In Proc. 8th Intl. Symp. on Spatial Data Handlingancouver, Canada, July 1998, pp. 22—-33

Traversing the Triangle Elements of an Icosahedral Spaleric
Representation in Constant-Tiine

Michael Lee and Hanan Samet
Computer Science Department
Center for Automation Research
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742
magus@umiacs.umd.edu
hjs@cs.umd.edu
Tel: (301) 405-1755
Fax: (301) 314-9115

Abstract

Techniques are presented for moving between adjacengteisuof equal size in a hierar-
chical representation for spherical data that is projeoted the faces of an icosahedron. The
faces of the icosahedron are represented by a triangulaltrgea The operations are analo-
gous to those used for a quadtree representation of dateedwthdimensional plane where
the underlying space is tessellated into squares. A newnigah is presented for labeling
the triangular faces as well as the smaller triangles wiggioh of the triangular faces of the
icosahedron. The labeling enables the implementationefjtradtrees corresponding to the
individual triangle faces of the icosahedron as linear tyg&d (i.e., pointer-less quadtrees).
Outlines of algorithms are given for traversing adjaceatigles of equal size in constant time.
The labeling and algorithms can also be used with minor nzadifin (and no change from a
computational complexity standpoint) with a hierarchiegiresentation for spherical data that
is projected onto the faces of an octahedron.

Keywords: Spherical representations, neighbor findintg dauctures, algorithms, quadtrees

1 Introduction

The representation of spatial data is an important issuedgm@phic information systems (GIS). In
this paper we are interested in the efficient representafigpherical data such as the surface of the
Earth. In many applications it is desired to make use of arsdeeidecomposition of the underlying
space such as a quadtree. Projecting the sphere onto tleegulaes problems in that units of equal
area in the projection do not necessarily correspond te ohiéqual area on the sphere. This has led

This work was supported in part by the National Science Fatiod under Grant IRI-9712715, the Department of
Energy under Contract DEFG0295ER25237, and an AASERT Wellip Number DAAH04-93-G-0106.



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 2

to approximations of the sphere by Platonic solids wherstinface is projected onto the faces of an
inscribed regular polyhedron. The faces are decomposed aenventional techniques such as the
region quadtree (e.g., [11, 12]). There is one quadtreedoh éace where the sphere is represented
as a collection oh quadtrees wheneis the number of faces in the inscribed polyhedron. The most
commonly used polyhedra are the octahednoa-8) and the icosahedrom & 20) whose faces
are equilateral triangles. We prefer the icosahedron [41 psovides the best approximation of
the sphere although the octahedron [1, 6] is also used dimem ibe aligned so that the poles are
at opposite vertices of the octahedron and the prime merala the Equator intersect at another
vertex. For example, Figure 1 shows the top level triangialees of an icosahedron corresponding
to the surface of the Earth where the continents are higleligh

00 01 02 03 04

09
13 14

15 16 17 18 L

Figure 1: The top level triangular faces of an icosahedron corresponding to the surface
of the Earth where the continents are highlighted.

In this paper we show how to move between adjacent trianglganents of an icosahedron ap-
proximation of the sphere by adapting traditional two-digienal neighbor finding techniques [10,
11] for square quadtrees. We focus on linear quadtrees [&hwiepresent a quadtree as a col-
lection of numbers corresponding to its leaf nodes therefyetising with the need for pointers.

In particular, for each quadtree corresponding to one ofdbes of the inscribed polyhedron, leaf
nodei is represented by a unique pair of numbers known dsedttion codevhere the first number
indicates the depth of the tree at whidk found and the second number indicates the path from the
root of the tree ta. The path consists of the concatenation of the two-bit nusnberresponding to
the child types of each node that is traversed on the path tihemoot toi. We refer to the path as
the path array component of the location code

One of the attractions of the linear quadtree when the fagegespond to squares (e.g., for the
cube) is the ability to make use of binary arithmetic to natégbetween any pair of adjacent nodes
(i.e., corresponding to squares) of equal size in time iaddpnt of the depth of the quadtree at
which the nodes are found [13]). In this paper we show how &pathe linear quadtree to triangles
and in particular to the icosahedron so such navigation eapebformed. The adjacent triangles
are not restricted to lie on the same face of the icosaheddain.solution is in contrast to existing
methods [3] which take time proportional to the maximum leferesolution and require the use
of a number of tables in order to deal with transitions betwtingles in different faces of the
icosahedron. It is difficult to adapt these methods to usarbiarithmetic as the transitions and
node labels depend on orientation. Note that our approacttisestricted to the icosahedron and
could also be used with an octahedron. In this case, agaimetinods differ from existing methods
(e.g., [6, 9]) which also take time proportional to the madimlevel of resolution.



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 3

The rest of this paper is organized as follows. In Section Zwesent our method of labeling
the triangle elements of the faces of the icosahedron, wikidew. Section 3 shows how to find
a neighbor of equal size within one of the triangles of thes@edron in time proportional to the
maximum level of resolution while Section 4 extends the métto the entire sphere (i.e., the 20
triangle quadtrees). Section 5 describes how to find thehbeig in constant time. Concluding
remarks are drawn in Section 6.

2 TreeNodeLabeling

Each of the icosahedron’s 20 triangular faces is decompesratsively into four equilateral trian-
gles. The result is a triangle quadtree. These triangleayaslave one of two orientations: tip-up
(Figure 2a) and tip-down (Figure 2b)ip-up means that the corresponding triangt@ntsupward
(really toward the north pole)Tip-downmeans that the triangleoints downward. As tip-up tri-
angles cover a different section of space than tip-downgtes (and cannot be made to cover the
same space short of some transformation such as rotatienyubdivide the two triangle types
differently. Since we decompose each triangle into fourlEenaqual-sized triangles, each child
triangle adds two bits to the path array component of thetimecacode of the parent. Regardless
of the orientation of the triangles, we use the tenmgtical, left, andright to refer to neighboring
triangles of equal size along the horizontal, left angwdad right angular edges, respectively.

o0, oty
1% Y

(a) (b)

Figure 2: Possible triangle orientations: (a) tip-up, and (b) tip-down.

There are several advantages to using this coding scheme .ude the top-most or bottom-most
point to locate a triangle (since we only need one vertexpti@tation, and the size to determine
the other two vertices), then it is quite simple to travetse tree using only local computations
to determine where we are in space. The vertices of childrerasy to determine relative to the
positions of their parents. In particular, children areae/one half of the size (one quarter of the
area) of their parent. Chiltlo always has the opposite orientation of its parent. The neimgithree
children always have the same orientation as the parent-i§eee 3 for an example of a tree which
is encoded using this node labeling method.

Our triangle labeling method is similar to that used for tistabedron [1, 2, 6]. However, the
difference is that the neighbor finding methods that are ulserk take time proportional to the
maximum level of resolution although they are based on tiheesarinciple as our methods that
have the same execution time complexity. In contrast, damgte labeling method is very different
from that used by Fekete [3] for the icosahedron and likedas¢he neighbor finding methods. In
particular, Fekete’s labeling method is based on a ‘floasngeme where the labels associated with
each triangle are based not on its global orientation bstead, are based on that of its parent. This
enables the path components of all location codes thatsmonel to the neighbors of a particular
triangle to differ by one directional code (at different thepof the hierarchy) at the expense of



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 4

000000

Figure 3: Example labeling of a tree which is three levels deep.

added complexity. In contrast, our labeling method is abersibly simpler and can be enhanced
easily to yield a neighbor finding method that locates egimdd neighbors in constant time.

3 Neighbor Finding

In this section we describe how to find an equal-sized neigbba nodep along an edge in the
same face of the icosahedron. The algorithm does not needke ose of the actual coordinate
values of the triangle block correspondingpolnstead, it just processes the path array component
of the location code. Our algorithm is decomposed into teteps to make it easier to understand.
The first step finds an ancestor pfvhich also contains the desired neighlgosf p. This node is
called thenearest common ancestofr g andp. The technique used for finding the nearest common
ancestor is effectively the same as that found in most stdrgizadtree implementations [10, 11]
that use trees. Of course, we aren’t actually dealing wéh trodes. Instead, we want to find the
location code of the nearest common ancestor wigfgdocation code.

We now show how to find the right neighbor pf If we start withp and work our way up (right



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 5

to left in the path array corresponding to the location cptledn we can stop scanning upward
(leftward) when we find the ancestor pfwhich must contain the right neighbor pf We stop
when we encounter a node that has a right sibling (or the pacgriains a node that is adjacent and
to the right ofp). If we look at Figure 2a, then we see that this is true fordrieih01 and10. Also,

in Figure 2b, childrero1 and 10 have right siblings. Thus, we can stop as soon as we fitla

10 in the path array corresponding to the location code. A sindhalysis is used to determine the
nearest common ancestor when finding the left or verticghimir of a node.

Step two identifies and sets the position in the path arrdyetchild type of the nearest common
ancestor (found in step one). This step is easy. Let's sayrevéoaking for a left neighbog of
node p. If we have the nearest common ancestor and we know what cbiithinsp, then it is
easy to determine what child containsWe move left. If child10 containsp, then childo1 must
contain the neighbor nodg If we were looking for a right neighbor, then we move righhelsame
procedure also holds for vertical neighbors.

The final step finds the path from the child obtained in stepttwtbe neighbor op. This won't
require searching since we can exploit the fact that the fpaaimeighbor of a node is the reflection
of the path to the node. In particular, for square quadtmeesgflect the path tp to get the path to
the neighbom. For triangles, things work a little differently. Of courgle layout of the children
that we have chosen (see Section 2) keeps things simple.ifge@pmind that a tip-up triangle is
always adjacent to a tip-down triangle (and vice versa)ecéfin for the triangles has three cases
(one for each neighboring direction).

For left neighborspo always becomesi. Notice that0o is always within the samgcoordinate
range a®1, 10, and11 in the adjacent parent triangle. Sinteis the closest of the three children,
11 is the appropriate “reflected” value. Chitd always becomeg0. Only 00 in the adjacent parent
triangle is within the samg coordinate range asl, so00 is the only candidate for the “reflected”
value. Finding the left neighbors of children and11 is easy because their neighbors don’t require
leaving the parent node.

For right neighborsp0 always becomeg1. Again, 00 is always within the samg coordinate
range a®1, 10, and11 in the adjacent parent triangle. Sinteis the closest of the three children,
01 is the appropriate “reflected” value. Finding the right indugrs of childrero1, and10 is easy
because their neighbors don't require leaving the pareté n€hild11 always becomego. Only
00 in the adjacent parent triangle is within the sayheoordinate range as1, so 00 is the only
candidate for the “reflected” value.

For vertical neighbors, finding the neighbors of childgenand10 is easy because their neigh-
bors don'’t require leaving the parent node. For bintland11 the “reflected” value is equal to the
original value (as Figures 2a and 2b are vertical reflectafresach other).

Since step one (finding the nearest common ancestor) irsvexa@mining each two-bit pair in
the path array of the location code, the computational ceriyl is on the order of the length of
the code (related to the height of the tree). Step two (cimaniyvo bits in the location code) always
takes a constant amount of time. Step three (changing thaimarg bits) requires examining the
same bits as in step one, so the computational complexity te@order of the length of the code.
Overall, neighbor finding requires time proportional to kegth of the location code.



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 6

4 Extensionstothe Entire Sphere

Indexing the entire icosahedron (rather than just one ofaites) requires 20 of the previously
described triangular quadtrees. This means that whenevegach the top level (or root) of one of
these trees, special work is required although it doesaltyrereate any substantial difficulties.

We label the 20 nodes corresponding to the roots of the qeesltf the faces of the icosahedron
using a 6 bit code ranging fro@00000 (decimal 0) to010011 (decimal 19). We could have fit the
20 values in just 5 bits, but we decided to use an even numbeitsobecause the machine word
length is always an even number of bits. The order in whichribagular faces of the icosahedron
are numbered isn’'t important since tables will be used mbthetime. Thus we numbered the
faces using a simple left-to-right and top-to-bottom orgsere Figure 1). Our numbering scheme
has the property that triangles 0 to 4 are all tip-up, 5 to Sadlrép-down, 10 to 14 are all tip-up,
and 15 to 19 are all tip-down.

Neighbor finding involves several modifications to our poes algorithm, but, as we show, the
changes are minor and have little impact on the computdtmpraplexity of the algorithms. We
continue to work with the location code only. No coordinasédues are used.

The only necessary modification to step one is that if we reaehop level of the spherical
guadtree, then we stop looking for the nearest common amwce&bviously, the entire sphere
contains every possible location and is therefore an amcasevery node. We always stop at the
top level. Also, note that since Figure 1 is really a spheveryetriangle has a neighbor in every
direction (triangles on the ends wrap around), so we arepreflared for step two.

Step two is basically unchanged. The only modification isutbe of a relation to indicate how
to update the path array component corresponding to the ehthe root. It summarizes the actions
for all possible neighbors from Figure 1. This relation i®di®nly when the nearest common
ancestor from step one is the entire sphere.

Step three requires one more relation to deal with the sleasa of reflection needed for nodes
0 to 4 and noded 5 to 19. All other nodes still use the same technique describeddihtoors in
the same face in Section 3. The rationale for this additioglation is as follows. If we consider
the left neighbor case and use a standard “mirror reflectitheh we see thato stayso0 and01
reflects to11. 10 and11 cannot occur along the left edge of a node. Similarly, if wasider the
right neighbor case, then we see thatstayso0 and11 reflects to01. 01 and10 cannot occur
along the right edge of a node. The vertical case doesn't tzeleel updated.

5 Constant Time Neighbor Finding Algorithm

We now describe how to find neighbors in constant time. Ordyidieas behind the algorithms are
given (see [7] for pseudo-code). The algorithms make udeeofarry (borrow) property of addition

(subtraction) to find a neighbor without specifically searghfor a nearest common ancestor and
reflecting the path to the neighbor. We replace the iterati@teps one and three by an arithmetic
operation that takes constant time instead of as much asefith df the tree as in the worst case
of the iterative process. Of course, the constant time bauisgs because the entire path array
for each location code can fit in one computer word. If moretbae word is needed, then the

algorithms are a bit slower but still take constant time. @igiorithms are based on the method



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 7

devised by Schrack [13] for square quadtrees implemenied psinter-less quadtrees represented
by the location codes of the leaf nodes. Our contributiowiald:

1. Its adaptation to triangle quadtrees and the formulatfotine appropriate triangle quadtree
node labeling technique.

2. Its adaptation to the icosahedron in the sense that we ihakek for neighboring triangles
that are in different base triangles of the icosahedron.

Neighbor finding in square quadtrees is achieved in constartby making use of the equiv-
alence between the path array and the result of interledhimdpits that comprise the binary repre-
sentation of thex andy coordinates of one of the corners (e.g., the upper-lefttrmaer), chosen
in a consistent manner, of the blocks corresponding to thierledes. The result of the bit inter-
leaving is also known as thdorton code[8, 11]. For example, if we want the Morton code based
on coordinatex andy, then the code has the forya_1X,_1-- - YiXaYoXo, Where they coordinate is
the most significant. The right neighbor of equal size is ioleth by incrementing thg coordinate
value of the corner of the block by one. Assuming that we waitk the Morton code of the block,
instead of the individual coordinate values, then we stast process by incrementing by one.

If there is a carry, then we add onexg If there is another carry, then we add onextcand so
on. This process is iterative in the sense that the carrieprapagated one bit at a time. Ideally,
we want to accomplish the propagation of the carry using @eeation. The problem is that when
the addition operation is applied directly to the Morton eadlue, we need to skip the values of
the corresponding coordinates. Schrack [13] achieves the propagation of énees in constant
time by saving the values of all of thebits, replacing their corresponding bit positions with,
performing the addition, and then restoring theits to their original values.

Using standard Morton codes for square quadtrees, we findjhlrar by addition by skipping
every other bit in the Morton code. This method does not wargctly in the case of the triangle
guadtree, although something similar can be made to work.gBoblem is the lack of a direct cor-
relation between the coordinate system of the decomppositiduced by the triangle quadtree and
the path array. Nevertheless, the values of the path ardaeafiangle quadtree can be manipulated
in an analogous manner to that of the values of the path affdne®quare quadtree. In the rest of
this section we show how this is done.

We first consider a transition from one triangle to its righighbor. This requires that we look
at the transitions from the different children. Transisdrom a01 child to a10 child or from a10
to a11 child are achieved by adding one when the neighboring tiégnare brothers. The triangle
guadtree analog of a carry in the square quadtree ariseswégrake a transition from@ child to
a01 child or when we move from &1 child to a00 child (see Figure 4a). This is the case when the
neighboring triangles are not brothers. Making a transitrom a11 child to a00 child is handled
by use of addition. Basically, we add one to the bit stringespnted by the path array and the carry
automatically updates the parent node. However, moving 00 child to a01 child doesn’t work
so simply. We want a carry but we don’t naturally get one. Oag o obtain the carry is to locate
and replace all occurrences @fs with 11s so that either of the following two situations is properly
handled:

1. A carry will be generated if necessary (i.e., tteis at the extreme right of the path array)

2. A carry will be properly propagated (i.e., the is the recipient of a carry).



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 8

00%%10 %00 00210 Y00
011941090, 104, 01194109,104

(a) (b)

Figure 4: (a) Examples of rightward transitions that generate a carry (denoted by a
rightward pointing arrow). (b) Examples of leftward transitions that generate a borrow
(denoted by a leftward pointing arrow).

The00 case is handled by using the concept ofdinaskwhich we name01D11. Itis formed
by invoking a procedur®AKE_IDMASK (INPUT,V,MP) which sets all pairs of bits imdmaskfor
which the corresponding bit pairs ENPUT have valuev to MP, while the bits corresponding to
the other bit pairs are set tw. For right neighbors, the idmagl0ID11 is formed by a call to
MAKE_IDMASK (INPUT,00,11) and containd 1 in the bit positions of the path array that have the
value00 and00 in the bit positions that have other values. We use the mauatterni1 because
taking its exclusive or with any input sequence will ensinat &all pairs of bits with valu@o will
be changed ta1 and all bit positions with other bit pattern value pairs vl left alone since the
result of applying exclusive or of any bit valuievith 0 isi. Note that virtually any pattern of bit
pairs can be identified by forming the appropriate idmaskoimstant time.

Therefore, finding a right neighbor of equal size proceed®lésvs. Replace all occurrences
of 00s in the input with11s by taking the exclusive or of the input with the idmagkiD11. Next,
add 1. After the addition, apply the following two steps:

1. Change all 1s not affected by the addition (which were originadlgs) back to00 by taking
the exclusive or of idmas&0ID11 with the result of the addition thereby creating a bit patter
t. This leaves all pairs of bits that were not originatl9 alone since the result of applying
exclusive or of any bit value with 0 isi. It also resets t®@0 all 11s at positions in the
original path array which originally containex (which is desired) and resets ta all 00s
at positions in the original path array which originally ¢aned00.

2. Change all 1s which were affected by the addition and thus becam@gain, only the ones
which were originallyo0s) to01 (as00 plus one i01) by constructing a mask which has a
11 at every pair of positions in the original path array whict dot containoo (obtained by
complementing idmaskB0ID11). Next, or this mask wittEVENBITMASK (an alternating bit
pattern starting witto at its left end — that isp10101. . .) which marks the even positions
in the original path array which were part of the pair with a01. Taking the and of the
resulting mask with yields the desired result.

As an example, let us find the right neighbor of the triangleosehlocation code has path
array value00011100. Let RCODE refer to this path array valued0ID11 is 11000011 since both
both RCODE[1] andRCODE[4] have value00. Taking the exclusive or oRCODE with 00ID11
changeRCODE to 11011111. Adding one toRCODE changes it td1100000. Taking an exclusive
or of RCODE with 00ID11 changeRCODE to 00100011. Taking the or ofEVENBITMASK with the
complement 0H0ID11 yields01111101. The final and of the latter witRCODE change®CODE to
00100001. This example is illustrated in Figure 5aa.



In Proc. 8th Intl. Symp. on Spatial Data Handlirggncouver, Canada, July 1998, pp. 22-33. 9

00

10 @% 10\11
0
00 041 10 00 00
(b)

01 /117 01 99

(a) (c)

Figure 5: Examples showing how to find neighbors of equal size: (a) right neighbor of
00011100, (b) vertical neighbor of 10100111, (c) left neighbor of 01110001.

Next, we consider a leftward transition. This transitioffiedts from a rightward transition in that
instead of adding to the path array value of the location code and propagatoagrgt when moving
between triangles that are not brothers, we subtrdicim the path array value of the location code
and propagate a borrow when moving between triangles thatarbrothers.

Below, we look at leftward transitions from the differentldnen. Transitions from a0 child to
a01 child or from a11 to a10 child are achieved by subtracting one when the neighboriagdles
are brothers. The leftward movement analog of a carry forigigward movement arises when we
make a transition from a1 child to a00 child or when we move from a0 child to a11 child (see
Figure 4b). This is the case when the neighboring triangleshat brothers. Making a transition
from a00 child to a11 child is handled easily by use of subtraction. Basicallyswietract one from
the bit string represented by the path array and the borraenaatically updates the parent node.
However, moving from &1 child to a00 child doesn’t work so simply. We want a borrow but we
don't naturally get one. One way to obtain the borrow is t@teand replace all occurrencesdas
with 00s so that either of the following two situations is propergntdled:

1. A borrow will be generated if necessary (i.e., theis at the extreme right of the path array)

2. A borrow will be properly propagated (i.e., the is the recipient of a borrow).

As in the case of the rightward movement, the case is handled by using the concept of
anidmask The idmask identifies the bit positions where we need to fpdtle path array value
before and after performing the subtraction. However,kanthe rightward movement, we must
identify the bit positions in the path array that have theugall and change them t00 prior to
the subtraction while leaving all other bit pattern pairen@. This is not easily done if we were to
use the marking pattern dft, as we did in the case of a rightward movement, since our gdal i
change a bit pattern pair whose two values are not the sanietaBk is more easily accomplished
by observing that the result of taking the exclusive or ofgaittern pai01 with the bit pattern pair
01 is 00, while the result of taking the exclusive or of all other bdit{grn pairs with the bit pattern
pair 00 leaves them unchanged. Thus for leftward transitions wensémask called11D01 with
a marking pattern od1 for all occurrences of1 in the path array of the input. It is formed by a call
to MAKE_IDMASK (INPUT,01,01).



In Proc. 8th Intl. Symp. on Spatial Data Handlifdggncouver, Canada, July 1998, pp. 22-33. 10

Therefore, finding a left neighbor of equal size proceedolimis. Replace all occurrences of
01s in the input withoos by taking the exclusive or of the input with the idmaskiDO1. Next,
subtract 1. After the subtraction, apply the following tweyss:

1. Change albos not affected by the subtraction (which were originallys) back to01 by
taking the exclusive or of idmaskiIDO1 with the result of the subtraction thereby creating
a bit patternt. This leaves all pairs of bits that were not originadly alone since the result
of applying exclusive or of any bit valuewith 0 isi. It also resets t@1 all 00s at positions
in the original path array which originally contained (which is desired) and resets 10 all
11s at positions in the original path array which originallyntainedo1.

2. Change albos which were affected by the subtraction and thus becatm@gain, only the
ones which were originallp1s) to 00 (becaus@®1 minus one i00) by constructing a mask
which has al1 at every pair of positions in the original path array whict dot containo1,
and ao01 in the positions that did contaiit (obtained by taking the complement of the result
of shifting idmask01ID01 to the left by one bit position). Taking the and of the resigti
mask witht yields the desired result.

As an example, let us find the left neighbor of the triangle sehtocation code has path ar-
ray value01110001. Let LCODE refer to this path array value01ID01 is 01000001 since both
LCODE[1] andRCODE[4] have valuen1. Taking the exclusive or diCODE with 01ID01 changes
LCODE t0 00110000. Subtracting one fromCODE changes it t@0101111. Taking the exclusive or
of LCODE with 01ID01 change4.CODE to 01101110. Complementing the result of shiftingl ID01
by one bit to the left yield®1111101. The final and of the latter with the value bf0ODE changes
LCODE t0 01101100. This example is illustrated in Figure 5ac.

We now examine a vertical transition. It differs from riglaingl and leftward transitions in that
the path array values do not change except for the trangigbmeen brother triangles. In particular,
we need to make one, and only one, transition from the legsifisiant00 child (i.e., right-most in
the path array) to the least significantchild or vice versa (i.e., from the least significaotchild to
the least significar0 child). This is done by identifying the rightmo®d child and complementing
the left bit of its bit pattern pair value. All remaining biagtern pairs are left alone. Once again, we
make use of the concept of @mask In this case, we use the idmas&ID10 which identifies the
bit positions in the path array of the input with vale@ and marks them witho. It is formed by a
call toMAKE_IDMASK (INPUT,70,10).

Finding a vertical neighbor proceeds as follows: Createva maskm from 70ID10 which
is zero at all bit positions with the exception of the rightthno. This is achieved by taking the
complement of?0ID10. The result is a mask which containst1 in all bit pair positions to the
right of the rightmostio of 70ID10 which itself has become1 in n. Adding 1 to n yielding p
means that altL1s to the right of the rightmost1 have becom®0 while the rightmosto1 has
become a 0. All other bit pair positions im are unchanged. We can now obtain our desired mask
m by taking the and op and70ID10. The reason is that all items to the left of the rightmbgt
in p are the complement of the corresponding item&admD10 while all items to the right of the
rightmost10 in p are0. Our final step is an exclusive or ofwith the original input value. This has
the correct effect of complementing the left bit of the rigloist 70 in the original input value since
the result of applying exclusive or of any bit valueith 1 is the complement af

As an example, let us find the vertical neighbor of the trianghose location code has path
array value10100111. Let VCODE refer to this path array value20ID10 is 10100000 since both



In Proc. 8th Intl. Symp. on Spatial Data Handlifdgncouver, Canada, July 1998, pp. 22-33. 11

VCODE[1] and VCODE[2] have value?0. Taking the complement cf0ID10 yields 01011111
which is stored in variabl®ASK. Adding one toMASK yields 01100000. Taking the and ofASK
with 70ID10 change#ASK to 00100000. The final exclusive or afASK with VCODE change& CODE
t0 10000111. This example is illustrated in Figure 5ab.

We now show how to make transitions across different facabenfcosahedron. They arise if
the addition steps in the rightward and vertical transgigenerated a carry past the left-most end
of the the path array or if the subtraction step in the lefiMaansition generated a borrow past the
left-most end of the the path array. In this case, a carryr@@gror overflow indicator is set. This
flag is tested by a one cycle machine instruction on most ctenawchitectures.

Vertical transitions between different faces of the iceshhn as well as left and right transitions
between nodes corresponding to the faces of the icosahtbeledos to 14 as shown in Figure 1
are straightforward in the sense that there is no changesialgorithms. Left and right transitions
between nodes corresponding to the faces of the icosahéalveled00 to 04 and 15 to 19 are
handled in the same way as in Section 4 except that we now waetrform them in constant time.
The issue here is that the left and right neighbors are “mneflections”. In particular, recall that
in the case of a right neighbasp stayso0 while 11 reflects todo1. 10 and01 cannot occur along
the right edge of a node Similarly, in the case of a left neigh®0 stayso0 while 01 reflects to11.

10 and11 cannot occur along the left edge of a node.

These situations are handled just like vertical transitionthat we use reflection. The dif-
ference is that we perform reflection for all occurrencest bfand 01 for right and left neigh-
bors, respectively. These situations are identified by édementing the left bit of the bit pattern
value of eacltr1 child. This is done by using the idmagkID10 which identifies the bit positions
in the path array of the input with valuet and marks them with0. It is formed by a call to
MAKE_IDMASK (INPUT,?1,10) All remaining bit pattern pairs are left alone.

We use a marking pattern @b as it changes chil@1 to 11 (for left neighbor reflection) and
child 11 to 01 (for right neighbor reflection) using the exclusive or opiera In fact, the desired
neighbor is obtained by taking the exclusive or of the oagimput value with idmask11ID10.
The same technique works for both left and right neighbarsalrticular, when it is invoked in the
left neighbor case, since we are on the extreme left edgeebbthe triangles of the faces of the
icosahedron, the path array can only contain the bit pafiairs with value00 and01. Thus all
01s are ‘marked’ by?11D10 (with the patternt0). Therefore, one application of exclusive or to
the input with?1ID10 changes alb1s to 11s as desired. Similarly, when it is invoked in the right
neighbor case, since we are on the extreme right edge of otte dfiangles of the faces of the
icosahedron, the path array can only contain the bit pafianrs with value0 and11. Thus all
11s are ‘marked’ by?11ID10 (with the patternt0). Therefore, one application of exclusive or to the
input with idmask?11D10 changes all 1s to01s as desired.

6 Conclusionsand Future Work

The triangle coding scheme described in this paper prowadesw way to handle spherical data
using a standard quadtree-like approach. Our algorithregnasd an icosahedron but they also
work for the tetrahedron and the octahedron. The only madifin that is needed is to include a
mechanism to handle the case that the neighboring triamgéem different base triangles of the
solid (i.e., tetrahedron and octahedron). Our coding sehisrparticularly useful for traversing the



In Proc. 8th Intl. Symp. on Spatial Data Handlifdgncouver, Canada, July 1998, pp. 22-33. 12

triangular elements. We did not address other operatiotts &8 determining whether two triangle
elements are adjacent, but this can be accomplished inagtdrighe using our coding scheme. Also,
our method is well suited to operations such as finding alhtgle elements that connect any two
points of the sphere [6].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

G. Dutton. Geodesic modeling of planetary reli€artographica 21(2&3):188—-207, Summer
& Autumn 1984.

G. Dutton. Locational properties of quaternary trialagumeshes. IfProceedings of the 4th
International Symposium on Spatial Data Handlingl. 2, pages 901-910, Zurich, Switzer-
land, July 1990.

G. Fekete. Rendering and managing spherical data whierspquadtrees. |Rroceedings
IEEE Visualization’90 A. Kaufman, ed., pages 176-186, San Francisco, Octob&. 199

G. Fekete and L. S. Davis. Property spheres: a new repiasen for 3-d object recognition.

In Proceedings of the Workshop on Computer Vision: Representand Contro] pages 192—

201, Annapolis, MD, April 1984. Also University of Marylandomputer Science Technical
Report TR-1355, December 1983.

I. Gargantini. An effective way to represent quadtree€&ommunications of the ACM
25(12):905-910, December 1982.

M. F. Goodchild and Y. Shiren. A hierarchical spatial aatructure for global geographic
information systems.CVGIP: Graphical Models and Image Understandirteyt(1):31—-44,
January 1992.

M. Lee and H. Samet. Navigating throught triangle meshgdemented as linear quadtrees.
Computer Science Technical Report TR—3900, University afyand, College Park, MD,
April 1998.

G. M. Morton. A computer oriented geodetic data base amebatechnique in file sequencing.
Technical report, IBM Ltd., Ottawa, Canada, 1966.

E. J. Otoo and H. Zhu. Indexing on spherical surfacesgusemi-quadcodes. dvances in
Spatial Databases—3rd International Symposium, SSIO3Abel and B. C. Ooi, eds., vol.
692 of Springer-Verlag Lecture Notes in Computer Scienegep 510-529, Singapore, June
1993.

H. Samet. Neighbor finding techniques for images regreesd by quadtree€.omputer Graph-

ics and Image Processindg8(1):37-57, January 1982. Alsoligital Image Processing and
Analysis: Vol. 2: Digital Image Analysi®k. Chellappa and A. Sawchuck, eds., pages 399-419,
IEEE Computer Saociety Press, Washington, DC, 1986; andddsity of Maryland Computer
Science Technical Report TR-857, January 1980.

H. Samet. Applications of Spatial Data Structures: Computer Graghiltmage Processing,
and GIS Addison-Wesley, Reading, MA, 1990.



In Proc. 8th Intl. Symp. on Spatial Data Handlifdggncouver, Canada, July 1998, pp. 22-33. 13

[12] H. Samet. The Design and Analysis of Spatial Data Structurdgldison-Wesley, Reading,
MA, 1990.

[13] G. Schrack. Finding neighbors of equal size in lineaaditees and octrees in constant time.
CVGIP: Image Understanding5(3):221-230, May 1992.



