acceptable for text domains such as news articles and
the hidden Web, because documents in these domains tend
to follow linguistic and grammatical rules for writing, but ex-
act matching would be less suitable for other domains where
these rules are followed less closely (e.g., blogs). Further-
more, for situations with overlapping entities (e.g., the text
“University of California” would be matched both in its en-
tirety and its subphrase “California”), all possible matches

are retained until the comma group recognition stage, de-
scribed in the next section. This retention lies in keeping
with our goal of high recall for toponyms and comma groups.

2.2 Comma Group Recognition
Our comma group recognition process searches for groups

of three or more toponyms, all separated by suitable sepa-
rator tokens, and all in the same sentence. The separator
tokens used include commas and conjunctions, such as“and”
and“or”. At times, articles such as “the”and“a”also appear
before toponyms in comma groups, such as in “France, the
USA, and Singapore”. These words are also allowed after
separator tokens by our group recognition rules. Despite its
simplicity, this recognition process is fairly robust to errors
because of the requirement for multiple toponyms in the
group. Furthermore, it is not used in isolation, but is the
first step in a combined recognition and resolution process.
In other words, groups of toponyms erroneously tagged as
comma groups will be filtered in the comma group resolu-
tion stage (Section 3), when no suitable common thread can
be found for the comma group.

Algorithm 1 Find comma groups.

1: procedure FindCommaGroups(E)
input: Input document, list of toponyms T
output: Set of comma groups O

2: E ← SortByStartOffset(T )
3: G← {T1}
4: for i← 2 . . . |T | do

5: if SuitableSeparator(Ti, G−1) then

6: G← G ∪ {Ti}
7: continue

8: end if

9: O ← O ∪ {G}
10: G← {Ti}
11: end for

12: O ← O ∪ {G}
13: return {g ∈ O : |g| ≥ 3}
14: end procedure

To ease our exposition, we present pseudocode for our
group recognition algorithm, named FindCommaGroups

and listed as algorithm 1. Input for FindCommaGroups in-
cludes an input document and list of toponyms T recognized
for the sentence under consideration, and it produces a set of
comma groups O as output. To find the groups, toponyms
are first sorted by their starting offset position within the
document (represented by SortByStartOffset in line 2).
A single pass is then made through the toponyms in order
of increasing offset, creating comma groups along the way
(lines 4–11). In the loop, G refers to the current comma
group that we are constructing, and is initialized to the first
toponym T1 (line 3). For each toponym Ti, we check whether
Ti is separated from the last toponym added to G (denoted
as G−1) by suitable separator tokens, i.e., a comma or co-
ordinating conjunction (shown as SuitableSeparator in
line 5), and if so, we add Ti to G and continue with the next
toponym (lines 6–7). Otherwise, we terminate the comma
group G, adding it to the output set O, and reinitialize G
to the single toponym Ti (lines 9–10). After all toponyms
have been examined and groups added to O, we simply re-
turn the groups in O with at least three toponyms as true
comma groups, and disregard the rest (line 13).

FindCommaGroups makes one pass over the toponyms
T and thus has runtime O(T ). Also note that FindComma-



Groups does not impose strict rules on the individual group
separators used. In other words, any combination of separa-
tors are allowed in constructing comma groups, so that “V,
W and X, Y, or Z”, “X or Y or Z”, and “X, Y, and Z” would
all be recognized and analyzed. This reasoning stands in
contrast to a recognition process that, e.g., searches for to-
ponyms strictly of the form“X, Y, and Z”. Furthermore, our
process does not consider differences in the particular con-
junctions, articles, or other separators being used. That is,
“and” is equivalent to “or” for the purposes of comma group
recognition.

However, for comma group recognition, the above loose-
ness is intentional and is necessary because of the difficulty
in predicting the way individual authors construct comma
groups. Various writing styles and editorial standards dic-
tate a surprising variety of ways in which comma groups are
written, even for the relatively limited domain of news ar-
ticles. However, as noted earlier, enough evidence is given
by the multiple toponyms in comma groups to choose the
proper interpretations for spatial comma groups, and incor-
rect interpretations can be quickly filtered.

Furthermore, this comma group recognition procedure is
not necessarily exclusive of other types of recognition pro-
cesses. Geographic language and spatial forms abound in
most news articles and in many other document domains.
For example, another common type of geographic evidence
that appears frequently in the news is the“object/container”
form, where a geographic place is suffixed by its container, as
in “Zurich, Switzerland”. Clearly, this type of evidence over-
laps and may be confused with comma groups, since their
separators (commas, conjunctions) and toponyms may coin-
cide. Authors also mix comma groups with object/container
forms, as for “Chicago, Atlanta, Louisville, Ky., and Buf-
falo, N.Y.”. We present further examples of mixed evidence
used in comma groups in the comma group resolution section
(Section 3). Therefore, in a system for correctly geotagging
this text, the process of recognizing and resolving comma
groups should be done in parallel with other processes for ex-
amining different types of evidence, and the most-evidenced
result used for output.

2.3 Lat/Long Assignment
Once we have groups of tokens that were recognized as

potential toponyms, we proceed to assign location interpre-
tations to toponyms in the form of latitude/longitude val-
ues and other location metadata by lookup into a large pri-
mary gazetteer of locations. For each toponym, we keep all
possible matches from the gazetteer. We currently use the
GeoNames [1] gazetteer, a collaborative gazetteer project
which contains as of this writing over 8M entries for loca-
tions around the world. In addition to lat/long values, each
entry contains additional metadata that will be useful in
finding the common threads of comma groups (Section 3),
namely population data and hierarchy information. We also
impose a default ordering for the location interpretations of
individual toponyms according to our notion of the “promi-
nence” of location interpretations (see Section 3.1 for our
definition of “prominence”). GeoNames also contains 2.8M
alternate names, or aliases for locations, in a variety of dif-
ferent languages (though we currently only process English
text). In addition to a lookup of each toponym, we also
use particular cue words to perform keyword expansion on
the recognized toponyms. For example, on finding a phrase
such as“X, Y, and Z counties”, we would lookup“X County”,
“Y County”, and “Z County”, rather than simply “X”, “Y”,

and “Z”. As the example shows, this expansion is necessary
because redundant or implied toponym types are often omit-
ted from text where the linguistic context makes the types
clear. After this final gazetteer lookup, we have a set of to-
ponyms with associated location interpretations, organized
into comma groups. In the following section we will use
comma group heuristics to determine whether these comma
groups contain toponyms or non-toponyms and to resolve
comma group toponyms to their correct interpretations.

3. COMMA GROUP RESOLUTION
Resolving comma groups amounts to finding the common

thread binding the group together. Finding this common
thread may be quite difficult for an arbitrary comma group,
as the contained entities may be of any type and have any
connection. However, for comma groups of toponyms, the
situation is more manageable, as we have observed that for
much text on the Web, toponyms related through comma
groups tend to share geographic attributes as well. As a
result, our strategy for resolving comma groups involves
checking whether the toponyms in each group follow par-
ticular toponym heuristics. In Sections 3.1–3.3, we present
three heuristics harnessing useful geographic attributes of
location interpretations for toponyms in comma groups:

1. Prominence of location interpretations, based mainly
on population, where larger is better;

2. Proximity in terms of the geographic distance be-
tween location interpretations, where closer is better;

3. Sibling location interpretations that share a parent in
a geographic hierarchy.

To resolve toponyms in a comma group, we check the to-
ponyms using each of these heuristics in the order listed,
stopping when we find a set of location interpretations that
satisfies the heuristic under consideration. If no such in-
terpretations are found for any of the three heuristics, we
consider the comma group to contain non-toponyms.

Note that our resolution checks are done without knowing
the true types of entities in each comma group. However, if
the entities in the group truly are toponyms, their types will
be readily apparent due to the mutual evidence imparted by
the heuristic checks. That is, the evidence given by location
interpretations of toponyms in comma groups tends to be
apparent, and hence it is difficult to mistake non-toponym
comma groups for toponym comma groups and vice versa.
Furthermore, the geographic evidence for particular inter-
pretations of the toponyms is mostly independent of global
or external evidence such as the overall geographic focus of
the document being geotagged. That is, the comma group
can be thought of as a highly local, self-specified form of
geographic evidence. Furthermore, these interpretations are
much clearer with a large number of entities in the comma
group, since the additional toponyms and toponym interpre-
tations serve as more evidence toward a location interpreta-
tion of the comma group. Large comma groups of five, ten,
and even twenty toponyms are not uncommon in textual
domains such as news articles.

In addition, for each of our three heuristics described in
the following sections, we provide several examples of comma
groups in news articles from the NewsStand system [20]
that were resolved using the heuristic, including examples
of where an initial geotagging using the heuristic caused to-
ponym resolution errors. These examples are intended to



illustrate that our heuristics, while useful for a large num-
ber of comma groups found in text, are not infallible and
are not intended to be used completely in isolation from
additional geographic evidence. The resolution errors pre-
sented here were later fixed using additional evidence, such
as additional gazetteers and geographic information about
the source document, and we describe how each was ad-
dressed.

3.1 Prominence
Our first test is for collective prominence of location inter-

pretations within the comma group. This prominence check
is intended to select interpretations in the global lexicons [11]
of most readers — that is, locations that would be known
to a majority of readers without additional qualifying evi-
dence. For the purposes of this paper, we deem continents,
countries, and other places with a population greater than
100k as “prominent”. We check whether all toponyms in the
group have a prominent location interpretation, and if so,
resolve the toponyms in the group accordingly.

Obviously, this definition of prominence based primarily
on population has its problems, as many large places around
the world would not be considered prominent and lead to
erroneous location interpretation selection when used with
large gazetteers. For example, for US readers,“Salem”would
most likely be interpreted as a city in Massachusetts (famous
for the eponymous witch trials of the late 17th century) or
as the capital of Oregon. However, the most populous inter-
pretation of “Salem” is actually a city in Tamil Nadu, India,
with over 1.5M population. This India interpretation dwarfs
those of Massachusetts and Oregon, which have about 40k
and 150k residents, respectively. From this example we see
that the concept of prominence is more nuanced than simply
raw population, and that a more involved measure is needed
to capture these cases.

Note that simply checking for consistent — i.e., promi-
nent — interpretations of all toponyms in the group will be
problematic for large comma groups. As the number of to-
ponyms in the group increases, the likelihood also increases
that one or more toponyms will not be matched properly,
due to a variety of reasons. For example, the gazetteer may
be incomplete and not contain location records for a given
toponym, or it may not contain all aliases of a given to-
ponym, such as “Big Apple” when referring to New York
City. Other mismatches can result from typos, misspellings,
and other language errors, which, though uncommon in the
news articles we examined, did appear from time to time.

To account for these possibilities, we note that the require-
ment for all comma group toponyms to have a prominent
location interpretation is overly strict. For example, if we
found 18 of 20 toponyms in a comma group have a prominent
interpretation, we should still consider the comma group as
one of prominent locations. In particular, if we find a sub-
set Gp of the toponyms G in the comma group that have a

prominent location interpretation, such that
|Gp|

|G|
≥ 0.75, we

resolve each toponym in Gp to its prominent interpretation,
and suppress all interpretations for the remaining toponyms
Gp = G\Gp as erroneous. In other words, for the toponyms

in Gp, we will not choose e.g. the most populous interpre-
tation, but will instead not report them as locations. This
suppression may result in geotagging recall errors, since the
toponyms in Gp go unreported. However, given that comma
group evidence is self-specified, and that we have determined
the comma group’s common thread of prominent locations,
suppressing these non-prominent interpretations is a reason-

Shot in Las Vegas, Mumbai, New Mexico and Los
Angeles, Kites also stars . . .

. . . as well as distinctive parks in Boston, De-
troit, Milwaukee, Chicago, Atlanta, Louisville,
Ky., and Buffalo, N.Y.

. . . in and around Louisville and Lexington,
Kentucky, Nashville and Cordova, Tennessee,
Richmond, Virginia, Fort Lauderdale and Or-
lando, Florida, Indianapolis, Indiana and At-
lanta, Georgia.

Figure 1: Examples of prominence comma groups.

able action. This action also avoids potential precision er-
rors, which are undesirable for casual usage.

Figure 1 contains several examples of prominence comma
groups from various sampled news articles and containing
a variety of prominent locations around the world. The
first example comes from an article in The Hindu about
a movie called Kites and contains a comma group of promi-
nent locations where the filming took place. Notice that this
group’s locations are well-known, prominent places, rather
than sharing geographic characteristics such as proximity or
containment. The second example, taken from an Associ-
ated Press article about the landscape architect Frederick
Law Olmstead, mentions multiple US cities in which Olm-
stead designed urban parks. In addition to having prominent
cities, this comma group contains two object/container ref-
erences, namely “Louisville, Ky.” and “Buffalo, N.Y.” which
were resolved separately. This example illustrates the mixed
forms of location resolution evidence that sometimes appear
together — in this case, comma group and object/container.
Our final example, from a press release posted in the Earth
Times online newspaper, shows where relying on prominence
evidence alone can go wrong. This document contains an-
other mixture of comma group and object/container evi-
dence that caused our geotagger to erroneously tag “Cor-
dova” to Córdoba, Spain, instead of the correct interpreta-
tion of Cordova, Tennessee. The error was caused by initial
improper recognition of the type of evidence intended to be
used to resolve the locations in the comma group. However,
note that this comma group as written is difficult to parse
even for humans, and especially so for humans unfamiliar
with the locations in the group.

The idea that comma group evidence is self-specified may
not be strictly true, and an improved comma group geotag-
ging algorithm can incorporate knowledge from additional
sources. For example, if we know that the article in question
comes from the local news section of a newspaper, we might
instead not allow the above global prominence measure to
play a role, since comma groups of prominent places tend not
to appear in these articles. Furthermore, for these articles,
we might take into account other meanings of prominence
rather than simply global prominence. For example, loca-
tions in the reader’s local lexicon [11] could be considered
“prominent” and might appear in these articles. However,
given that these locations will tend to be geographically
proximate, this case will be covered by the proximity rule
described in the following section.

3.2 Proximity
Our second comma group rule involves a test for mutual

geographic proximity of toponyms within a comma group.
That is, we wish to find a set of interpretations for all the
comma group toponyms that meet some test for proximity.



. . . and all three Delaware County historical soci-
eties — in Delaware, Powell and Sunbury.

It took more than an hour for fire crews from
Boulder Creek, Ben Lomond, Felton and Zayante
to control the blaze.

. . . you can still see the Summer Triangle of stars,
Vega, Altair and Deneb, which are the brightest
stars in their respective constellations.

Figure 2: Examples of comma group proximity.

In contrast to the prominence comma groups described pre-
viously, proximity comma groups tend to appear frequently
in news articles about smaller, local places.

For our proximity test, we iterate over potential location
interpretations for the first toponym t1 in the comma group
G, and check whether the remaining toponyms ti, 2 ≤ i ≤
|G| have an interpretation within a distance threshold d of
the first. In each iteration, we initialize an output set of
interpretations L to the single pair (t1, loc1). Next, we it-
erate over the remaining toponyms ti, 2 ≤ i ≤ |G| in the
group. For each such toponym, we check whether ti has an
interpretation loc2 where Distance(loc1, loc2) ≤ d, and if
so, we add (ti, loc2) to the set of output interpretations L.
We currently use a threshold of d = 50 miles. Finally, af-
ter all toponyms ti have been examined, we check whether
all toponyms in the group have a viable, proximate loca-
tion interpretation (i.e., whether |L| = |G|), and if so, use L
as the interpretations for this comma group. Note that for
each toponym, we check and add location interpretations
to L according to the default ordering from our gazetteer
lookup. This ordering ensures a reasonable result despite
the essential greedy nature of our resolution algorithm.

This simple resolution algorithm does have its drawbacks
in that it applies a uniform distance test, without regard to
a human perception of nearness. Different humans tend to
have different ideas about what is near and far [12, 14]. For
example, a person from Manhattan, New York, who is ac-
customed to walking or subways for transportation, would
have a different conception of distance than a person from,
e.g., Helena, Montana. The proximity algorithm could re-
flect these differences by having a variable distance threshold
based on, e.g., the geographic area of interest. We plan to
evaluate various other factors to determine an appropriate,
human-based conception of proximity.

Figure 2 contains two examples of comma groups resolved
correctly using geographic proximity, and one where the
proximity test resulted in errors. The first excerpt comes
from an article in ThisWeek of central Ohio, and mentions
three cities in Delaware County, Ohio, namely Delaware,
Powell, and Sunbury. Note that despite the city of Delaware
sharing its name with the better-known state of Delaware,
its presence in the comma group and its common thread
of geographic proximity allowed us to select the correct in-
terpretation. Our second example, from an article in the
Santa Cruz Sentinel, contains a comma group of several
small cities in Santa Cruz County, including “Ben Lomond”.
Here, even though“Ben” is a common given name, we recog-
nized and resolved “Ben Lomond” using the proximity rule.
However, the third example shows the limitations of naively
applying proximity. This example, an excerpt from an ar-
ticle about stargazing in HeraldNet, an online newspaper
based in northwest Washington state, mentions several stars
and constellations, including Vega, Altair, and Deneb. Inter-
estingly, these are also the names of three mountains in the

The California Zephyr stops in Burlington,
Mount Pleasant, Ottumwa, Osceola and Creston.

. . . as well as the Athens, Macon and Columbus
areas.

But the Hawks persevered, earning big wins over
Taylorsville, Skyline and Jordan.

Figure 3: Examples of comma group siblings.

Star Mountains range of Indonesia and Papua New Guinea,
which also contain a number of other peaks named after
stars, and it is this range to which the star names were ini-
tially tagged. We later resolved these errors by discounting
the mountain interpretations as highly unlikely, given that
HeraldNet is a small news source based in Washington state.

3.3 Sibling
Our third and final comma group check is for toponym in-

terpretations that are of the same geographic type and share
a parent container within a geographic hierarchy, which we
term sibling interpretations. Siblings include states in the
same country, counties in the same state, and so on down the
geographic hierarchy. We found that sibling comma groups
appeared in a variety of contexts, whether local, national, or
international. Siblings that are high in the hierarchy, such
as countries, are already recognized properly by the promi-
nence test described earlier, so the sibling test is intended
mainly for smaller location interpretations such as counties.
Note that sibling locations need not be proximate. For ex-
ample, New York and California are siblings, both being
US states, but are not geographically proximate. Likewise,
proximate locations are not necessarily siblings, as in the
case of Ontario, a Canadian province, and New York, a US
state, despite their being geographically adjacent.

The sibling test can be best viewed as a counterpart to
the proximity test described in the previous section, and
the algorithm is likewise similar. As before, we iterate over
interpretations loc1 of the first toponym t1 in the comma
group G. For each remaining toponym ti, 2 ≤ i ≤ |G|, we
check whether ti has an interpretation loc2 that is a sibling
of loc1 — that is, loc2 is of the same type and has the same
parent as loc1 — and if so, select it as the interpretation
for ti. If we find suitable interpretations for all toponyms in
G, we select these interpretations as the correct resolutions
for the toponyms. We again check interpretations using the
default ordering imparted by our gazetteer lookup.

In Figure 3, we present excerpts from articles where the
sibling rule was applied, two of which were correct, and the
last was initially wrong. The first excerpt, from an article in
the Des Moines Register about passenger trains, contains
mentions of a number of cities in southern Iowa served by a
train route called the California Zephyr. Even though the
correct interpretations of these cities straddle southern Iowa
and are not considered proximate, and furthermore the word
“California” appears close by, suggesting (erroneous) inter-
pretations of place names in the state of California, the fact
that all lie in Iowa, and hence that all are sibling cities, al-
lowed their correct resolution. Our second example comes
from an article from 11alive.com, an NBC affiliate in At-
lanta, Georgia. This article mentions three relatively distant
cities, but since all are siblings with a parent of Georgia,
correct resolutions were achieved. Furthermore, note that
Athens and Columbus have much more prominent interpre-
tations in Greece and Ohio respectively, but their presence
in the comma group allowed us to select the correct interpre-



Table 1: Comma group usage statistics.

Sampled articles 87405
Comma groups of toponyms 105701
Toponyms part of a comma group 434657
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Figure 4: Comma group sizes in our article dataset.

tations. Our final example is from an article in the Salt Lake
Tribune in Salt Lake City, Utah, concerning high school bas-
ketball competitions. The excerpt mentions “Taylorsville”,
“Skyline”, and“Jordan”, which in fact refer to high schools in
a local school district, rather than location names. However,
they were initially erroneously tagged to three small local-
ities in Kentucky. This example demonstrates a situation
where relying solely on sibling evidence can be misleading.
As with the previous proximity errors, these were resolved
by incorporating extra filtering based on the source newspa-
per’s location, which would not warrant interpretations in
Kentucky for a story highly local to Salt Lake City.

4. USAGE EVALUATION
To further investigate our comma group heuristics’ utility

for geotagging text on the Web, we implemented them in a
geotagger. Note that this geotagger was designed only to
recognize and resolve comma group toponyms, and did not
incorporate any other methods of recognizing and resolving
toponyms. Normally, comma group geotagging would be
incorporated into a larger geotagging framework that draws
on a wider variety of evidence. In this fashion, we tested
comma group geotagging’s utility as an isolated process.

Using the geotagger, we processed a sample of two months’
worth of news articles gathered from RSS feeds of English
language news sources on the Web. These news sources
include newspapers large and small, newswire feeds, and
blogs of various types, mostly based in the US. Table 1
presents several statistics about our dataset of articles and
comma group usage within these articles as determined by
the geotagger. In total, our sampled subset consisted of ap-
proximately 87k articles that were geotagged with at least
one comma group of toponyms. Furthermore, in this sam-
pled subset, 106k comma groups and 435k comma group
toponyms were resolved using our heuristics. These counts
demonstrate that comma groups play a nontrivial role in re-
solving toponyms from news articles. One caveat with these
measurements is that they only reflect comma groups that
were recognized and resolved by the geotagger, and says
nothing of how many were missed. Furthermore, comma
groups incorrectly recognized as containing toponyms in-
stead of other entity types are also included in these counts.
Further experiments with annotated articles are needed to
better determine the frequency of comma groups in this text.

We also measured the sizes of comma groups in our article

Table 2: Heuristic precision measurements.

Heuristic P(Groups) P(Toponyms)

Prominence 19/20 (0.95) 135/136 (0.99)
Proximity 18/20 (0.90) 67/71 (0.94)
Sibling 19/20 (0.95) 71/74 (0.96)

Total 56/60 (0.93) 273/281 (0.97)

Table 3: Heuristic usage statistics.

Heuristic Count Fraction

Any 105701 1

Proximity 12728 0.120
Sibling 51423 0.486
Prominence 41550 0.393

dataset, and these measurements are presented in Figure 4.
Note the log scale for both axes. As the figure shows, a
large number of comma groups have relatively small sizes,
and a smaller number are exceptionally large. However, note
that a sizable number of comma groups are quite large, with
about 25% of the 106k recognized comma groups having five
or more toponyms, and the largest — from a report posted
on the Earth Times website — having 82 toponyms. As
noted earlier, these large comma groups prove especially use-
ful in resolving the contained toponyms correctly, since each
additional toponym provides additional evidence toward de-
termining the correct common thread.

Next, to investigate the accuracy of our three comma
group heuristics, we randomly selected three samples of 20
articles that contained at least one prominence, proximity,
and sibling comma group, respectively. For each sample,
we manually verified whether the comma groups present
in each article contained correctly or incorrectly resolved
toponyms as a measure of our comma group geotagging’s
precision. If an article contained several comma groups,
we randomly chose one to evaluate. For this evaluation,
a comma group was considered correct if all its toponyms
were recognized and resolved correctly, and incorrect other-
wise. Table 2 contains the results of this verification, with
precision numbers reported both in terms of comma groups
and comma group toponyms. Bearing in mind our some-
what small sample size, overall precision of these heuristics
in our sample of documents is quite high, at about 95% or
higher for all three heuristics, indicating that inferring com-
mon threads of comma groups can be a source of highly
accurate evidence for geotagging toponyms. As before, re-
call was not tested, so these measurements carry the same
caveat described earlier. Interestingly, the toponym counts
reflect the considerably larger comma groups present in the
prominence sample, which were due to large comma groups
of countries present in those articles.

Finally, for the 106k comma groups recognized by the
geotagger, we measured how often each resolution heuris-
tic was employed to resolve comma group toponyms. For
comma groups where more than one heuristic applied to
the contained toponyms, we give priority for the most spe-
cific (i.e., geographically local) heuristic used to resolve the
toponyms, since geographic locality is additional evidence
for the correct toponym interpretations. In particular, for
comma groups to which both the prominence and proxim-
ity heuristics applied, we counted the group for proximity.
Similarly, for comma groups containing both prominent and
sibling toponyms, we counted the group toward the sibling
heuristic, since siblings tend to more geographically local-



ized. Our usage results are listed in Table 3. From our
measurements, we found that 51k, or approximately 49%,
of comma groups were resolved using the sibling heuristic.
Of the remaining comma groups, about 42k (39%) were re-
solved using prominence, and 13k (12%) were resolved us-
ing the proximity heuristic. These counts demonstrate that
while prominence plays some role in recognizing and resolv-
ing comma groups, proximity and sibling evidence together
cannot be ignored. All three heuristics are needed in com-
bination to resolve comma groups correctly.

5. CONCLUSION
Comma groups are important and useful sources of evi-

dence that aid the accurate geotagging of text, and recog-
nizing and resolving comma groups is greatly aided using
distance-based proximity and container hierarchy-based sib-
ling heuristics, in addition to population-based prominence.
However, a number of improvements to our methods are pos-
sible. Currently, the prominence and proximity heuristics
use static thresholds to identify common threads. However,
human notions of prominence and proximity vary depending
on context [12, 14], and this variation may be reflected in
comma groups intended for readers in different geographic
regions. For example, locations considered to be prominent
in a rural area may not be thought to be prominent in urban
areas. Similarly, the concept of “far” for a person living in
an urban area may be on the order of blocks, while in a rural
area, “far” may signify tens of miles. Extending this idea, it
may be natural and correct to allow looser interpretations of
prominence and proximity for comma group interpretations
of rural places, and this looseness could be determined by
factors such as population density or region sizes. In addi-
tion, to better measure the usefulness of our methods, we
plan to evaluate the accuracy of comma group geotagging
using our heuristics, as well as using resolved comma group
toponyms to resolve other toponyms in the same document.
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