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Abstract

A pictorial query specification technique that enables the formulation of complex pictorial queriesfor
browsing through a collection of spatially-referenced images is presented. It is distinguished from most
other methods by the fact that in these methods the query image specifies a target database image in
its entirety whereas in our approach the query image specifies the combination of objects that the target
database image should contain rather than being treated asawhol eimage. The query objectsarerepresented
by shape features although other features such as color, texture, or wavelets could also be used. Using
our technique, it is possible to specify which particular objects should appear in the target images as well
as how many occurrences of each object are required. Moreover, it is possible to specify the minimum
required certainty of matching between query-image objects and database-image objects, as well as to
impose spatia constraints that specify bounds on the distance between objects and the relative direction
between them. These spatial constraints can also be used to specify other topologica relations such as
enclosure, intersection, overlap etc. Each pictorial query is composed of one or more query images. Each
guery image is constructed by selecting the required query objects and positioning them according to the
desired spatial configuration. Boolean combinations of two or more query images are also possible by use
of AND and OR operators. A query image may be negated in order to specify conditions that should not
be satisfied by the database images that are retrieved successfully. In addition, a capability is provided to
specify whether the same instance of an object isto be used when it appears in more than one of the query
images that make up the pictorial query, or whether two different instances are allowed. Several example
gueries are given that demonstrate the expressive power of this query specification method. An agorithm
for retrieving all database images that conform to a given pictoria query specification is presented. The
user interface for using this pictoria query specification method to browse the results in a map image
database application is described and illustrated via screen shots.

*This paper is an extended version of [31].
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1 Introduction

Consider a collection of spatially-referenced images composed of severa objects (or symbols) where both
the topological layout and the distances among the objects are significant (e.g., maps, satellite images, aeria
photos, floor plans, blueprints, etc.). The collection of images can be preprocessed so that the objects are
classified according to their typesand then stored inadatabase. Inthiscase, querieswould bemadeonthebasis
of the classifications. Alternatively, the collection of images can be left unprocessed and the queries would
actually ook for the objects (using sampl e objects) in theimage thereby making use of computer vision, image
processing, and pattern recognition techniques. Regardless of how the collection of imagesisrepresented, we
may want to query them looking for particular objects in specific locations and/or relative spatial positions
with respect to one another. One method to deal with such a query is by an SQL extension with additional
predicates corresponding to spatial relationships. Unfortunately, this solution is only applicable to the first
method of representing the collection of images— that is, the objectsin theimage must be preclassified so that
the user can specify them by some a phanumeric tags. This solution is not applicable to the second method
of representing the collection of images. In addition, if we want to find more complex images that involve
several objectsthat must satisfy a particular spatia configuration or a choice among objectsthat satisfy some
spatia configuration, then the corresponding SQL query would be very complex.

An dternative method isto specify the queries pictorially. Thisisamore “natural” method that facilitates
the use of more complex constraints based on the implicit characteristics of the pictorial query (i.e., the
particular objectsin the pictorial query and their spatial arrangement). There are, however, several difficulties
associated with pictorial query specifications. First of al, pictorial queries are inherently ambiguous which
givesriseto severd questions. In particular, what criteria should be used in order to determine that an object
in a database image is the same as a particular object in the query image (termed matching ambiguity)? In
addition, when query images are composed of severa objects, are we looking for images that contain all
of these objects, or would we be satisfied with any subset of these objects (termed contextual ambiguity)?
Finally, is the spatial arrangement of the query objects of significance? For example, if one object in the
guery imageis placed above and within 30 units of another object, what database images satisfy this query?
One possihility is that only database images with exactly the same spatia configuration satisfy the query.
However, the intent may be that only the distance must be the same, or maybe that any configuration may
suffice (termed spatial ambiguity).

Ancther difficulty with pictorial queriesisthat they are not always as expressive astextual queriesinterms
of specifying combinationsof conditionsand negative conditions. For example, how do we specify pictorially
images that contain beaches but do not contain camping sites within 3 miles of these beaches? It isdesirable
to have a pictoria query specification method that leverages on the expressiveness of pictoria queriesin
terms of describing what objects the target images should contain and their desired spatial configuration,
while simultaneously resolving the matching, contextual, and spatial ambiguities as well as the limited
expressiveness of pictorial query specifications.

This paper presents a pictorial query specification technique for image databases that we have devel oped
that addresses the issue of matching, contextual, and spatial ambiguity inherent in pictorial queries. This
method enables the formulation of complex pictoria queries that describe the target images in terms of
their required contextual and spatial properties. The desired objects can be specified as well as how many
occurrences of each object are required in thetarget images. Moreover, spatial constraintscan beimposed that
specify bounds on the distance between objects, aswell astherel ative direction between objects. These spatial
constraints can aso be used to specify other topological relations such as enclosure, intersection, overlap etc.
We can handle objects with extent such as lines and regions in addition to point objects. Expressive power
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isachieved in our approach by alowing a pictoria query specification to be composed of one or more query
images and by allowing a query image to be negated in order to specify conditionsthat should not be satisfied
by the database images that are retrieved successfully. In addition, our technique provides a capability
to specify whether the same instance of an object is to be used when it appears in more than one of the
guery images that make up the pictorial query specification (termed object binding), or whether two different
instances are allowed.

Matching, contextual, and spatia ambiguity are resolved in our approach by providing a mechanism to
specify the desired level of similarity in these three domains. The matching similarity level specifies alower
bound on the certainty that isrequired in order to match a query-image object to a database-image object. The
contextual similarity level specifies how good a match is required between the query and database image in
terms of overall content (i.e., collection of objects). For example, should the database image contain al of the
objectsin the query image or may it just contain some of these objects. The spatial similarity level specifies
how good amatch isrequired in terms of the relative locations and orientation of the matching symbolsinthe
two images.

Using our pictoria query specification technique, we can specify acomplex query such as “get al images
that have at least two beaches in them with no restaurant within 5 miles of either beach, but with a two-lane
road within 2 miles of both beaches’. Once we have the ability to formulate such complex queries pictorially,
we must also address the issue of how to process these queries efficiently. In particular, which indexing
structures are required and in what order should they be used when evaluating a query. Finaly, the issue
of how to display the results of a pictoria query so that the user can quickly browse through them is also
important. All of these issues are addressed in this paper. It isimportant to note that athough we describe a
pictorial query specification tool, we do not address issues of usability (e.g., [23]) nor do we make any claims
about its completeness (e.g., [34]). These issues are beyond the scope of this paper. As mentioned above, our
goal isto explore the issues involved in providing a pictorial query specification tool for an image database.
We do not claim to have solved dl problems. Instead, we point out some of the issues that we encountered
and outline our approaches to resolve them. Clearly, work remainsto be donein thisfigd.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 describes
the user interface for specifying pictoria queries in an example application as well as the process that we
use for matching query-image objects to database-image objects in this application. In Section 4 we show
how to resolve the matching, contextual, and spatial ambiguitiesinherent in pictorial queries. Thisincludes
a definition of the various levels of similarity that can be specified by the user and several sample queries
that demonstrate how to use them. Section 5 shows how individual pictoria queries are combined to form
compound queries along with examples of their use. In Section 6 we present an algorithm for retrieving all
database imagesthat conform to agiven pictoria query specification. Section 7 contains concluding remarks.

2 Redated Work

There have been anumber of studies of pictoria queriesfor spatial and image databases in recent years [26].
Most of the image database research has dealt either with global image matching based on color and texture
features [10, 12, 17, 20, 32, 33] or with the ambiguity associated with matching one query-image object to
another [1, 8, 11]. For example, amethod for searching an image database using aquery imagethat issimilar
to the intended target was presented in [10]. The query image may be a hand-drawn sketch or a scan of the
image to be retrieved. The result images are the ones that are most similar to the query image as a whole
based on a multiresolution wavelet decomposition of the query and database images. This method (and the
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other global database search methods) do not address the case of images that are composed of severa objects
and their desired spatial configuration. In other words, these methods only address the problem of matching
ambiguity and do not deal with contextual and spatial ambiguity at all.

There has also been some work on the specification of topological and directional relations among query
objects[2, 4, 6,7, 9, 14, 19, 24]. Thefocus of thiswork has been on defining spatia relations between objects
and efficiently computing them when the objects are stored in a database. These studiesonly deal with tagged
images (images in which the objects have aready been recognized and tagged with their semantic meaning).
Therefore, they do not address the issue of matching ambiguity. Furthermore, it is aways assumed that the
goal isto match as many query-image objects to database-image objects as possible, and, in most cases, it is
also assumed that the relative locations of the objects must be exactly as specified by the query image or as
closeto that as possible (e.g., [9]).

A limitedform of spatial ambiguity isallowedin pictorial queriesbased onthe 2D-stringand itsvariants[4,
14] via a parameter that defines the type of subsequence matching that is required between the 2D-string
representation of the query image and that of the database image. The spatial logic described in [2] also
allows specification of query imagesin terms of spatia relations between objects and permits users to select
the level of spatia similarity. However, the issue of the distance between objects is not addressed by these
or any other method. In addition, it isassumed that the database images must contain al objectsin the query
image. Thus, the question of contextual and spatial ambiguity initsfull extentisnot considered. Furthermore,
none of these methods provide Boolean combinations or negations of query images.

Another data structure called the spatial orientation graph is introduced in [9] and used for spatial
similarity based retrieval of symbolicimages. Thisrepresentation does not capture any information about the
distance between objects either. In addition, many assumptions are made about what a user might define as
image similarity. These assumptionsare used in computing the similarity val ue between the query image and
the database images.

PQBE (a pictorial query-by-example language) [19] attempts to address the problem of the limited
expressiveness of pictoria queries. PQBE can be used to express more complex queries by allowing pictorial
gueries that are composed of several query images joined by conjunctions and disjunctions, and by use of
variable objects. PQBE, however, is a rather complex language that may not be easy to master (although
it is probably simpler than SQL extensions dealing with spatia relations). While it is possible to specify
directional constraints using PQBE, the distance between objects is ignored in PQBE as it is in al other
methods deding with spatia similarity. Furthermore, PQBE does not address the question of contextual and
spatial ambiguity, and since it assumes that the objects in the pictorial queries are already classified, it does
not address matching ambiguity either.

Spatial-Query-by-Sketch [7], a query language for geographic information systems, allows users to
formulate a spatia query by drawing the desired configuration with a pen on a touch-sensitive computer
screen. Theresults are ranked based on the similarity in terms of the spatial configuration. It considersmainly
the topological configuration of the query objects. Distance metrics are used implicitly in order to relax the
topological constraints. For example, if two query objects are very close to each other but digoint, then a
database image where the objects touch may aso be considered as a match. In addition, distance metrics are
used to rank results that are equivaent in terms of the topological configuration. However, distance is not
considered as a condition for matching and thus bounds on distances can not be specified. Furthermore, the
user cannot specify the desired spatial ambiguity. The system assumes that the topological relations sketched
by the user should all hold. Spatia-Query-by-Sketch does not address contextual ambiguity. It is assumed
that the results must contain all of the objects that are in the query sketch. Finaly, Spatia-Query-by-Sketch
does not allow Boolean combinations or negations as part of the query.
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Another method for similarity based picture retrieval based on spatial rel ationshipsisdescribedin[24, 25].
Thismethod al so allowsfor specifying query imagespictorially. Themain concern of thiswork however ishow
to map spatia relationshipsthat are derived from the pictoria query to other comparable spatia rel ationships
that have been used to describe the images in the database. For example, leftOf (a,b) = rightOf (b, a). This
method does not allow various levels of contextual similarity. That is, it is assumed that the god is dways
to match as many query-image objects to database-image objects as possible. Furthermore, as in al the
other cases, this method does not deal with spatial-locational information (e.g., distance) and does not alow
pictorial queriesthat are composed of more than one query image.

In addition to thiswork in the field of pictoria query specification for image databases, there has been a
large body of research in the field of graphica query languages for traditional (i.e., aphanumeric) database
systems based on the relational, E-R, and object-oriented models. These include DOODLE [5], RBE [13],
STBE [18], and GRAQULA [27]. Some of these languages (e.g., RBE [13]) support dynamic construction
of the user interface for querying the database using a set of predefined widgets (e.g., sliders, scatter plots,
and tables). However, al of these languages require knowledge of the underlying schemas that are used to
model the data. Furthermore, these languages are complex since they need to support advanced features that
traditional query languages such as SQL provide (e.g., aggregation, nested queries, etc.). On the other hand,
these languages do not support the paradigm of similarity queries and query by sketch. In other words, itis
not possibleto draw (or construct from icons) aquery image and request imagesthat are similar toit. Finaly,
since these methods do not deal with imagesdirectly, theissue of matching ambiguity isnot considered. Thus,
they would need to assume that the images are aready preprocessed and objects have been recognized and
stored in the database as such.

In contrast to these methods, our approach handles queries that deal with both spatial-relational and
spatial-locational data, as well as contextual information. Thuswe can deal with the distance between objects
as well as with their topologica configuration. In addition, as part of the pictorial specification, the user
indicates the degree of desired similarity, and thus the results are not subjective. Furthermore, we allow
compound gqueries (via conjunction and disjunction of query image) with object binding, and thus provide
a more expressive and comprehensive pictorial query specification method than any previously described
methods.

3 Pictorial Query Specification and Browsing Resultsin an Example Application

In our approach, apictorial query iscomposed of one or more query images. Each query imageis constructed
by selecting the symbol sthat should appear in the database imagesfrom amenu of symbolsand by positioning
these symbol s sothat thedesired spatia constraintshold. Inaddition, the user must specify theimage similarity
level required to satisfy the matching, contextual, and spatial constraints between the query image and the
required database images. The individua query images may be composed via AND and OR operators. In
addition, a query image can be negated with the NOT operator in order to specify conditions that should
not be satisfied by the database images that are retrieved successfully. In the case of the conjunction of
guery images where the same symbol appears in both query images, the user may specify whether the two
guery-symbols must match (i.e., be bound to) the same instance of the symbol in the database image, or
whether two different instances are allowed (i.e., the instances may be different but need not be so)®. In order
to bind two query-symbols to the same database symbol, the user selects the symbol for the second query
image from thefirst query image, rather than selecting it from the menu of symbols.

!Binding is irrelevant in the case of disjunction of query images, since only one part of the clause needsto hold for the query to
be satisfied.
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We have implemented this pictorial query specification as a query interface for a map image database
system developed by us[22] named MARCO (denoting MAp Retrieval by COntent). The input to MARCO
are raster images of separate map layers (map layer images) and raster images of map composites (the maps
that result from composing the separate map layers). Map layer images are processed in order to extract
contextua cues from the map layer that can be used to index the compositeimages. This process utilizesthe
symbolic knowledge found in the legend of the map to drive geographic symbol recognition. In particular,
we focused on symbol layers which contain geographic symbols that represent campsites, hotels, recreation
aress, etc.

This input process requires some user intervention in order to build an initia training set. Once this
is done, the current training set library is used to assign candidate classifications to each symbol using a
weighted bounded several-nearest neighbor classifier [3]. A certainty value (between 0 and 1) is attached to
each classification indicating how certain this classification is. In cases where thereis more than one possible
classification, al candidate classifications are returned by the classifier with their associated certainty value
and stored in the database. Classification is based on a set of features that describe the symbol’s shape. Each
layer is first split into several tiles (since the whole map is too large to process). Each tile is segmented
into its constituent elements using a connected component labeling algorithm (e.g., [21]). For each region
in the labeled image, a set of features based on its shape is computed. These features include some global
(e.g., first invariant moment, circularity, eccentricity, rectangularity) and some local shape descriptors (e.g.,
intersections, gaps) [15] that we empirically identified as useful featuresin discriminating between geographic
symbols. The results of the feature computation are composed into a feature vector. The center of gravity
(i.e., centroid) of each region is also computed. Note that while a symbol may be composed of more than
one connected component, we assume that the symbols may be distinguished from each other by one of
these connected components. Many of the geographic symbolsthat we classify are composed of acircle (or
rectangle) enclosing one or more small shapes. We use a representation termed negative symbol that is based
on theinterior of these symbolswith the shapes considered as holes[30]. Note, that in our application we we
use shape features to resolve the matching ambiguity (i.e., to match query-image symbolsto database-image
symbols). However, for other applications we could use different features for this purpose. For example,
we could use color or texture features which are commonly used in image databases, or wavelet features as
described in [10].

3.1 Pictorial Query Builder

Figure 1 showsthe pictoria query builder used by MARCO. The user has constructed a query to retrieve all
database images that contain a hotel @ within 6 miles of a beach & and do not have an airport @ within 1
mile of the beach & (see Figure 2 for a description of the symbols used in this query and in the rest of this
paper). Furthermore, the certainty that the database-image symbols are in fact a hotel @ , beach & , and
airport @ is > 0.5 (determined by msl, matching similarity level). The symbols are “dragged and dropped”
from the menu of symbols displayed in the bottom of the window. The query builder constructs this menu of
symbols directly from the database which stores one example of each symbol relevant for the application at
hand. These example symbolsare taken from thelegend of the map in our example application. Alternatively,
provisions exist for the user to import examples of symbols directly. Thus, the interface can automatically
adjust to adifferent set of symbols. We use acolor coding schemeto denote that two query-image symbolsare
bound to the same instance in the database image. That is, two symbols that have the same non-black color
are bound, whereas black symbols are not bound. For example, in the query in Figure 1, the two beach &
symbols are a lighter color (blue in our system), and thus they are bound. That is, the same instance of the
database-image beach & symbol must be matched to the query-image beach & symbolsin both clauses of
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Figure 1. Tool for constructing pictorial queries.The user has constructed a query to
“retrieve all database images that contain a hotel @ within 6 miles of a beach & and do
not have an airport @ within 1 mile of the beach & , where the certainty that the found
symbols are in fact a hotel @ , beach &, and airport @ is > 0.5.”

the pictorial query. Matching, contextual, and spatia similarity levels are set viamenu buttons“set msl”, “ set
cd”, and “set s9l” respectively (see Figures 3— 5 for the corresponding menus).

@ airport < fishing site @ camping site @i |ocal road
gas staton & beach (® hotel == one-lane road
® cafe’ @ first aid "™ scenic view == two-lane road
(® restaurant ) museum * site ofinterest == railroad

{ picnic site (®) post office () wild card E=  open field

Figure 2: Symbols and their semantic meaning.

In our example application we have limited ourselves to symbolic images since this enabled us to use
rather simple pattern recognition methods to resolve the matching ambiguity (i.e., how to match symbolsin
the query image to the database images). However, our pictorial query specification technigue can easily be
used for other images as well. The prerequisites for handling such images are: 1) segment the image into
separate objects (or entities). 2) compute some features that characterize each object (e.g., color, texture,
shape, wavelet coefficients). 3) provide a similarity measure that approximates the certainty that two objects
given by their characteristic features are the same. Once these three prerequisites have been satisfied, the
guery specification and processing would remain the same. In terms of the user interface, a replacement for
the menu of symboalsis required since we can no longer assume that we have an example bitmap of each
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Figure 3: Menu for setting matching similarity level (msl).

1 - all symbols, and no others

42 - 311 symbols, and maykbe others

3 - any of the symbols, but no others

|4 - any of the symbols, and maybe others |

Figure 4: Menu for setting contextual similarity level (csl).

object that may appear in the database images. The alternatives are either a sketch tool that would let the user
draw exemplars of the required objects, atool that would let users provide samples of objectsto be put into a
menu, or enabling usersto import images that already contain al of the required objectsin the desired spatial
configurations. For example, in a database of satellite imageswe could segment the image into objects based
on texture features or based on multispectral signatures. This representation would be used to resolve the
matching ambiguity between query and database objects. A sample abject could be identified to the database
by an image “patch”. A query image could then be composed of several such objects, and our pictorial
guery specification method could be used to specify matching, contextual, and spatial constraints among these
objects, as well as to specify compound queries and negative constraints. For example, find places where
thereis no road within 1 mile of aforest.

3.2 Browsing Resultsof Pictorial Queries

.Ai

- exact same location

2 — within same distances, same directions
3 - any distances, same directions

# 4 - within same distances, any direction
(e

- no spatial constraints

Figure 5: Menu for setting spatial similarity level (ssl).
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Figure 6: Results of query computation. The user has selected to display the layer tiles
of four results.

The example database that we have used to test our system consists of the red sign layer and the composites
(all layers) of the GT3 map of Finland, which is one of a series of 19 GT maps that cover the whole area
of Finland. The red sign layer contains geographic symbols that mostly denote tourist sites. The map was
scanned at 240dpi. The layer was split into 425 tiles of size 512 x 512. These tiles were automatically
processed and symbol recognition was performed as outlined above. The logical representation of thesetiles
aswell asthephysical (raw) imagesof thelayer and compositesare stored in thedatabase. After theuser poses
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Figure 7: Displaying the selected layer tiles
(the query symbols are surrounded by a
square).

Figure 8: Displaying the selected compos-
ite tiles (the query symbols are surrounded
by a square).
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Oismiss

Figure 9: Showing the result tiles on the non-tiled map (selected tiles are a lighter color).

the pictorial query, the result of this query is displayed in awindow as seenin Figure 6. A thumbnail (i.e., a
reduced bitmap of the wholetile) is displayed for each tile that was found that meets the query specification.
Theresult tilesare displayed in decreasing order (from left to right and top to bottom) of the average certainty
value of the matches between the query-image symbols and database-image symbols. Therefore, the first
result tiles are more likely to be correct (i.e., meet the query specification) and the last tiles are more likely
to be incorrect. The user may now display any of the result tiles by selecting the corresponding thumbnails
followed by clicking either the “Display Layer” or “Display Composite” buttons. Figures 7 and 8 show the
results of clicking these two buttons, respectively. The“prev” buttonin Figure 7 and 8 is used to step through
the selected tiles. A sguare is drawn around the symbols that were part of the pictorial specification. By
clicking the “Information” button in Figure 6, the user can see the information stored regarding each of these
tiles in the database and the exact locations of the symbolsin these tiles. In addition, the user may choose
to display the non-tiled map with the query result tiles highlighted (e.g., Figure 9). The tiles corresponding
to thumbnail images that are selected in the results window are highlighted in red (dark in Figure 9), while
the remaining tiles are highlighted in green (light in Figure 9). If the result of a query liesin two tiles (e.g.,
the beach & isin onetile and the hotel @) isin another tile), then the result is composed of both thumbnails.
Selecting either one of them for display will show both tiles.

4 Resolving Matching, Contextual, and Spatial Ambiguity

In this section we describe how the matching, contextual, and spatial ambiguity inherent in pictorial queriesis
resolved by explicitly specifying therequired level of similarity between query image QI and database image



Journal of Visual Languages and Computing, 9(6), pp. 567-596, Dec. 1998. 10

DI inthesethree domains. We first definethevariouslevelsof similarity. Thisisfollowed by several examples
of pictorial queries that demonstrate the use of our pictorial specification method. We define similarity using
the following definitions. A symbol s is a group of connected pixels that together have a common semantic
meaning. A class (' isagroup of symbolsthat al have the same semantic meaning.

4.1 Matching Similarity

Matching similarity specifies how close a match between a symbol s; in the query image QI and asymbol s;
in the database image DI is required in order to consider them to be the same. The matching similarity level
msl is a number between 0 and 1 that specifies alower bound on the certainty that two symbols are from the
same class. In other words, if the certainty that s; and s, are from the same class > mdl, then s; and s, will
be considered a match. Note that the certainty that two symbolsare from the same class can be derived from
precomputed certainties output by a classifier asin our example application (see Section 3). Alternatively, if
symbols are represented in the database by a characteristic feature vector, this certainty can be computed at
query time based on the distance in feature space between the feature vectors representing the symbols. For
more details on the similarity features that we used, see [30].

4.2 Contextual Similarity

1. Every symbol in QI has a
distinct matching symbol in ? e *® )
DI, and every symbol in DI ®
has a matching symbol in QI | |cg =1 x ®
Ql DI
2. Every symbol in QI has a A
distinct matching symbol in : e * ®
DI (DI may contain ® *
additional symbols from csl=2 ® ®
any class) a oI
3. Every symbol in DI has a *
matching symbol in QI * @ *
csl=3 @
Ql DI

4. At least one symbol in QI

has a matching symbol in DI * @ @ @

(DI may contain additional ® e

symbols from any class) csl= 4 e
Ql DI

Figure 10: Four levels of contextual similarity (csl).

Contextual similarity specifies how well the content of database image DI matches that of query image QI
(e.g., do al of the symbolsin QI appear in DI). We measure contextual similarity by varying two parameters.
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Each parameter has two possible values. The first parameter indicatesif al of the symbols of QI must have
matching symbolsin DI or if asubset sufficient (i.e., whether an AND or OR of the symbolsisrequired). The
second parameter indicateswhether DI may contain symbolsthat do not match any symbol in QI. Considering
all the combinations of these two parameters, we define the following four levels of contextual similarity (see
Figure 10 for examples):

1. Every symbol in QI has a distinct matching symbol in DI, and every symbol in DI has a matching
symbol inQI.

2. Every symbol in QI has adistinct matching symbol in DI (DI may contain additiona symbolsfrom any
class).

3. Every symbol in DI has amatching symbol in QI (QI may contain additional symbolsfrom any class).

4. At least one symbol in QI has a matching symbol in DI (DI may contain additional symbolsfrom any
class) and vice versa.

Note that the definition of cdl is hot symmetric. When matching QI symbolsto DI symbols, we require a
match for each distinct symbol in QI. On the other hand, when matching DI symbolsto QI symbols, we only
require a match for each symbol classin QI (not for each distinct symbol). The rationale for this asymmetry
is to support an intuitive interpretation of multiple symbols from the same classin both QI and DI. If a user
specifically places more than one occurrence of the same symbol in QI, then most likely the intention is to
search for database images with as many (or maybe more) occurrences of this symbol. However, if a user
places only one aoccurrence of asymbol in QI, then the user most likely doesnot mind if thereismorethan one
potential match for this symbol in the retrieved database image. These cases are illustrated in the examples
in Figure 10. Nevertheless, it is possible to specify an exact number of desired symbolsin a database image
using compound queries and negation as described in Section 5 and demonstrated in Figure 24.

4.3 Spatial Similarity

Spatial similarity specifies how good a match is required in terms of the relative locations and orientation of
the matching symbols between the query and database image. In order to define spatial similarity levelswe
need to distinguish between various spatial symbol types. In our application, a symbol may correspond to a

point (e.g., amuseum ¢ ), aline (e.g., alocal road «== ), or a polygon (e.g., an open field#&= ). Thelocation
of asymbol loc(s) is defined as follows:

the (=, y) coordinate values of the center of gravity of s, when s isa point symbol

the (z, y) coordinate values of the end points of s, when s isaline symbol
loc(s) = < the(z,y) coordinate values of the upper |eft and

bottom right corners of the minimum bounding

rectangle of s whose sides are paralléel to the axes, when s is a polygon symbol

The distance between two symbols dist(s1, s2) is defined as the Euclidean distance between s; and
sp. dist(s1,s2) = 0 when the two symbols intersect (e.g., a line symbol intersects a polygon symbol).
dist(s1,s2) = —oo if one symbal is totaly enclosed in the other (e.g., a line symbol is inside a polygon
symbol). For example, the distance between alinel; and apolygon p; represented by its minimum bounding
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rectangle r1 is defined as follows:

0, when {4 intersects rq
. .} —o0, when {1 isinsider;
dist(linely, rectry): dist(l1, o), where I, isthe edge of  otherwise
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Figure 11: Possible directional relations with respect to point symbol s; for: (a) point
symbols, (b) line symbols, (c) polygon symbols represented by their minimum bounding

rectangles.
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Figure 12: Possible directional relations with respect to line symbol s; for: (a) point

symbols, (b) line symbols, (c) polygon symbols represented by their minimum bounding
rectangles.

Let rel(s1, s2) denote therelative position of symbol s, with respect to symbol s1. In our implementation,
the function rel(s1, sp) can take on one of the following values: N,NW,W,SW,S,SE,E,NE,C where N,W,SE
are the four cardina directions, NW,NE,SW,SE are the diagona directions, and C denotes coincidence.
The definition of rel(s1,s2) isin terms of loc(s1) and loc(s2), and varies depending on the types of the
argument symbols. Figures 11, 12, and 13 illustrate these relations for point, line, and polygon symbols
(represented by their minimum bounding rectangles), respectively. The figures show the region covered
by each direction as well as one example symbol in each direction. Note that in the case of lines and
polygons, any symbol that passes through a region labeled N,W,E,S is considered to satisfy that relation
with the reference symbol, whereas to be considered NE,SW,SE, or SW of the reference symbol, the symbol
must be totally enclosed in the corresponding region. All of these relations can be easily computed based
on the loc(s) attribute of each symbol. For example, assuming an origin in the upper left corner, for point
symbols: (loc,(s;) < locg(si) Alocy(s;) < locy(s;)) = NW(s;,s;). Whenever the two symbols coincide,
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Figure 13: Possible directional relations with respect to polygon symbol s; for: (a) point
symbols, (b) line symbols, (c) polygon symbols represented by their minimum bounding
rectangles.

rel(s1,s2) = C. This definition can be refined to allow more detailed cardinal directions as defined in [7].
Furthermore, a wider variety of topological relations can also be expressed by adding cases that distinguish
between the various relations (i.e. overlap, meet, etc.), rather than just using C to denote any form of
coincidence.

In defining spatial similarity, we vary two parameters, each has two possible values. The first parameter
indicates whether or not there exists a constraint on the distance between symbols. The second parameter

1. Matching symbols are
in the same location ® ®
@
ssl=1
Ql DI
2. Same relative position of
matching symbols and e =]
distance between symbols &
in DI > L and <= distance ssl=2
between matching symbols =
in QI (L=0 by default) Ql DI
3. Same relative position of
matching symbols but e &
distance between matching
symbols may vary ssl=3 ®
Ql DI
4. Relative position of matching
symbols varies but distance
between symbols in e @
DI > L and <= distance ® e
. ssl=4
between matching symbols
in QI (L=0 by default) Ql DI
5. Distance and relative position ®
between matching symbols (=)
may vary (no spatial constraints) ®
ssl=5 @
Ql DI

Figure 14: Five levels of spatial similarity (ssl).
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indicates whether or not there exists a restriction on the relative direction between symbols. Considering all
the combinations of these two parameters yields four spatia similarity levels. In addition to these four cases,
we allow the restriction that the matching symbols must be in the exact same locations. Thus, the following
five levels of spatial similarity are defined (see Figure 14 for examples):

1. The matching symbolsof QI and DI are in the exact same locationsin both images.

2. The relative position of the matching symbols of Qland DI is the same, and the distance between
them is bounded from below by some given vaue I, and bounded from above by the distance between
the symbolsin QI. By default L = 0. If L = 0, then for any symbols s;,s; € DI, 5,51 € QI,
where s; matches s, and s; matches s;, 0 < dist(s;, s;) < dist(sy,s;) (i.e, itisarange search). If
L = dist(sg, s1), then dist(s;, s;) = dist(sy, s;) (i.e, itisan exact distance search).

3. Thereative position of the matching symbolsof QI and DI isthe same, but the distance between them
may vary.

4. The relative position of the matching symbols of QI and DI may vary, but the distance between them
is bounded from below by some given value I, and bounded from above by the distance between the
symbolsin QI. By default . = 0.

5. The location of the matching symbols, the distance between them, and the relative position of these
symbolsmay vary (i.e., ho spatial constraints).

4.4 Total Image Similarity

The total similarity between QI and DI is defined by combining the three similarity factors. For example,
DI =¢573 QI specifiesthat the matching, contextual, and spatial similarity of thetwoimagesisat levels0.5,
2, and 3, respectively. That is, for each symbol in QI thereis amatching symbol with a certainty > 0.5 from
the sameclassin DI, thelocation of the symbolsand the distance between them may vary, but theinter-symbol
spatial relationship between them is the same. In generdl, if DI =, 01,551 @1 and if 57 isthe set of al the
symbolsof DI that match some symbol in ¢) I with acertainty > msl, then the set of classes of the symbols
of 5 isasubset of the set of classes of the symbols of Q1. Furthermore, for every pair of symbols s; and
sp € 5, the spatia constraints dictated by ssi and the positions of the matching symbolsin @ I hold. In other
words, the spatial constraints must simultaneously hold between all of the matching symbols that appear in
both query and database images. Note however, that 5, the set of al symbols of DI, is not hecessarily a
subset of the set of classes of symbolsof 1.

45 Example Queriesvaryingcd

Figure 15 demonstrates the use of different contextual similarity levelsfor query specification. In al of these
gueries we assume that ssl = 5 (i.e., no spatial constraints are imposed). We do not specify mdl in these or
any other example queries since its use is straightforward and does not require further illustration. Query Qa
requests all imagesthat contain asite of interest % , abeach &, amuseum @ , and no other symbols. Query
Qb requests al images that contain a site of interest % , atwo-laneroad ==, and at least one other symbol
(there may be more). Query Qc requests all images that contain abeach &, or ascenic view = , or an open

field #= (an image may contain both) but no other symbols. Query Qd requests dl imagesthat contain a site

of interest % , or abeach & , or amuseum @ (an image may contain one or al of them as well as other
symbols).
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Figure 15: Pictorial queries demonstrating the use of different contextual similarity
levels. The question mark (2] symbol denotes a wild card (i.e., any symbol matches it).

4.6 Example Queriesvarying sd

=2 =2
=2 <=3
Q2 Q3
w4 @) @3 ®
: LW
cd=2 cdl =2
s=4 =4
Q4 Q5

Figure 16: Pictorial queries demonstrating the use of different spatial similarity lev-
els. “csl” denotes contextual similarity level, “ssI” denotes spatial similarity level. The
question mark (2] symbol denotes a wild card (i.e., any symbol matches it).

Figure 16 demonstrates the use of different spatial similarity levels for query specification. In al of these
queries we assume csl = 2 (i.e., every symbol in the query image has a distinct matching symbol in the
databaseimage). Query Q1 requests all imagesthat contain a picnic site @ within 2 miles of an open field &z
. Query Q2 requests images with a site of interest % and any symbol within 2 miles and southeast of the
site of interest % . Query Q3 requests all images that contain an airport & northeast of a beach & . Query
Q4 requests images that contain a picnic site @ within 2 miles of aloca road =« and within 4 miles of a
scenic view = , and the scenic view = iswithin 5 miles of the local road === . Query Q5 requestsimages that
contain a museum & within 3 miles of of two local roads === that intersect. Observe that the condition that
the two local roads «# intersect is specified by positioning the corresponding symbolsin the query image so
they intersect and setting ssl = 4 (i.e., the distancein the database image is bound from above by the distance
in the query image). Since the distance between the two roads in the query image is 0, the distance in the
database image must also be 0. Therefore, local roads««: in the database image must also intersect. Note that
the dotted lines with the distance label that appear in the query imagesin Figure 16 are only used to denote
the distance between symbolsin the figure; they are not actually part of the query image. The query image
only contains symbols. The distance (and relative directions) between the symbolsis specified implicitly in
the query image QI by the actual distance (and relative direction) between the symbolsin QI provided that the
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gpatial similarity level specifies that they are to be taken into account in computing the response to the query.
Since the distances are inferred from the query image, it is currently up to the user to gauge the required
distance in image space in order to specify aquery such as find images with a hotel within 1 mile of a beach.
We are currently working on incorporating scaleinto our tool and displaying the “real world” distances asthe
symbols are moved when the distance constraint is set.

5 Expressive Power: Compound Queries and Negation

So far we have described how to construct an individua query image and resolve the matching, contextual,
and spatia ambiguity by specifying mdl, cdl, and sdl. In this section we show how we add expressive power
to our graphic specifications via compound queries and negation. A pictoria specification may be composed
of severa query images. The query images can be joined with AND and OR operators. In addition, a query
image can be negated with the NOT operator in order to specify negative conditions. The semantic meaning
of these operators is given by taking the conjunction, disjunction, or negation of the conditions specified by
each individua query image as follows:

OR: [DI = (QI, OR QI,)] = (DI = QI,)V (DI = QL)
AND: [DI = (QI; AND QL) = (DI = QI,) A (DI = QI,)
NOT: [DI = NOT (QI)] = ~(DI = QI )

In the case of the conjunction of query images where the same symbol appears in both query images, the
user may specify whether the two query-symbols must match the same instance of the symbol in the database
image, or whether two different instances are alowed. As mentioned in Section 3, in order to bind two
guery-symbolsto the same database symbol, the user selects the symbol for the second query image from the
first query image, rather than selecting it from the menu of symbols. Let bound(s;, s;) denote that symbols
s; and s; have been bound to each other in thisway, and let s; = s; denote that s; is the symbol in query
image QI found to match symbol s; in database image DI. That is, when determining which symbols of DI
arefrom the same class as the symbolsof QI, s; was determined to be equivalent to s;. The semantic meaning
of the AND operator isnow augmented with the following condition: Vi, j, k,[(s; € QI; As; € Qlz A sy, €
DI A sp € DI A bound(s;,sj) AN s; = sp\s; =)= s = 5.

& ®

6@ AND ®
csd =2 csd =4
ss=4 ss =5

Figure 17: A pictorial query to “display all images with a hotel @) within 6 miles of a
beach & and with a cafe®) or a restaurant & .

Compound queries can be used to specify more complex queries. In particular, two separate query images
with different values of csl and ssl can be combined via the AND operator to specify a query with spatial

2Although the use of NOT, in general, may lead to unsafe queries (i.e., queries that explode with infinitely many answers), thisis
not the case here since the set of all possible answersisfinite asit correspondsto all of the images in the database
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Figure 18: A pictorial query to “display all images with a camping site @ within 5 miles
of a fishing site = OR with a hotel @ within 10 miles of a fishing site < AND with an
airport @ northeast of and within 7 miles of the fishing site <"

constraints between some symbols, but with no spatial constraints between other symbols. For example,
consider the query in Figure 17 which reguests “all images with a hotel @ within 6 miles of a beach & and
with a cafeid) or arestaurant ® ”. No spatial constraints are specified for the restaurant ® and cafei) symboals;
however, the hotel @ must be within 6 miles of abeach & . Notice that each query image component has
adifferent csl value associated with it. Thus, the first component requests images containing both symbols,
whereas the second component reguests images containing either symbol. Compound queries can also be
used to specify more than one acceptable spatial constraint. For example, the query “display all images with
acamping site@ within 5 miles of a particular fishing site < OR with a hotel @ within 10 miles of the same
fishing site = AND with an airport @ northeast of and within 7 miles of the same fishing site @ " can be
specified as shown in Figure 18. Recall that we use a color coding scheme to denote that two query-image
symbols are bound to the same instance in the database image (i.e., thefishing site @ in this example). That
is, two symbolsthat have the same non-black color are bound, whereas black symbolsare not bound.

® ® ®
NOT NOT NOT -
csl=2 csl=4 @ csl=2
ssl=5 ssl=5 ssl=5
Q1 Q2 Q3

Figure 19: Pictorial queries using negation. Q1: “images with no hotel@) "; Q2: “images
that have neither a beach & nor a hotel @ ”; Q3: “images that do not have a beach &
or do not have a hotel @ ".

@ AND @

NOT
csl=2 csl=2
ssl=5 ssl=5

Figure 20: A pictorial query to “display all images with a beach & but with no hotel @) ”.

Negation of queries can be used in order to specify conditionsthat should not be satisfied by the database
images that are retrieved successfully. Figure 19 demonstrates how negation can be used to expressretrieval
of images that do not contain a particular symbol, a pair of symbols, or one of two symbols. Query Q1
reguests “images with no hotel @ ”, Query Q2 requests “images that have neither a beach & nor a hotel @)
", while query Q3 requests “images that do not have a beach & or do not have a hotel @ ”. Negation in
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e ®

AND

NOT
csl=4 @ csl=2 @

ssl=5 ssl=5

Figure 21: A pictorial query to “display all images with either a beach & or a hotel @
but not both”.

e AND 0>
@ NOT @

csl=2 csl=2

ssl=4 ssl=4

Figure 22: A pictorial query to “display all images with a hotel @) within 6 miles of a
beach & and with no first aid station @ within 0.5 mile of the beach & ”.

conjunction with compound gueries can be used to specify both positive and negative conditionsasisthe case
for the query in Figure 20 which requests “images that do have abeach& , but do not haveahotel @ ”. Using
negation in conjunction with varying csl values makes it possible to specify an XOR condition asis the case
for the query in Figure 21 which requests “images that have either a beach &, or ahotel @ , but not both”.
Compound queries with symbol binding and negation can be used to specify more than one spatia condition
for the same symbol asisthe case for the query in Figure 22 which requests “ all images with a hotel @ within
6 miles of a beach & and with no first aid station @ within 0.5 mile of the beach & ”. Another application
of compound queries with symbol binding and negation is to to specify distance constraints in terms of an
upper bound. For example, the query in Figure 23 requests “dl images with a camping site @ further than
1 milefrom abeach & ”. Thefirst component of the query requests images with a beach & and a camping
site @ . The second component of the query requests images with a camping site @ within 1 mile of the
beach & . The two components of the query are composed with the “AND NOT” operator, thus the entire
guery requests images that have a beach & and acamping site@ , but not within 1 mile of each other. Notice
that the beach & and camping site @ symbols of the second component of the query image are bound to
their counterpartsin the first component of the query. Thisis necessary in order to ensure that the two query
componentswill match the same symbol instance and thus every pair of beach& and camping sited@ symbols
must be further than 1 mile apart.

AND -1
MoT :
cal=2 cal=2
gsl=5 ssl=4

Figure 23: A pictorial query to “display all images with a camping site @ further than 1
mile from a beach & .
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Figure 24: A graphical query to (a) “ display all images that contain a beach & and at
least two hotels @ ", (b) “ display all images that contain at least three hotels @ ", (c) “
display all images that contain a beach & and exactly two hotels @ "

In the example queries that we have seen so far, thereis only one instance of each symbol in each query
image. Our pictoria specification method does, however, alow multiple instances of each symbol. This
is useful in order to specify the number of occurrences of a particular symbol that are required in a target
databaseimage. According to the definition of cdl (see Figure 10), if cdl isset to 1 or 2, then every symbol in
QI has adistinct matching symbol in DI. Thus, if there are two instances of asymbol in QI, and csl is set to
1 or 2, then there must be at least two instances of this symbol in DI for it to satisfy the query. For example,
the query in Figure 24arequests “images that contain a beach & and at least two hotels @ ”. If we want to
restrict ourselves to a beach & and two hotels @ , then we create a compound query that combines finding
a beach @ with at least two hotels @ with the negation of a query that finds al “images with at least three
hotels@) " (Figure 24b). Theresulting query isshownin Figure 24c and corresponds to the query that finds
al “imagesthat contain a beach & and exactly two hotels@ ”.

AND 2 AND 2
cal =2 S cal =2 S cel=2 cel=2 R

szl =4 aal=5 ggl=4 ssl=4

(a) (b)

Figure 25: A pictorial query to “display all images with two different local roads#:: within
2 miles of a museum ) ".

Another use of compound queries with multiple instances of symbolsis one where we impose different
constraints on the spatial relationship between the different symbols. In particular, in the current implemen-
tation, given a query image and a spatial constraint, all symbolsin the image must satisfy it. For example,
suppose that want to find all “images with two different local roads === so that each of the roads is within
2 miles of amuseum ¢ ”. At afirst glance, it would appear that we can specify this query by use of the
graphical query given in Figure 25a. In this case, csl isset to 2 as we allow the databases images to contain
symbolsfrom other classes and sl is set to 4 as we are restricting the distance between the two local roads:
and the museum & . Unfortunately, the graphical query givenin Figure 25awill not satisfy our desired query.
The problem isthat the graphical query in Figure 25a places a distance constraint on the distance between the
two local roads=# as well whereas thereis no such constraint in our query. In essence, we have encountered
one of the shortcomings of our query languagein the sense that the spatial constraints must either hold for all
of the symbolsin the query image or for none of them. What we want is a partial specification of the spatial
constraints.
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The above shortcoming can be overcome by decomposing the query into three components as shown in
Figure 25b and using object binding to ensure that the components use the same instances of the various
symbols. In this case, the first component specifies the contextual similarity condition that the image contain
amuseum & and at least two local roads == (as well as possibly other symbols) with no spatial similarity
constraints (i.e., cd isset to 2 and s9l is set to 5). The remaining two components correspond to the two
gpatial conditions. In particular, one component specifies that the distance between the museum ¢ and one
of the local roads === , while the second component specifies the distance between the museum @ and the
other local road«== . Notice the use of different colors (dark gray and light gray) for thelocal roads«=« in the
first component and gray for the museum ¢ . The museums ¢ in both the second and third components are
shown in gray indicating that they are bound to the same instance of the museum @ in the first component.
The locd roads === in the second and third components are shown in light gray and dark gray respectively,
indicating that they are bound to the corresponding different instances in the first component.

6 Pictorial Query Processing

In this section we describe how pictoria queries can be processed efficiently in an image database. In
particular, we present an agorithm for retrieving all database images that conform to a given pictorial query
specification. In order to execute the algorithm efficiently, the image database must have indexes that enable
thefollowing operations: (i) retrieve al imagesthat contain symbolsof agiven class; (ii) retrieve all symbols
in a given image; (iii) retrieve all symbols within a given distance or direction from a given point. In our
database, the first two indices are realized with a B-tree. The ability to retrieve al symbols within a given
distance or direction from agiven point is achieved by use of an index on thelocations of the set of al symbols
in al of theimages. Thisindex isimplemented using aPMR quadtree for points[16].

Thefirst step in finding al database images that conform to a pictorial query specification is to process
each component query image QI that is part of the pictoria query specification individualy. Thisisdoneby a
function called GetSmilarlmagesthat takes as input a query image (Ql), the matching similarity level (msl),
the contextual similarity level (cdl), and the spatia similarity level (ssl) associated with QI. It returns the set
of database images k1 such that each image DI € RI satisfies the pictoria query (i.e., DI =,.51,c51,551 @1
for al DI € RI). Figure 26 summarizesthisalgorithm. The algorithm assumes only one instance of each class
in the query image as well as in the database image. We briefly discuss how to deal with other cases at the
end of this section. For the purpose of simplicity, we assume that in al queries that involve spatial distance
constraints, 7, thelower bound for the distance alowed between symbolsin the database image, is0. That is,
0 < dist(s;,s;) < dist(sy,s;), where s; and s; are database image symbols and s, and s; are query image
symbols, respectively.

In the following algorithms, L1 is the logical image representation of the query image QI. The logical
imagerepresentation .1 of animage 7, isalist of elementsfor each symbol s € 1. Eacheementisof theform:
{(C, certainty), loc} where C isthe classification of s, loc isthelocation of s in 7, and 0 < certainty < 1
indicates the certainty that s € C'. The classification, C', of a specific lement el € LI isdenoted by C'(el).
The location of a specific element el € LI is denoted by loc(el). The matching, contextual, and spatial
similarity levelsare denoted by mdl, csl, and ssl respectively. |I| denotesthe number of elementsin thelogical
image I (i.e, its cardinality). GetSmilarlmages constructs a set of candidate images from the database in
which the symbols match those of the query image with acertainty > ms/ and the contextua constraints hold
and then invokes function CheckSsl for each candidate image to determine if the spatial constraints dictated
by sdl hold init. Animagein which the spatial constraints do not hold is removed from the candidate-image
set. Compound queries are resolved by combining the result image sets{ R 1} of each query component Q1,
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according to the operators that join the query components. Letting { K11} and { RI,} denote the results of

query components Q1, and Q1,, respectively, and letting { A} denote the set of al images in the database,
we have:

QI AND Qly = {RI1} N {RI2}

NOT Ql; = {A} — {RI1}

Finally, we need to check for the bound symbol condition. That is, Vi, j, k,I(s; € QI1 A s; € QI A sy €
DI Ns; € DI Nbound(s;,s;)Ns; = spNs; = s;) = s = 5. Thisisdone by comparing thelogical image

representation of the result images when computing set intersections, and only including imagesin which the
same database-image symbol was matched to the two bound query-image symbols.

CGetSinmilarlmages(logical inmage Ql, sinilarity |evel msl, esl, ssl)

n—0
[* check matching similarity */
foreach el € QI

r, — set of all images containing C(el) with certainty > md
(use index on class)
n—n+1

/* check contextual similarity */
if (esl=1)V(esl=2) then
RIFQ?:_ol”
elseif (esl=3)V(esl=14)
RIFU?:_ol”
if (esl=1)V(esl=3) then
RI — RI—{I s.t. set of all elenents of I (use index on image.id)
i ncl udes synbols not fromclasses in Ql}
/* check spatial similarity */
RI— RI—{I s.t. spatial constraints dictated by ss/ do not hold
(call Checksd) }
/* order by closeness of matching */
return RI ordered by average certainties

Figure 26: Algorithm GetSmilarimagesto get all database images that are similar to a
given query image (QIl) following the constraints dictated by the matching (md), contex-
tual (cd), and spatial (sdl) similarity levels. Assumes one instance of each class in QI
and DlI.

Algorithm CheckSsl determines whether the spatia constraints dictated by a query image QI and spatial
similarity level ssl hold in an image DI. Figure 27 summarizes this algorithm. The input to CheckSsl is QI’
and DI’ which are sub-images of the origina QI and DI that contain only those symbols that were matched
to each other by GetSmilarlmages when checking the contextual constraints. Thus, the set of classes of the
symbolsof DI’ and QI’ isidentical.
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CheckSsl (l ogical image DI, Ql, simlarity |evel ssi)

if sst=5v|DI|=1then /* no need to check anything */
return TRUE
/* conpute distances and relative |ocation between QI synbol s*/
foreach gely € QI
foreach gel, € QI — {qel1}
if (ssl=2)Vv(ssl=4) then
dists[cl(qelr), cl(gelz)] — get Dist(loc(qelr), loc(gelz))
if (ssl=2)Vv(ssl=3) then
relDirs[cl(qely), cl(qely)] — get Reldir(loc(gely), loc(qelz))
/* now check that these hold in the input inmage */
foreach dely € DI
foreach del, € DI — {dely}
if (ssl=2)Vv(ssl=4) then
i f getDists(loc(dely),loc(delz)) > dists[el(dely), cl(delz)] then
return FALSE
if (ssl=2)Vv(ssl=3) then
i f getReldirs(loc(dely),loc(dely)) # relDirs[el(dely), cl(delz)] t hen
return FALSE
return TRUE /* everything is OK */

Figure 28 is an example of the use of CheckSsl. Note that the dotted linesin QI represent the maximal
distance between the symbols as specified implicitly by QI, while the solid lines in DI represent the actual

Figure 27: Algorithm CheckSd to determine whether the spatial constraints dictated by
a query image QI and spatial similarity level s3 hold in a logical image DI. CheckSsl
assumes one instance of each class in QI and DI and that L, the lower bound on
distance between symbols, is = 0.

22

distance between the symbolsin a particular database image. In this case, query QI’ requests images with a
beach & , hotel @) , picnic site @ , and site of interest % (the image may contain one or al of them aswell as
other symbolssince csl = 4). In addition, the distances between the subset of these symbolsthat appear in
the database image must be less than or equal to those specified in QI asindicated by the labels on the dotted

3.0y 8.7
*5 @ ()4 X
AN () L 2/ N5
csl=4 @ > i @ 5
ssl=4 ssl=4
Ql DI Ql’ DI
@ (b)

Figure 28: (a) Query image QI and database image DI. (b) The corresponding sub-
images QI' and DI’ that contain only the matching symbols.
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lines (e.g., the beach & must be within 3 of the site of interest % , within 4 of the hotel @ , and within 6 of
the picnic site @ ). Thereisamatch in DI only for query-image symbols beach & , picnic site @ , and site
of interest % . Thus, QI' and DI’ only contain these symbols, and CheckSsl will check the spatia constraints
among them. The algorithm first computes the distance and/or the rel ative directions between the symbol s of
QI'. It then computes them for DI’ and checks whether the required spatia constraints between each symbol
pair in DI’ hold. For the example in Figure 28, CheckSsl would return FALSE since the constraint that the
distance between the site of interest * and the beach & is < 3 imposed by QI does not hold in DI (where
the distance between these two symbolsis 5), and since according to the definition of =, 5 c51,551 N Section 4
the gpatia constraints must hold simultaneously between al of the symbols that appear in both query and
database images. In order to specify that just some of the spatial constraints hold, we would need to split the
guery into adisjunction of several queriesthat specify the permissible combinations.

In the algorithms, as described in Figures 26 and 27, we only allowed one instance of each class in both
the query image and the database image. If we allow more than one instance of each class in the database
image, then CheckSsl as we have presented it is incorrect. We have devised a method that allows more than
oneinstance of each classin the database image (while still requiring only one instance from each classin the
guery image). Thismethod makes use of an auxiliary graph data structure. The running timeof thisalgorithm
is exponentid in the number of symbolsin the query image. It isnot influenced by the number of symbolsin
the database image. We do not describe this method here; see [28] for the details.

The agorithm presented above isarelatively naive solution to pictorial query processing. Thisagorithm
deals with each constraint imposed by the pictorial query individually. Namely, it first performs symbol
matching and then it resolves the contextual constraints. Next it resolves the spatial constraints. Finally, it
appliesthe operators and checksfor symbol binding. Theformal analysisof the complexity of thisapproachis
beyond the scope of thispaper. There are clearly more efficient waysto proceed in pictorial query processing.
In [29], four additional algorithmsfor function GetSmilarlmages are discussed. These agorithms handlethe
contextua and spatial constraints simultaneously in order to achieve better pruning of the search space in the
early stages of query processing. Other optimization techniquesthat may be applied to improve the efficiency
of processing pictoria queries involve changing the order of processing of the individual query imagesin
order to execute the parts that are more selective first, and combining individual query images and processing
them together. These and other query optimization issues are the subject of future research.

7 Concluding Remarks

A pictorial query specification technique that enables the formulation of complex pictorial queries for image
databases has been described. Using thistechnique, itispossibleto specify which objects should appear inthe
target images as well as how many occurrences of each object are required. Moreover, spatial constraints can
beimposed that specify boundson the distance between objects, aswell astherelative direction or orientation
between objects. As part of the pictoria specification, the user indicates the degree of desired similarity, and
thus the results of theimage retrieval are not subjective. Expressive power isachieved by combining severa
guery imagesinto a compound pictorial query specification and by providing the capability of object binding
in order to specify whether the same instance of an object is to be used in the case of a conjunction of two
guery images. An agorithm for processing such pictorial queries has been outlined. The efficiency of this
algorithm can be improved by employing some of the suggested query optimization techniques. We have
used this pictorial query specification method to build a query interface for a map image database system.

Whileit is possible to express rather complex queries using our method, there are some conditions that
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cannot be specified. In particular, we cannot specify conditions involving the location of certain events
between abjects. For example, in Figure 16, we showed how to specify the condition “museum ¢ within
3 miles of two loca roads == that intersect”. However, we cannot specify that we want the museum @&
to be within 3 miles of the point where these two local roads === intersect. In addition, athough we take
the extent of objectsinto account in distance and relative position computations, we do not consider the size

or direction of the object itself. For example, we cannot specify “an open field #= whose areais at least 1
square mile” or “alocal road=# that goes from north to south”. Finally, we cannot qualify objectsin terms of
non-spatial conditions. For example, we would like to specify “hotels whose price isless than $80 per night”.

Incorporating these features into our pictorial query specification method is a subject for future research.
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