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ABSTRACT
Internet users share large quantities of text and multime-
dia content that becomes easily accessible to others via hy-
perlinks and search engine results. However, structured
datasets generally lack this level of exposure. One exam-
ple is the travel itinerary, which many Internet users post
online in the form of a spreadsheet or web page table, yet
the collection of such itineraries remains difficult to search
or browse due to insufficient parsing and indexing by search
engines. Enabling interaction with user-uploaded itineraries
could provide valuable information to trip planners who are
researching travel options and to businesses attempting to
understand travel patterns. This work examines the chal-
lenges of identifying and extracting itineraries from spread-
sheets and web page tables to support such applications,
with a focus on differentiating between itineraries and other
documents with geographic content.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Design

Keywords
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1. INTRODUCTION
For anyone researching travel options for an upcoming

vacation in a new part of the world, the advice and expe-
rience of previous visitors can be invaluable. Travel guide-
books, travel agencies, and online resources fulfil this role
in many cases, however it is often difficult to get a sense
of the wide variety of travel options available in a region of
interest. Map-based interfaces for browsing uploaded travel
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itineraries could substantially improve travel research meth-
ods, which currently involve searching for travel suggestions
using keywords, then visiting each search result to verify
that it matches the geographic constraints of the travelers.

Developing such an itinerary browser and search system
requires a reliable method for recognizing and extracting
travel itineraries from Web-accessible documents. As far as
we know, no prior work has looked at the specific problem
of itinerary detection and retrieval from tables or text docu-
ments (some work on recovering itineraries from GPS logs or
other geotagged metadata has been reported, as we discuss
in Section 2). Due to the wide variety of itinerary formats
in plain text documents, we focus our attention on detect-
ing and extracting itineraries from spreadsheets and tables,
which we believe have more regular structure and therefore
will be sufficiently recognizable for our needs.

The primary challenge we address in this research is dif-
ferentiating between itineraries and other geographic tables.
While textual clues (i.e., the presence of the word“itinerary”
in the title of a worksheet or the caption of an HTML ta-
ble) can serve as useful indicators, a classification technique
based only on text features would identify many false pos-
itives and fail to identify many false negatives. Additional
criteria, such as whether the table includes a column of
dates, may also have a strong correlation with the type of ta-
ble being processed, but is still far from conclusive evidence
that a table is an itinerary.

Our core hypothesis is that spatial analysis is the missing
feature for enabling effective itinerary detection. Specifi-
cally, for humans, determining whether or not a table con-
tains an itinerary frequently becomes easier when the loca-
tions in the table are viewed on a map, with lines connecting
consecutive locations, because a variety of real-world con-
straints on time, money, and fuel encourage human travel
that does not include unnecessarily long or inefficient routes.
Instead, maps representing true itineraries typically follow
spatially efficient routes (a concept that we formalize in
Section 3.2). To measure the efficiency of an itinerary, our
approach makes use of an optimization technique that was
originally developed to generate approximate solutions for
the traveling salesman problem (TSP). This optimization
technique, known as 2-opt, functions by removing two edges
from a sequential path through n points and determining
whether a shorter overall path can be achieved by substi-
tuting edges with swapped endpoints [10, 21]. In Section 3,
we restate this optimization in terms of reasonably ordered
subpaths – subpaths that, when reversed, lead to a longer
total path length – and show how the presence or absence of
such subpaths is a powerful feature for determining whether
a table contains an itinerary.
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Figure 1: An itinerary processing pipeline.

Figure 2: Three sample Italian vacation itineraries found on
the Web.

In addition to harnessing spatial properties of itineraries,
a separate challenge is the sparsity of itineraries, as a frac-
tion of documents on the Web, or even as a fraction of ge-
ographic tables on the Web. This sparsity means identify-
ing itineraries requires crawling large portions of the Web.
Furthermore, reliably extracting table data and assigning
geographic interpretations to place names within the tables
are prerequisites for accurate identification and extraction of
itineraries. For these components, we make use of existing
methods that extract tables from the Web and geotag them.
The diagram in Figure 1 shows the processing pipeline for

our itinerary extractor. Documents are initially taken from
a Web crawl and all tables are extracted to an abstract ta-
ble format. The table geotagger identifies place references in
table rows and assigns geographic interpretations to them.
Our primary focus is the next phase, the itinerary identifier,
where we classify geographic tables as either itineraries or
non-itineraries. An itinerary search system could use the
results of this phase to enable browsing and searching over
a large database of itineraries, allowing users to visualize
and compare itinerary options, like those shown in Figure 2.
Targeting tables for itinerary retrieval has the added benefit
that metadata for each stop (such as the date of the stop,
any activities performed there, and lodging or transporta-
tion information), if present, is easy to associate with the
stop since it is likely to appear in the same table or spread-
sheet row as the stop’s location name.
Itineraries come in many formats and presentation styles,

making it challenging to identify them and distinguish them
from other documents that contain listings of place names.
Such a decision is necessary because clearly there are many
geographic datasets online that include columns containing
place names, but which do not intend those place names to
be interpreted as a series of stops in an itinerary, such as ta-
bles containing demographic datasets or listings of customer
addresses. For our purposes, the term itinerary describes a
list of places which are intended to be visited in the listed
order, while a non-itinerary is a list of places which does not
have this property. We formalize the problem of identifying
itineraries as follows:

Definition 1. Let L be the set of all valid latitude / lon-
gitude locations. Then, given an ordered collection I =
l1, l2, . . . , ln of locations li ∈ L, the itinerary decision
problem (IDP) is to determine whether I represents an
itinerary.

Unfortunately, the problem is difficult to solve accurately,
even for humans, so the expected confidence in an algo-
rithm’s solutions must be tempered. However, as we show in
Section 3, there are reasonably effective means of address-
ing this problem, even when the only availably indicators
are lists of geographic coordinates.

We can re-formulate the problem to include additional
context along with each location, given that our source doc-
uments are tables and spreadsheets, not simple lists of geo-
graphic coordinates.

Definition 2. Let T be a table containing an ordered set
of relations r1, r2, . . . , rn, where each relation ri has an as-
sociated location li. The table itinerary decision problem
(TIDP) is to determine whether T represents an itinerary.

Both the location-only IDP and context-inclusive TIDP
can be addressed with statistical and machine learning meth-
ods, by incorporating several indicators that have a correla-
tion to the outcomes of the decision problems. The following
features are included in our implementation.

• Efficiency of stop ordering (applies to IDP and TIDP).
In general, travel itineraries are designed with some
constraints on the time and effort required to travel
between all the stops, which results in nearby stops
being visited consecutively. In place listings where
spatial relationships are not taken into account, the
expected length of an itinerary visiting each place in
order will be distributed according to the total travel
length required to visit those places in a random order.

• Returning to the start (IDP and TIDP). Itineraries are
frequently “round-trips”where the starting and ending
locations are the same.

• Ordering columns (TIDP only). Itinerary tables fre-
quently contain an ordering columns such as the date
that the corresponding location will be visited, or an
ordinal number representing which day within the trip
the location will be visited.

• Presence of travel terminology (TIDP only). Some
words and phrases are commonly found in itineraries
(e.g., the text “at sea” appears often in itineraries for
cruise ships) and can serve as indicators of the subject
of the document.

The rest of this paper is organized as follows. Section 2
contains analysis of related work. Section 3 provides details
of our table processing and itinerary detection methods. In
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Date Location Delivery #

12/16/04 Oestrich-Winkel, DE 20031
03/17/05 Lavera, FR 20053
03/17/05 Lavera, FR 20054
04/27/05 Marl, DE 20065
05/25/05 Beringen, BE 20104
06/23/05 Schwechat-Mannswörth, AT 20112
09/08/05 Dordrecht, NL 20131
11/21/06 Litvinov, CZ 20142
11/10/05 Pasir Gudang, Johor, MY 20152
11/10/05 Pasir Gudang, Johor, MY 20153
12/14/05 Antwerpen, BE 20177
11/16/05 Tehran, IR 20179
12/19/05 Brüssel, BE 20183
01/19/06 Torre Boldone (BG), IT 20186
01/19/06 Torre Boldone (BG), IT 20187

. . . . . . . . .

Day Dest Activities

1 Vienna Hotel check-in
2 Vienna City tour
3 Vienna Transfer to Budapest

Budapest City tour
4 Mohacs Pecs excursion

Villany Wine tasting
5 Vukovar Yugoslav Civil War tour

Novi Sad Walking tour
6 Belgrade City tour
7 Iron Gates Full day cruising
8 Vidin Belogradchik excursion
9 Giurgiu Palace of Parliament

10 Rousse Disembarkation
Plovdiv Walking tour

11 Erdine Lunch stop
12 Istanbul City tour
13 Istanbul Tour Topkapi Palace
14 Istanbul Return flight home

Date ETA Location Notes

9/19/07 8:00 Splendora FBC Depart
10:11 Nacogdoches, TX Gas Stop
12:09 Marshall, TX Gas Stop & Lunch
14:51 Texarkana, AR
15:22 Hope, AR Gas Stop
15:57 Gum Springs, AR
16:23 Arkadelphia, AR Stop

9/20/07 7:30 Arkadelphia, AR Depart
7:39 Caddo Valley Gas

11:16 Dardanelle, AR Gas Stop
13:06 Jasper, AR Lunch
14:26 Dogpatch USA Scenic/Photos
14:42 Harrison, AR Gas Stop & Lunch
16:33 Francis, AR
16:49 Eureka Springs, AR Stop & Gas

9/21/07 9:00 Eureka Springs, AR Depart
10:48 Ozark, AR
11:17 Van Buren, AR Gas & Lunch
12:53 Fort Smith, AR
12:55 Entering Oklahoma
15:10 Sunset Corner, OK
16:04 Entering Arkansas

. . . . . . . . . . . .

Figure 3: Portions of tables containing possible itineraries.

Section 4, we describe the experimental evaluation of the
itinerary detector. Finally, Section 5 highlights the benefits
of our approach and concludes the paper.

2. RELATED WORK
Our work complements other work in information retrieval

that seeks to expose geographically rich content and is mo-
tivated by our earlier work in browsing spatial data [14,
29]. While we primarily focus on the spatial, rather than
temporal, aspects of itineraries, research on document-based
spatio-temporal extractors addresses some related tasks. Ströt-
gen et al. [30] described a system for extracting ⟨time, location⟩
pairs from unstructured text documents, to support brows-
ing the documents as trajectories (for example, following the
path of explorers as described on their Wikipedia pages). A
trajectory browser displays the extracted trajectories on a
map and provides relevant text snippets for selected stops.
The emphasis of this work is on building accurate spatial
and temporal profiles of targeted document, so it does not
address ways of identifying which documents contain trajec-
tories. Spatio-temporal extraction systems also exist for a
variety of other source documents, such as RSS feeds [22].
Systems for inferring itineraries from metadata, rather

than documents, have been developed on top of various data
sources, including geotagged photo streams [12] and GPS
tracks [32]. These efforts have a rather different focus than
ours, stemming from the fact that the locations in these ef-
forts are specified numerically (e.g., as latitude / longitude
pairs) rather than textually, and are known to be personal
itineraries based on the nature of the data source. Yoon et
al. [32] use GPS logs to identify stops (called “stay points”)
and transitions between clusters of stops, which allow them
to recommend itineraries based on time constraints and the
popularity of the stops. The periodic and granular location
information provided by GPS tracks make them a valuable
source for itinerary data. However, capturing this data re-
quires that users upload large quantities of GPS tracks to
the system or to a public location, so privacy concerns may
hinder its availability. Additionally, extracting segments of
GPS tracks that are relevant as itineraries requires address-

ing a separate set of challenges.
Accurate itinerary retrieval requires accurate geotagging,

for which there is a rich body of relevant research [4, 6, 16,
17, 19, 23, 25, 26]. The more specific problem of geotagging
data tables has been addressed in some settings, such as
for ontology extraction [11], entity discovery in Fusion Ta-
bles [24], and general spreadsheet and table geotagging [20].
For itinerary geotagging, we use our probabilistic model for
geotagging collections of place names [1, 3, 18], which identi-
fies place categories for geographic table columns, then dis-
ambiguates toponyms in the context of that category. The
method achieves high accuracy on sample tables and appears
to be a good fit for itineraries, which tend to visit places that
share similarities of geography, type, and/or prominence.

3. METHODS
3.1 Importing and Geotagging Tables

Our procedure for extracting tables from the Web employs
a previously developed algorithm that we developed for seg-
menting table rows by function [2] in order to separate the
data portions from metadata or non-data portions. This
builds on the prior methods of the WebTables project [7, 8]
and related techniques [15, 31]. As we are using tabular data
extraction as a pre-processing phase and it is not the focus
of this work, we summarize our procedure here and recom-
mend examining our schema extraction algorithm and the
WebTables architecture for more information. In our sys-
tem, raw spreadsheets and HTML tables are first converted
to an abstract textual format consisting of a two-dimensional
array of textual cell values. Next, a classifier trained on cell
features determines whether the table is likely to be a data
table or a table that is used for a different purpose (e.g.,
for layout in an HTML page or as a calendar or form) that
is not useful for information extraction. For data tables, a
second classifier identifies the header row and data rows us-
ing another set of cell attributes as features. These rows are
then passed on to the table geotagger.

From the resulting collection of data tables we must iden-
tify those that are geographic tables, from which we will
obtain a collection of itineraries. For this, we use a method
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Figure 4: Itineraries generally follow efficient routes. For
this example, we expect that an itinerary visiting locations
a, b, c, and d is more likely to visit them in the order abcd
(shown in (a)) than the order acbd (shown in (b)). Con-
versely, tables containing places that are ordered efficiently
are more likely to be itineraries than tables containing inef-
fecient place orderings.

based on Combined Hierarchical Place Categories (CHPC) [3],
as mentioned in Section 2. The key step in the method is
identifying a common thread that can be used to categorize
the interpretations of all toponyms in the set (e.g., “cities in
Bavaria with population > 10,000”). For our purposes, this
is useful because many place names in itineraries are not
fully specified, as itinerary authors expect human readers to
use the surrounding places or other context to disambiguate
place references. The method achieves high accuracy for
geotagging place lists found in tables on the Web.
We modified the CHPC method to use a different “tie-

breaker” procedure in situations where multiple interpreta-
tions of a toponym exist within a list’s assigned category.
Instead of selecting the most highly populated interpreta-
tion, we select the interpretation that is nearest to the geo-
graphic centroid of the other toponyms’ interpretations. In
cases where multiple toponyms have ambiguous interpre-
tations within a category, we use a greedy approach that
iteratively selects interpretations closest to the geographic
centroid of all already-selected interpretations.

3.2 Identifying Itineraries
The primary concern of this research is identifying itineraries

from among the vast array of geographic tables and spread-
sheets. This identification step is necessary because, while
the output of the table geotagger is a collection of geo-
graphic tables along with interpretations of their place ref-
erences, the vast majority of these tables are not intended
to be itineraries — rather, they are tables that include en-
tities with geographic attributes, not a travel path. Ex-
amples of non-itinerary geographic tables are demographic
tables, sports team standings, or listings of people that in-
clude a column containing each person’s hometown. Many
itineraries share common characteristics with non-itineraries,
but the characteristics, when viewed as a whole, allow us to
discern itineraries from non-itineraries in many cases.
Figure 3 shows fragments of several representative tables

that were found by our table crawler and determined to
include geographic columns. In this example, the tables
share similarities in terms of column headings, data types
of nearby columns, and place name formatting. In this case,
the table on the left is not intended as an itinerary, which
becomes more evident when viewing the plotted locations
from each table in Figure 5. The fact that the left and right
tables share several textual similarities (such as the “Date”
and “Location” column headers and the comma-based place
name formatting), but only one is an itinerary, suggests that
rule-based methods or methods that rely on column header
text or data types of nearby columns will have difficulties

making the determination. Further, the difference between
the mapped visualizations of the tables led us to believe that
spatial analysis of the tables was an important component
in accurately addressing the TIDP.

Using these observations, we developed several heuristics
to act as indicators for a machine learning classifier. The
most useful indicators are based on the observation that
itineraries tend to be fairly efficient at visiting stops, in com-
parison to an ordering of the stops that is not based on their
spatial proximity. This is due to the fact that trip planners
take costs of transportation and travel time into account. In
particular, the tendency to prefer a shorter ordering of stops
is measurable by comparing the route length of the original
route to that of an alternate route that visits the same stops,
but in a different order. Instead of comparing with a glob-
ally optimal route, which is intractible to compute for even
relatively short itineraries (since the TSP is NP-hard) and
does not model true travel itineraries, we use an interchange
procedure that underlies the commonly-used 2-opt method
for generating approximate solutions for the traveling sales-
man and other optimization problems [10]. Figure 4a shows
an example, where an alternate permutation of the location
list could reverse the order of stops b and c. As shown in
Figure 4b, this results in a longer total route length than
the original, so is less likely (though still possible) to be
chosen as part of an itinerary. We call location lists with
many pairs of points whose reversal results in longer path
lengths locally efficient, meaning that the listing could not
be made into a shorter route by simply rearranging neigh-
boring stops. Similarly, location lists with many sequences
of points whose reversal results in longer path lengths are
said to be generally efficient.

The edge interchange procedure is the basis for two ef-
ficiency measures that we use as features in our itinerary
identification algorithm. The first, ϵ1, measures efficiency at
the local level — essentially counting how many consecutive
pairs of stops are in the order that results in the shortest
path. The second, ϵ2, measures stop order efficiency over
longer sequences of locations — counting subsections of the
full stop list that could be more efficiently reconnected to
the remainder.

To formalize our concepts of efficiency, we define a pre-
liminary indicator function. For an ordered set of locations
L = l1l2 . . . ln and d(li, lj) = great circle distance between li
and lj , let

δi,j(L) =


1 if (d(li, li+1) + d(lj , lj+1)) ≤

(d(li, lj) + d(li+1, lj+1))

0 otherwise.

(1)

The δi,j value indicates whether the combined lengths of
the edge from li to li+1 and the edge from lj to lj+1 is
shorter than (or equal to) the combined lengths of edges with
swapped endpoints, li to lj and li+1 to lj+1. Equivalently,
this indicates whether a permutation of the location list that
reverses the order of locations li+1 . . . lj has a shorter overall
path length than the initial permutation. We use this to
define two efficiency measures.

• Local efficiency is the fraction of consecutive stop
pairs whose reversal would lead to a longer total route
distance. That is, for locations L = l1l2 . . . ln,

ϵ1(L) =
1

n− 3

n−3∑
i=1

δi,i+2(L). (2)

• General efficiency is the fraction of all unique, non-
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(a) (b) (c)

Figure 5: Visualizations of the tables from Figure 3 as itineraries. While the column headers and cell types of the left and
right tables are similar, the topology that results from treating each table as an itinerary makes it clear that (a) is unlikely
to be an itinerary, while (b) and (c) are both likely to represent itineraries. In fact, the table visualized in (a) came from
a listing of shipments for a company that is certainly not intended as an itinerary. The table visualized in (b) contains the
schedule for a river cruise through eastern Europe and the table visualized in (c) is the schedule for a motorcycle club’s ride
through several states in the U.S.A., which are both itineraries.

consecutive edge pairs that would result in a longer
total route if their endpoints were swapped. For loca-
tions L = l1l2 . . . ln,

ϵ2(L) =
1(

n−2
2

) n−3∑
i=1

n−1∑
j=i+2

δi,j(L). (3)

Each efficiency formula counts the number of valid swaps
that result in a longer total path length, which is then nor-
malized by the total number of valid swaps. For exam-
ple, assume we have a table containing five locations (L =
l1l2 . . . l5). Then ϵ1(L) = 1

2
(δ1,3(L) + δ2,4(L)) and ϵ2(L) =

1
3
(δ1,3(L)+ δ2,4(L)+ δ1,4(L)). Using terminology from TSP

literature [21], if reversing any sub-sequence of L results in
a longer path length, we call L 2-optimal. This is exactly
the property we measure with ϵ2, so we can say that L is
2-optimal if and only if ϵ2(L) = 1.0. In general, the goal
of the efficiency measures is to quantify the presence of ef-
ficient stop ordering. Consequently, we expect itineraries to
exhibit high efficiency values (although values less than one
are expected, given that many travel itineraries do not fol-
low optimal paths), while non-itineraries will tend to have
moderate efficiency values clustered near 0.5.
In addition to efficiency measures, we also use several

other features when deciding whether or not a given table
represents an itinerary. These include the following ordering
features and text features.

• fr(t) = 1 iff the primary location column of the table
includes the same location in the first and last posi-
tions. We call this a round trip table and expect that
round trip tables will be more common in itineraries
than non-itineraries.

• fod(t) = # of ordered date/time columns found in the
table. Since itineraries are temporal objects, itineraries
in tables commonly include a date/time column.

• fon(t) = # of ordered numeric columns found in the
table. While ordered numeric columns are a compo-
nent of some itinerary tables (such as the center table
in Figure 3), they are also common in non-itineraries.
We expect this feature to have a smaller effect on ac-

curacy than the others.

• fa(t) = # of text columns found in the table that are
sorted alphabetically. Unlike the previous two order-
ing features, we expect that tables containing alpha-
betically sorted columns are unlikely to be itineraries,
since it is rare for a table to be arranged both spatially
and alphabetically.

• f⃗t(t) = a term vector of words commonly found in
itineraries. Currently, we use a list of 40 words and
phrases that we found to have the highest difference in
their TF/IDF values in itineraries versus non-itineraries.
Such terms include “itinerary”, “trip”, “travel”, “air-
port”, “hotel”, “cruise”, month names, and others.

To account for the loose constraints inherent in manually
generated tables, columns are treated as ordered or alpha-
betic if at least 90% of the values in the column are greater
than or equal to the preceding value or at most one value is
out of order in columns with fewer than 10 values.

We construct a feature vector f⃗(t) for each table t using
the features listed above, and then apply a binary classifier

to compute Pr(t is an itinerary|f⃗(t)). Given that our collec-
tion of features includes a variety of feature types (fractional,
binary, integer, and term vector), this is not a clear fit for
any one specific machine learning classification model, so we
examine three: (i) a Naive Bayes classifier [13], (ii) a deci-
sion tree [5, 27], and (iii) a support vector machine [9]. We
pre-process each feature based on the expected input format
for each specific classification model, giving binary features
to the Naive Bayes classifier, raw numeric values to the de-
cision tree, and standardized (mean- and variance-adjusted)
values to the support vector machine.

4. EVALUATION

4.1 Dataset
The tables for our evaluation were taken from a two mil-

lion page Web crawl that targeted Microsoft Excel spread-
sheets and HTML pages containing tables. We seeded the
crawl with search results for queries of the form“⟨data term⟩
⟨geo term⟩ ⟨chaff⟩ ⟨filetype⟩”. Each term was randomly se-
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lected from a hand-selected set of values or omitted, as our
goal was to use a range of queries to uncover a wide variety
of documents. The data term was randomly chosen from a
list of terms that are often found in documents containing
tables (such as “table”, “stats”, etc.). The geo term was ran-
domly chosen from a large collection of place names found
in the GeoNames gazetteer. The chaff term was a randomly
chosen letter, number, or both, used to induce a variety of
results for a static combination of the other terms. And the
filetype component was set to “filetype:xls” or “filetype:xlsx”
to search for Excel spreadsheets, or omitted to search for
HTML documents containing tables. Statistics for the full
table corpus are shown in Table 1. Our table extraction
module removed tables that were not found to be data ta-
bles (also known as “true” or “relational” tables), resulting
in 662 thousand documents. Since some HTML documents
contain multiple tables, and spreadsheets can likely contain
multiple worksheets, the actual number of data tables in our
corpus was 2.1 million. After running our geotag module to
locate toponyms in the tables and assign interpretations to
them, we obtain a set of 130 thousand documents containing
235 thousand tables. The geographic tables contain many
more rows on average, as there are around 53 cells per col-
umn, compared to 28 cells per column in the full dataset.
The evaluation was performed using a corpus of tables

that we manually annotated as either itineraries or non-
itineraries. For a table to qualify as an itinerary, there must
be implied travel along the edges between consecutive pairs
of places. This definition results in several tables being
called itineraries that would not be considered itineraries
for the purposes of a sightseeing trip, but which have the
implied-edge property, such as a listing of exits along a sec-
tion of highway or all the stops made by a regional train.
For our purposes, these are all types of itineraries.
In all, we annotated 300 tables as either itineraries or

non-itineraries. The first 200 were selected at random from
our full dataset, of which only 3 were true itineraries. The
next 100 were chosen from tables with a large number of
stops (n ≥ 10) and a high efficiency value (ϵ1 ≥ 0.8) to
ensure an adequate number of itineraries were included in
the evaluation corpus (the number would otherwise be low
due to the sparsity problem mentioned in Section 1). Later
in this section, we account for the non-random sampling
by scaling measurements based on the relative frequency
of similar efficiency values within the full dataset. Of the
300 annotated tables, 60 were classified as itineraries, and
240 were classified as non-itineraries. The itineraries had
a mean number of stops of 29 and a median of 22, while
non-itineraries had a mean of 27 and a median of 14.

4.2 Itinerary Detection
Our evaluation of itinerary detection involved analyzing

(i) the discriminatory power of the efficiency measures, (ii)
the overall accuracy of our itinerary detector, and (iii) the
contribution of individual features to classification accuracy.
The observed probability density functions of the efficiency

measures are shown in Figures 6 and 7. The curves are
smoothed using kernel density estimation [28] to reveal the
trends (and to avoid uninformative peaks at common frac-
tional values such as 0.5, 0.75, 0.666 . . ., etc.). Figure 6
shows the estimated distribution of ϵ1 values for itineraries
and non-itineraries in our training set. The estimates were
calculated by scaling each ϵ observation by the relative fre-
quency of similar efficiency values within the full dataset.
Evaluation of each classifier on the table itinerary deci-

sion problem was performed using five-fold cross validation

Table 1: Dataset characteristics

Full Dataset

Documents 2,000,000
containing data tables 662,511

Data tables 2,128,032
Columns 10,142,785
Cells 280,170,694

After removing non-geographic tables

Documents 130,294
Data Tables 235,433
Columns 1,527,890
Cells 80,432,927

against the annotated data set. For each classifier, we com-
puted the average precision (P ), recall (R), and F1 score.
Using TP as the number of true positives (true itineraries
correctly classified as itineraries), FP as the number of false
negatives (non-itinereraries incorrectly classified as itineraries),
and FN as the number of false negatives (true itineraries in-
correctly classified as non-itineraries), then P = TP /(TP +
FP ), R = TP /(TP + FN ), and F1 = 2PR/(P + R). The
results are displayed in Figure 8. The decision tree classifier
achieves the best F1 score of 0.73, perhaps due to strong
interdependence between the features, which decision trees
can exploit. This is followed closely by the SVM with an F1

score of 0.72. The Naive Bayes classifier achieves the worst
F1 score based on a very low precision score. As an exam-
ple of the limititations of our method, two tables that were
incorrectly classified by all three classifiers are shown in Fig-
ure 9. The first is a table of Dewey Decimal class numbers
for books that focus on individual U.S. states. Interestingly,
although this system for organizing books in a library pre-
dates computers or computerized search systems, its choice
of ordering leads to a path used by many computer-based
geographic indices: a space-filling curve. This efficient path
leads to high values of ϵ1 and ϵ2, which cause the classifiers
to deem the table an itinerary, incorrectly. Similarly, the
second table is a listing of coastal Italian regions and vari-
ous related statistics (only the coastline column is included
in the figure). The ordering of regions is clearly influenced
by their spatial location, but like the Dewey Decimal table,
there is no implied edge between consecutive locations in
the table, and it is therefore not an itinerary. The existence
of tables such as these, which can be described as spatially-
arranged non-itineraries, explains much of the classification
error observed in our evaluation. This suggests that other
spatial features or non-spatial features may be required to
successfully detect and classify them as non-itineraries.

Next, we analyzed the contribution of individual features
and combinations of features to the accuracy of the decision
tree classifier (for the rest of this section, we use the decision
tree classifier, as it was the top performer in classification
accuracy). We ran the classification test repeatedly, while
holding out individual features, and compared the results of
each test to the results when all features were included and
tabulated the results in Table 2.

As expected, the classifier performed no better when fea-
tures were removed, with the biggest change coming when
we withheld the both efficiency measures. ϵ1. The F1 score
in this case fell from 0.73 to 0.44, a drop of 0.29, which we
call the marginal contribution of ϵ1 and ϵ2 to the F1 score.
This is a substantial difference in the F1 score and suggests
that the efficiency measures are quite discriminative, in ways
that the other features are not. Somewhat surprisingly, the
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Figure 6: Density of the ϵ1 measure for itineraries and non-
itineraries. As shown, itineraries are much more likely to ob-
tain high ϵ1 values (> 0.8) than non-itineraries. The vastly
different curves suggest that the local efficiency measure is
a useful feature for distinguishing between itineraries and
non-itineraries.
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Figure 7: Density of the ϵ2 measure for itineraries and non-
itineraries. Similar to the distributions for local efficiency
(ϵ1) values, itineraries are much more likely to have high ϵ2
values than non-itineraries.

Naive Bayes Decision Tree SVM
0

0.2

0.4

0.6

0.8

1

0.38

0.72

0.62

0.79 0.78
0.85

0.51

0.73 0.72

Classifier

Precision Recall F1

Figure 8: Precision, recall, and F1 scores for each of the
candidate classifiers on the itinerary identification task. The
decision tree classifier achieves the highest F1 score, followed
by the SVM and Naive Bayes classifier.

Table 2: Feature evaluation

Marginal
F1 Without Contribution

Feature Feature to F1 score

ϵ1 0.62 +0.11
ϵ2 0.70 +0.03

ϵ1 and ϵ2 0.44 +0.29
fr 0.71 +0.02
fod 0.69 +0.04
fon 0.72 +0.01
fa 0.69 +0.04

f⃗t 0.72 +0.01
non-efficiency 0.66 +0.07

local efficiency score, ϵ1 causes a much larger drop than the
general efficiency score, ϵ2, when withheld individually. We
see two potential explanations for this. First, from a statisti-
cal perspective, the nature of the general efficiency measure
may be less informative than the local efficiency measure, as
the fraction of itineraries with ϵ2 > 0.8 is relatively lower,
while the fraction of non-itineraries with ϵ2 > 0.8 is rela-
tively higher. Second, from a data analysis perspective, it
may be that the nature of itineraries leads to more local
efficiency than general or global efficiency. That is, given
the scheduling constraints that can shape itineraries, people
may be inclined to travel efficiently for short periods, but
not aim for a perfectly efficient route from start to finish.
Such priorities would explain the disparate impact of these
two efficiency features on our classification accuracy.

Other features all contribute to the performance of the
classifier, with the ordered date column indicator fod and the
alphabetic column indicator fa both contributing 0.04 to the
F1 score. The least impact is attributable to the ordered nu-
meric column indicator, fon, and the text vector, ft, whose
removal only caused a decrease of 0.01 in the F1 score. This
is somewhat surprising, since ordered numeric columns are
much more prevalent in itineraries than non-itineraries. By
manual inspection of the annotated table corpus, we see that
44% of true itineraries contain an ordered numeric columns,
while they are found in only 15% of non-itineraries. This
may be explained by the presence of temporal words in the

term vector for f⃗t, whose presence may offset the gains oth-
erwise attributable to a numeric column. Still, the small
differences in the impact of these features is overshadowed
by the impact of the efficiency features.

Finally, we looked at the number of itineraries found in
our full table corpus. The decision tree model classified 1,206
itineraries out of the 235,433 geographic tables in our corpus,
a total of 0.5%. This is consistent with our expectation that
itineraries would be rare, but prevalent enough that a more
complete crawl of the Web would result in a large quantity
of itineraries to allow for map-based browsing.

5. CONCLUSIONS AND FUTURE WORK
We have presented itinerary retrieval as a new area for ge-

ographic data extraction and implemented a pipeline of pro-
cessing methods to evaluate our proposed approach, which
uses a machine learning classifier to decide whether a candi-
date table contains an itinerary. The core of our method in-
volves computing spatial efficiency measures of the locations
listed in a table, which match our notions of efficiency and
were shown to have a substantial impact on the accuracy of
our classifier. As future work, we plan to experiment with
additional text features and differentiating between trans-
port schedules and personal travel itineraries. We also in-
tend to build a complete search interface to support appli-
cations for travel research.
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Dewey
Decimal
Number State

974.1 Maine
974.2 New Hampshire
974.3 Vermont
974.4 Massachusetts
974.5 Rhode Island

. . . . . .

(a) Dewey Decimal classes for each state in the U.S.A.

Region Coastline

Imperia 62.7 km
Savona 80.5 km
Genova 109.2 km
Massa
Carrara

13.0 km

Lucca 20.5 km
. . . . . .

(b) Coastal Italian regions and corresponding coastline lengths.

Figure 9: Two examples of mis-classified tables. Both tables include lists of locations that are highly efficient by our definition,
causing all three classifiers that we used in our evaluation to label them as itineraries. In (a), the Dewey Decimal system for
book topic classification is shown, which orders states along a path that resembles a space filling curve. In (b), a listing of
coastal Italian regions presumably follows a path with similarities to some Italian vacations, but is instead an exhaustive list
of such regions and related coastal data.
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