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Why Sorting of Spatial Data is Important

o

m Most operations invariably involve search
B Search is sped up by sorting the data

W sort - Definition: verb
1.
2.

B Examples
1.

to put in a certain place or rank according to kind, class, or nature
to arrange according to characteristics

Warnock algorithm: sorting objects for display
® vector: hidden-line elimination
B raster: hidden-surface elimination

Back-to-front and front-to-back algorithms

BSP trees for visibility determination

Accelerating ray tracing and ray casting by finding ray-object
intersections

Bounding box hierarchies arrange space according to whether
occupied or unoccupied

Copyright 2012 by Hanan Samet



Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
B sort people by weight and find b ©
o

closest in weight to Bill and can
also find closest in weight to Larry ¢ ®

m sort cities by distance from Chicago ¢ o
and find closest to Chicago but can- a ®
not find closest to New York unless L
resort

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

B point a = {a;|1 < i < d} dominates point b = {b;|1 < i < d} if
a; <b;,1<i<d.

3. Only solution is to linearize data as in a space-filling curve
W sort is explicit
B need implicit sort so no need to resort if reference point changes

Copyright 2012 by Hanan Samet
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Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data

B sort people by weight and find b : °
closest in weight to Bill and can C ¢
also find closest in weight to Larry A
m sort cities by distance from Chicago 1o %
and find closest to Chicago but can- I g ®
not find closest to New York unless ®---=-=-==-.
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2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

B point a = {a;|1 < i < d} dominates point b = {b;|1 < i < d} if
a; <b;,1<i<d.

M 2 does not dominate b
3. Only solution is to linearize data as in a space-filling curve
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B need implicit sort so no need to resort if reference point changes
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Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data

B sort people by weight and find b : °
closest in weight to Bill and can C ¢
also find closest in weight to Larry A
m sort cities by distance from Chicago ' %
and find closest to Chicago but can- I g ®
not find closest to New York unless ®---=-=-==-.

resort

2. Hard for two-dimensions as higher as notion of ordering does not exist
unless a dominance relation holds

B point a = {a;|1 < i < d} dominates point b = {b;|1 < i < d} if
a; <b;,1<i<d.

M 2 does not dominate b but dominates c
3. Only solution is to linearize data as in a space-filling curve
W sort is explicit
B need implicit sort so no need to resort if reference point changes
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Example Queries in Line Segment Databases

1. Queries about line segments
B All segments that intersect a given point or set of points
B All segments that have a given set of endpoints
B All segments that intersect a given line segment
B All segments that are coincident with a given line segment

2. Proximity queries
B The nearest line segment to a given point
B All segments within a given distance from a given point (also known as
a range or window query)
3. Queries involving attributes of line segments
B Given a point, find the closest line segment of a particular type

®m Given a point, find the minimum enclosing polygon whose constituent
line segments are all of a given type

m Given a point, find all the polygons that are incident on it

Copyright 2010: Hanan Samet Location, Location, Location — p.7/30
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What Makes Continuous Spatial Data Different?

1. Spatial extent of the objects is the key to the difference

2. Arecord in a DBMS may be considered as a point in a multidimensional space
B A line can be transformed (i.e., represented) as a
point in 4-d space with (x1,y1,x2,y2)

(x1,y1)
B Good for queries about the line segments \

B Not good for proximity queries since points outside (x2,y2)
the object are not mapped into the higher dimen-

sional space A
B Representative points of two objects that are physi- \
cally close to each other in the original space (e.g., fB

2-d for lines) may be very far from each other in the
higher dimensional space (e.g., 4-d)

B Problem is that the transformation only transforms the space occupied by
the objects and not the rest of the space (e.g., the query point)

m Can overcome by projecting back to original space

3. Use an index that sorts based upon spatial occupancy (i.e., extent of the ob-
jects)

Copyright 2010: Hanan Samet Location, Location, Location — p.8/30
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Spatial Indexing Requirements

1. Compatibility with the data being stored
2. Choose an appropriate zero or reference point

3. Need an implicit rather than an explicit index
a. impossible to foresee all possible queries in advance

b. cannot have an attribute for every possible spatial relationship
I. derive adjacency relations
ii. 2-d strings capture a subset of adjacencies
A. all rows
B. all columns

c. implicit index is better as an explicit index which, for example, sorts
two-dimensional data on the basis of distance from a given point is
impractical as it is inapplicable to other points

d. implicit means that don’t have to resort the data for queries other than
updates

Copyright 2010: Hanan Samet Location, Location, Location — p.9/30
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SORTING ON THE BASIS OF SPATIAL OCCUPANCY

« Decompose the space from which the data is drawn into
regions called buckets (like hashing but preserves order)

* Interested in methods that are designed specifically for
the spatial data type being stored

« Basic approaches to decomposing space

1. minimum bounding rectangles

* e.g., R-tree or AABB (axis-aligned) and OBB
(arbitrary orientation)

» good at distinguishing empty and non-empty
space
» drawbacks:
a. non-disjoint decomposition of space
* may need to search entire space
b. inability to correlate occupied and unoccupied
space in two maps
2. disjoint cells
« drawback: objects may be reported more than once
 uniform grid
a. all cells the same size
b. drawback: possibility of many sparse cells
» adaptive grid — quadtree variants
a. regular decomposition
b. all cells of width power of 2
 partitions at arbitrary positions
a. drawback: not a regular decomposition

b. e.g., R*-tree

« Can use as approximations in filter/refine query
processing strategy

Copyright 2008 by Hanan Samet 13
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MINIMUM BOUNDING RECTANGLES b

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Drawback: not a disjoint decomposition of space

Object has single bounding rectangle, yet area that it

spans may be included in several bounding rectangles

Examples include the R-tree and the R*-tree

Order (m,M) R-tree

1. between m < [M/2]| and M entries in each node
except root

2. atleast 2 entries in root unless a leaf node

Copyright © 2007 by Hanan Samet
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MINIMUM BOUNDING RECTANGLES b

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Drawback: not a disjoint decomposition of space

Object has single bounding rectangle, yet area that it

spans may be included in several bounding rectangles

Examples include the R-tree and the R*-tree

Order (m,M) R-tree

1. between m < [M/2]| and M entries in each node
except root

2. atleast 2 entries in root unless a leaf node

R3:[a]b] Ra:[dJgTh] Rs:[c]i] Re:[e]f]
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MINIMUM BOUNDING RECTANGLES b

* Objects grouped into hierarchies, stored in a structure
similar to a B-tree

* Drawback: not a disjoint decomposition of space
* Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles
* Examples include the R-tree and the R*-tree
* Order (m,M) R-tree
1. between m < [M/2]| and M entries in each node
except root
2. atleast 2 entries in root unless a leaf node

R3
b
~ a
R4
h

R5

g 26 ©
i
d
L/ |
\C

R3:[a]b] Ra:[dJgTh] Rs:[c]i] Re:[e]f]
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MINIMUM BOUNDING RECTANGLES b

* Objects grouped into hierarchies, stored in a structure
similar to a B-tree

* Drawback: not a disjoint decomposition of space
* Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles
* Examples include the R-tree and the R*-tree
* Order (m,M) R-tree
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SEARCHING FOR A POINT OR LINE b
SEGMENT IN AN R-TREE

« Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

RO:|R1|R2

R1:|R3]R4 R2:R5]R6

R3:la|]b R4:]d ]9 ] h R5:lc | i Re:le] f

Copyright © 2007 by Hanan Samet
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SEARCHING FOR A POINT OR LINE b
SEGMENT IN AN R-TREE

« Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

RO:EE

R1:|R3]R4 R2:R5]R6

R3:la|]b R4:]d ]9 ] h R5:lc | i Re:le] f
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SEARCHING FOR A POINT OR LINE rvb
SEGMENT IN AN R-TREE

o Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

RO:EE
R3]R4 ro[R5]R6

R3:la|]b R4:]d ]9 ] h R5:lc | i Re:le] f

e Q can bein both R1 and R2
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SEARCHING FOR A POINT OR LINE rvb
SEGMENT IN AN R-TREE

o Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

Ro: [1Fe]
@I;_gﬁl R2[R5]R6

R3:la|]b R4:]d ]9 ] h R5:lc | i Re:le] f

e Q can bein both R1 and R2
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SEARCHING FOR A POINT OR LINE rvb
SEGMENT IN AN R-TREE

o Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

RO:EE
N
N\ /

R3:la|]b R4:]d ]9 ] h R5:lc | i Re:le] f

e Q can bein both R1 and R2
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O DISJOINT CELLS hi33©

* Objects decomposed into disjoint subobjects; each
subobject in different cell

* Techniques differ in degree of regularity

* Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

* R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

Copyright © 2007 by Hanan Samet
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* Objects decomposed into disjoint subobjects; each
subobject in different cell

* Techniques differ in degree of regularity

* Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

* R+-tree (also k-d-B-tree) and cell tree are examples

of this technique
b
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* Techniques differ in degree of regularity
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hi33.10

Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes
Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

When a node overflows, it is split along one of the axes
Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2007 by Hanan Samet
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K-D-B-TREES

hi33.10
r

Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes
Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

When a node overflows, it is split along one of the axes
Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

R3d|g|[h|Ralc|h]i|R5[c|[f]i|R6lalble]il]
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K-D-B-TREES 2 b

Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

When a node overflows, it is split along one of the axes

Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

R3 R4f||R6
R1 R2
b
h . e
g
d i
f

Q
Al
C —
r1:[Ra]Ral r2:[R5[Re]
R3:{d|g|h|R4fc|h|i|R5|c|[f|]i|R6jalble]i]
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Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

When a node overflows, it is split along one of the axes

Originally developed to store points but may be extended
to non-point objects represented by their minimum
bounding boxes

Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

R3 R4f||R6
R1 R2
b
h . e
g
d i
f

Q
Al
C —
r1:[Ra]Rdl r2:[R5[Re]
R3:{d|g|h|R4fc|h|i|R5|c|[f|]i|R6jalble]i]
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UNIFORM GRID

» |deal for uniformly distributed data

e Supports set-theoretic operations

* Spatial data (e.g., line segment data) is rarely uniformly

distributed

A

—/

[~
{

L
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QUADTREES

* Hierarchical variable resolution data structure based on
reqgular decomposition

« Many different decomposition schemes and applicable
to different data types:

points

lines

regions

rectangles

surfaces

volumes

higher dimensions including time

« changes meaning of nearest
a. nearest in time, OR
b. nearest in distance

N AW =

« Can handle both raster and vector data as just a spatial
index

« Shape is usually independent of order of inserting data
« Ex: region quadtree

« A decomposition into blocks
— not necessarily a tree!

Copyright © 2007 by Hanan Samet 11
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REGION QUADTREE

« Repeatedly subdivide until obtain homogeneous region
« For a binary image (BLACK = 1 and WHITE = 0)

- Gan also use for multicolored data (e.g., a landuse
class map associating colors with crops)

« Can also define data structure for grayscale images

* A collection of maximal blocks of size power of two
and placed at predetermined positions
1. could implement as a list of blocks each of which
has a unique pair of numbers:

» concatenate sequence of 2 bit codes correspond-
ing to the path from the root to the block’s node

« the level of the block’s node
2. does not have to be implemented as a tree
* tree good for logarithmic access

e A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

39/40
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bg4
CONVERTING BETWEEN POINTS AND CURVES

 Need to know size of image for all but the Morton
order

« Relatively easy for all but the Peano-Hilbert order
which is difficult (although possible) to decode
and encode to obtain the corresponding x and y
coordinate values

 Morton order

1. use bit interleaving of binary representation of
the x and y coordinates of the point

2. also known as Z-order

/\\
\\/

22

3. EX: at1anta (6,1)

Copyright © 2008 by Hanan Samet
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STABILITY OF SPACE ORDERING METHODS
 An order is stable if the relative order of the individual

pixels is maintained when the resolution (i.e., the size of

the space in which the cells are embedded) is doubled or
halved

 Morton order is stable while the Peano-Hilbert order is not

« EXx:

Morton: Peano-Hilbert:

ZSS S:IZ
0 1 0 1

Copyright © 2008 by Hanan Samet
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STABILITY OF SPACE ORDERING METHODS
 An order is stable if the relative order of the individual

pixels is maintained when the resolution (i.e., the size of

the space in which the cells are embedded) is doubled or
halved

 Morton order is stable while the Peano-Hilbert order is not

« EXx:

Morton: Peano-Hilbert:

10 11 14 15
9 \J2
8
13
233 2 36 7 S:Iz
0 1 0 14 5 0 1

» Result of doubling the resolution (i.e., the coverage)

Copyright © 2008 by Hanan Samet
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STABILITY OF SPACE ORDERING METHODS

« An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

 Morton order is stable while the Peano-Hilbert order is not
e EX:
Morton: Peano-Hilbert:

10 11 14 15

8
223 2 \ 7 322
0 1 0 14 5 0 1

» Result of doubling the resolution (i.e., the coverage)
in which case the circled points do not maintain the same
relative order in the Peano-Hilbert order while they do in
the Morton order

Copyright © 2008 by Hanan Samet
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DESIRABLE PROPERTIES OF SPACE FILLING CURVES

1. Pass through each point in the space once and only
once

2. Two points that are neighbors in space are neighbors
along the curve and vice versa
« impossible to satisfy for all points at all resolutions
3. Easy to retrieve neighbors of a point
4. Curve should be stable as the space grows and
contracts by powers of two with the same origin
» yes for Morton and Cantor orders
* no for row, row-prime, Peano-Hilbert, and spiral
orders

5. Curve should be admissible

« at each step at least one horizontal and one vertical
neighbor must have already been encountered

« used by active border algorithms - e.g., connected
component labeling algorithm

 row, Morton, and Cantor orders are admissible
 Peano-Hilbert order is not admissible

* row-prime and spiral orders are admissible if permit
the direction of the horizontal and vertical neighbors
to vary from point to point

6. Easy to convert between two-dimensional data and the
curve and vice-versa
« easy for Morton order
« difficult for Peano-Hilbert order

 relatively easy for row, row-prime, Cantor, and spiral
orders

Copyright 2008 by Hanan Samet
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PYRAMID

hi37

* Internal nodes contain summary of information in

nodes below them

 Useful for avoiding inspecting nodes where there could

be no relevant information

7

et 1 Ofc2c3c60  (Ofc2,c3,c4,05 O

HENEERNN~NERIIRIIRIIRONIIEN
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QUADTREES VS. PYRAMIDS

« Quadtrees are good for location-based queries
1. e.g., what is at location x?

2. not good if looking for a particular feature as have to
examine every block or location asking “are you the
one | am looking for?”

» Pyramid is good for feature-based queries — e.g.,

1. does wheat exist in region x?
« if wheat does not appear at the root node, then
impossible to find it in the rest of the structure and
the search can cease

2. report all crops in region x — just look at the root

3. select all locations where wheat is grown

» only descend node if there is possibility that wheat is
in one of its four sons — implies little wasted work

« Ex: truncated pyramid where 4 identically-colored sons
are merged

7.

" () {c1,c2,c3,c4,c5,c6}

{c1,c2,c3,

Q c4,c5,c6}
{6y L1 (Ofc2,c3,c6} () {c2,c3,c4,c5} )

A L W0 LN NFORN

{c2,c3,c5} {c1,c2,c3,c5}

HC1 &04

c2 cH o B P 7 S=
| | ||

7 3 o 1] B 2l =

« Can represent as a list of leaf and nonleaf blocks (e.g.,
as a linear quadtree)

Copyright © 2007 by Hanan Samet
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Introduction

Points

Lines

Regions, Bounding Box Hierarchies, and Surfaces
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Surfaces and Volumes

Operations

Example system

Words
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saJpenb Ju104--/£0-820

O POINT QUADTREE (Finkel/Bentley)

@hp4 O

« Marriage between a uniform grid and a binary search tree

(0,100)
(35,42)
Chicago
° g
(0,0)
Chicago

Copyright © 2007 by Hanan Samet
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saJpenb Ju104--/£0-820

" POINT QUADTREE (Finkel/Bentley) 21 hp4 O

« Marriage between a uniform grid and a binary search tree

(0,100) (100,100)

(35,42)
Chicago
o g

(52,10)

Mobile
[ ]

(0,0) (100, 0)
Chicago
Mobile

Copyright © 2007 by Hanan Samet
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POINT QUADTREE (Finkel/Bentley) hp4

« Marriage between a uniform grid and a binary search tree

(0,100) (100,100)
(62,77)
Toronto
(35,42)
Chicago
o g
(52,10)
Mobile
[ ]
(0,0) (100, 0)

Mobile

O Toronto

Copyright © 2007 by Hanan Samet
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\n4
POINT QUADTREE (Finkel/Bentley) 32[1] hp4

« Marriage between a uniform grid and a binary search tree

(0,100) (100,100)
(62,77)
‘.Toronto
)

(35,42)
Chicago
o g

(52,10)

Mobile
[ ]

(0,0) (100, 0)

Mobile

Toronto

Copyright © 2007 by Hanan Samet
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hp4
POINT QUADTREE (Finkel/Bentley) g@ g

« Marriage between a uniform grid and a binary search tree

(0,100) (100,100)
(62,77)
‘.Toronto
[ ]
(5,45) (35,42)
® Denver Chicago
L

(52,10)

Mobile
o

(0,0) (100, 0)

Mobile

Toronto
Denver
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POINT QUADTREE (Finkel/Bentley) g g@

« Marriage between a uniform grid and a binary search tree

(0,100) (100,100)
(62,77)
‘.Toronto
[ ]
(5,45) (35,42)
® Denver Chicago
L
[ ]

(52,10)

Mobile
o

(0,0) (100, 0)

Mobile

Toronto
Denver

Copyright © 2007 by Hanan Samet
48



saJpenb Ju104--/£0-820

POINT QUADTREE (Finkel/Bentley) g g@@ hpa

« Marriage between a uniform grid and a binary search tree

(0,100) (100,100)
(62,77)
‘.Toronto
[ J
(5,45) (35,42)
® Denver ‘Chicago
[ J
(85,15)
Atl t
(52,10) e -
Mobile
(0,0) (100, 0)

Toronto

Denver

Atlanta
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POINT QUADTREE (Finkel/Bentley) © & %+ 221 P4 1

« Marriage between a uniform grid and a binary search tree

(0,100) (100,100)
(62,77)
‘.Toronto
°
(5,45) (35,42)
® Denver ‘Chicago
°
(85,15)
Atl t
(52,10) e -
Mobile (90, 5)
Miami.
(0,0) (100, 0)

Toronto

Denver

Atlanta Miami

Copyright © 2007 by Hanan Samet
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@ PR QUADTREE (Orenstein) @ hp9 ()

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep
« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points
Ex:c=1
(0,100) (100,100)

(35,42)

° Chicago

(0,0) (100, 0)

Copyright © 2007 by Hanan Samet

51



sanpenb Yd--/¥0-2¥0

" PR QUADTREE (Orenstein) 23 e O

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep

« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points

Ex:c=1
(0,100) (100,100)
(35,42)
.Chicago
®(52,10)
Mobile
(0,0) (100, 0)

Copyright © 2007 by Hanan Samet
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O PR QUADTREE (Orenstein) @?@ hpS

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep

« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points

Ex:c=1
(0,100) (100,100)
(62,77)
Toronto
[
(35,42)
.Chlcago
®(52,10)
Mobile
(0,0) (100,0)

Copyright © 2007 by Hanan Samet
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" PR QUADTREE (Orenstein) hp9

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep

« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points

Ex:c=1
(0,100) (100,100)
(62,77)
Toronto
[
(]
(82,65)
Buffalo
(35,42)
.Chlcago
® (52,10)
Mobile
(0,0) (100,0)

Copyright © 2007 by Hanan Samet
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' PR QUADTREE (Orenstein) - P9

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep

« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points

Ex:c=1
(0,100) (100,100)
(62,77)
Toronto
[
(]
(82,65)
Buffalo
Denver .(Chlcago
® (52,10)
Mobile
(0,0) (100,0)
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() h N
' PR QUADTREE (Orenstein) P3O

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep

« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points

Ex:c=1
(0,100) (100,100)
(62,77)
Toronto
[
(]
(82,65)
Buffalo
Denver .(Chlcago
(27,35)'
Omaha
® (52,10)
Mobile
(0,0) (100,0)

Copyright © 2007 by Hanan Samet
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O PR QUADTREE (Orenstein) %@% hpS

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep

« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points

Ex:c=1
(0,100) (100,100)
(62,77)
Toronto
[
(]
(82,65)
Buffalo
Denver .(Chlcago
(27,35)'
Omaha
(85,15)
Atlanta
[ )
® (52,10)
Mobile
(0,0) (100,0)

Copyright © 2007 by Hanan Samet
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" PR QUADTREE (Orenstein) sl7lelslefslzy) hp3 O

1. Regular decomposition point representation

2. Decomposition occurs whenever a block contains more
than one point

3. Useful when the domain of data points is not discrete
but finite

4. Maximum level of decomposition depends on the
minimum separation between two points

« if two points are very close, then decomposition can be
very deep

« can be overcome by viewing blocks as buckets with
capacity ¢ and only decomposing the block when it
contains more than c points

Ex:c=1
(0,100) (100,100)
(62,77)
Toronto
o
[ ]
(82, 65)
Buffalo
Denver .(Chlcago
(27,35).
Omaha
(85,[15)
Atlanta
o
® (52,10) [(90,9)
Mobile Miami| @
(0,0) (100,0)
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- REGION SEARCH 3 hp10 O

e Ex: Find all points within radius r of point A

e Use of quadtree results in pruning the search space

Copyright 2008 by Hanan Samet 59
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O REGION SEARCH

@g hp10 ()

e Ex: Find all points within radius r of point A

e Use of quadtree results in pruning the search space
e |f a quadrant subdivision point p lies in a region /, then

search the quadran

1. SE 6.
2. SE, SW 7.
3. SW 8.

4. SE, NE 9.
5. SW.NW  10.

Copyright 2008 by Hanan Samet

ts of p specified by /

NE 11.  All but SW
NE, NW 12. All but SE
NW 13. All

All but NW

All but NE
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N|W

() ()
 REGION SEARCH 21 hp10 O

e Ex: Find all points within radius r of point A

1 2 3
9 10
r
5
4 oA
13
11 12

6 / 8

e Use of quadtree results in pruning the search space

e |f a quadrant subdivision point p lies in a region /, then
search the quadrants of p specified by /

1. SE 6. NE 11.  All but SW
2. SE, SW 7. NE, NW 12. All but SE
3. SW 8. NW 13. All

4. SE, NE 9. All but NW
5. SW.NW  10. Allbut NE

Copyright 2008 by Hanan Samet 61
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1 hp10 ()

4
g

N|W
=N

O REGION SEARCH

e Ex: Find all points within radius r of point A

e Use of quadtree results in pruning the search space

e |f a quadrant subdivision point p lies in a region /, then
search the quadrants of p specified by /

6. NE 11.  All but SW
2. SE, SW 7. NE,NW  12. Allbut SE
3. SW 8. NW 13. All

4. SE, NE 9. All but NW
5. SW,NW  10. Allbut NE

Copyright 2008 by Hanan Samet 62
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O REGION SEARCH

5/4/3[2[1] hp10 ()

vgzrb

e Ex: Find all points within radius r of point A

e Use of quadtree results in pruning the search space
e |f a quadrant subdivision point p lies in a region /, then

search the quadran

ts of p specified by /

1. SE 6. NE 11.  All but SW
2. SE, SW 7. NE,NW  12. AllbutSE
3. SW 8. NW 13. All

4. SE, NE 9. All but NW

5. SW,NW (0. All but NE)

Copyright 2008 by Hanan Samet
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O FINDING THE NEAREST OBJECT @ k24 O

« Ex: find the nearest object to P

12 8 7 6
oE oC
13 9 1 45
[
D P, 2A8
10 11
.F

« Assume PR quadtree for points (i.e., at most one point

per block)
» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space
 Algorithm:

Copyright © 2007 by Hanan Samet
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O FINDING THE NEAREST OBJECT @g k24 O

« Ex: find the nearest object to P

10 1

12 8 7 6
oE «C
13 9 1 455
°

« Assume PR quadtree for points (i.e., at most one point
per block)

» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to p from A

Copyright © 2007 by Hanan Samet
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O FINDING THE NEAREST OBJECT 224 O

« Ex: find the nearest object to P

12 8 7 6
oE «C
13 9 1 455
°

10 1

« Assume PR quadtree for points (i.e., at most one point
per block)

» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:
1. start at block 2 and compute distance to P from A
2.ignore block 3 whether or not it is empty as A is closer

to p than any point in 3

Copyright © 2007 by Hanan Samet
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O FINDING THE NEAREST OBJECT 224 O

« Ex: find the nearest object to P

12 8 7 6
oE oC
13 9 1 45
[ ]
0
o (rage

10 1v

« Assume PR quadtree for points (i.e., at most one point
per block)

» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:
1. start at block 2 and compute distance to P from A
2.ignore block 3 whether or not it is empty as A is closer

to p than any point in 3

Copyright © 2007 by Hanan Samet
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O FINDING THE NEAREST OBJECT 2k24 O
» Ex: find the nearest object to P
12 8 7 6
oE «C
13 9 1 455
N [ ]
D ﬁ\\ A3

10 1M

« Assume PR quadtree for points (i.e., at most one point
per block)
» Search neighbors of block 1 in counterclockwise order
« Points are sorted with respect to the space they occupy
which enables pruning the search space
 Algorithm:
1. start at block 2 and compute distance to P from A
2.ignore block 3 whether or not it is empty as A is closer
to p than any point in 3
3. examine block 4 as distance to sw corner is shorter
than the distance from P to A; however, reject B as it is
further from p than A
4.ignore blocks 6, 7, 8, 9, and 10 as the minimum
distance to them from P is greater than the distance
frompPto A

Copyright © 2007 by Hanan Samet
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O FINDING THE NEAREST OBJECT 2k24 O
» Ex: find the nearest object to P
12 8 7 6
oE oC
13 9 1 455
N [ ]

D A3

10 (AN

« Assume PR quadtree for points (i.e., at most one point
per block)

» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to P from A

2.ignore block 3 whether or not it is empty as A is closer
to p than any point in 3

3. examine block 4 as distance to sw corner is shorter
than the distance from P to A; however, reject B as it is
further from p than A

4.ignore blocks 6, 7, 8, 9, and 10 as the minimum
distance to them from P is greater than the distance
frompPto A

5. examine block 11 as the distance from P to the southern
border of 1 is shorter than the distance from P to A;
however, reject F as it is further from P than A

Copyright © 2007 by Hanan Samet
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" FINDING THE NEAREST OBJECT f‘j‘j‘;‘j‘f\; zk24 ()

» Ex: find the nearest object to P

12 8 7 6
oE «C
13 9 1 4gl5

10 1

Gy
Ne

new F

« Assume PR quadtree for points (i.e., at most one point
per block)

» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to P from A

2.ignore block 3 whether or not it is empty as A is closer
to p than any point in 3

3. examine block 4 as distance to sw corner is shorter
than the distance from P to A; however, reject B as it is
further from p than A

4.ignore blocks 6, 7, 8, 9, and 10 as the minimum
distance to them from P is greater than the distance
frompPto A

5. examine block 11 as the distance from P to the southern
border of 1 is shorter than the distance from P to A;
however, reject F as it is further from P than A

« |f F was moved, a better order would have started with
block 11, the southern neighbor of 1, as it is closest

Copyright © 2007 by Hanan Samet
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O K-D TREE (Bentley) @ hp15 ()

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100,100)
(35,42)
.Chlcago
(0,0) (100, 0)
Chicago
[

Copyright © 2007 by Hanan Samet
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-~ K-D TREE (Bentley) 21} hptS O

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100,100)
(35,42)
PS Chicago
(52,10)
Mobile
]
(0,0) (100, 0)

Chicago

X test
Mobile

Copyright © 2007 by Hanan Samet
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K-D TREE (Bentley) Zr

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100, 100)

(62,77)
Toronto

(35,42)

PS Chicago

(52,10)
Mobile
e

(0,0) (100, 0)
Chicago
X test

Mobile
y test

Toronto

Copyright © 2007 by Hanan Samet
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K-D TREE (Bentley) g@

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100, 100)

(62,77)
Toronto

(35,42)

PS Chicago

(52,10)
Mobile
e

(0,0) (100, 0)
Chicago
X test

Mobile
y test

Toronto
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K-D TREE (Bentley)

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100, 100)

(62,77)
Toronto

(5,45)
Denver

™ (35,42)
PS Chicago

(52,10)
Mobile
e

(0,0) (100, 0)
Chicago

X test

Denver Mobile

y test

Toronto

Copyright © 2007 by Hanan Samet

5/43[2)1] hp15 ()
vgzrb

75



991} P-4--L50-8¥0

K-D TREE (Bentley) ? ?@Q

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100, 100)

(62,77)
Toronto

a (35,42)
Chicago

(52,10)
Mobile
e

(0,0) (100, 0)
Chicago

X test

Denver Mobile

y test

Toronto
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K-D TREE (Bentley) slaslzly) hp1S O

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100, 100)

(62,77)
Toronto

g —~
(] D
D ~
D o1
)—‘ ~

(35,42)
PS Chicago
[}
(85,15)
(52,10) Atlgnta
Mobile
e
(0,0) (100, 0)
Chicago
X test
Denver Mobile
y test
Toronto
©
y test

Atlanta
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K-D TREE (Bentley) 5.43[2[1] hp15 ()

« Test one attribute at a time instead of all simultaneously
as in the point quadtree

» Usually cycle through all the attributes

« Shape of the tree depends on the order in which the
data is encountered

(0,100) (100,100)
(62,77)
Toronto
e
(5,45)
Denver
a (35,42)
PS Chicago
[}
(85,15)
(52,10) Atlanta
Mobile .
e —
(J.\Jl \).) .
Miami
(0,0) (100,0)
Chicago
X test

Denver Mobile

y test

Miami Toronto

y test

Atlanta
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O PR K-D TREE (Knowlton) @ hp19 ()

* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)

(0,0) (100, 0)

Copyright © 2007 by Hanan Samet
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PR K-D TREE (Knowilton) 21 hp19 O

* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
(35,42)
Chicago
(0,0) (100, 0)
B Chicago
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PR K-D TREE (Knowlton) np19 ()

* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
(35,42)
e Chicago
(52,10)
Mobile
L
(0,0) (100, 0)

—efeage—
-Chl/cagom\- Mobile
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PR K-D TREE (Knowlton) 2 b
* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
[ ]
(35,42)
e Chicago
(52,10)
Mobile
L
(0,0) (100,0)
—efeage—
-C}/(jagom\j Molila
| |
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PR K-D TREE (Knowlton)
* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
[ ]
(82,65)
Buffalo
L ]
(35,42)
e Chicago
(52,10)
Mobile
[ ]
(0,0) (100,0)

Toronto Buffalo

Copyright © 2007 by Hanan Samet
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PR K-D TREE (Knowlton) 3l23] hp19 O

* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
[ ]
(82,65)
Buffalo
L ]
[ )
(35,42)
(5,45) ® Chicago
Denver
(52,10)
Mobile
[ ]
(0,0) (100,0)

Denver Toronto Buffalo
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PR K-D TREE (Knowlton) §lslai3l2]1] hp19
* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
[ ]
(82,65)
Buffalo
L ]
[ )
(35,42)
(5,45) et Chicago
Denver
[ ]
(52,10)
Mobile
[ ]
(0,0) (100,0)

Denver Toronto Buffalo
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' PRK-D TREE (Knowlton) Slslalalals) hp19 O

* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
[ ]
(82,65)
Buffalo
L ]
[ )
(35,42)
(5,45) et Chicago
Denver
)
(85,15)
(52,10) Atlanta
Mobile L
[ ]
(0,0) (100,0)

3
Ll TTooT=C

bHeage Atlanta /\

Denver Mobile Toronto Buffalo
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PR K-D TREE (Knowiton) sleiriglslasiel) P19 O

* A region contains at most one data point
» Analogous to EXCELL with bucket size of 1

(0,100) (100,100)
(62,77)
Toronto
L ]
(82,65)
Buffalo
L ]
[ )
35,42
(5, 45) o 17
icago
Denver
e oL | @
(27,35)
Omaha
(85,15)
(52,10) Atlanpta
Mobile ®
[ ]
9@,5).
Miami
(0,0) (100,0)

ro——otoo

Denver Toronto Buffalo

Atlanta Miami

Omaha Chicago

Copyright © 2007 by Hanan Samet

87



Outline

Introduction

Points

Lines

Regions, Bounding Box Hierarchies, and Surfaces
Rectangles

Surfaces and Volumes

Operations

Example system

Words

© 0 NOoO Ok b=

Copyright (€)2015 Hanan Samet Sorting in Space and Wol
88



HdSg ‘e84 oJe ‘eau dulS--98¢-28¢

O
STRIP TREE (Ballard, Peucker)

e Top-down hierarchical curve approximation
e Rectangle strips of arbitrary orientation

e Assume curve is continuous

o EX:

Copyright © 2007 by Hanan Samet
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O cd4 O
STRIP TREE (Ballard, Peucker) rb

e Top-down hierarchical curve approximation
» Rectangle strips of arbitrary orientation

o Assume curve is continuous

o EX:

LEFT |RIGHT
Xp | Yo | Xa | Yo | Wi | Wr ] son | son

» Contact points = where the curve touches the box

1. not tangent points
2. curve need not be differentiable - just continuous

Copyright © 2007 by Hanan Samet
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STRIP TREE (Ballard, Peucker)

Assume curve is continuous

Top-down hierarchical curve approximation
Rectangle strips of arbitrary orientation

Xp | Yo | Xo | Yo | W, [ Wi

LEFT
SON

RIGHT
SON

» Contact points = where the curve touches the box

1. not tangent points

T~

zrb

B

cdd O

2. curve need not be differentiable - just continuous

Copyright © 2007 by Hanan Samet
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STRIP TREE (Ballard, Peucker)

Assume curve is continuous
e Ex:

Rectangle strips of arbitrary orientation

gzrb

Top-down hierarchical curve approximation

C

» Contact points = where the curve touches the box

1. not tangent points

cdd O

D

2. curve need not be differentiable - just continuous

Copyright © 2007 by Hanan Samet
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STRIP TREE (Ballard, Peucker)

Assume curve is continuous
e Ex:

vgzrhb

Top-down hierarchical curve approximation
Rectangle strips of arbitrary orientation

RIGHT
SON

o
/

C

» Contact points = where the curve touches the box

1. not tangent points

cdd O

D

2. curve need not be differentiable - just continuous

» Terminate when all rectangles are of width <W

Copyright © 2007 by Hanan Samet
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O SPECIAL CASES

1. Closed curve

2. Curve extends beyond its endpoints

Copyright © 2007 by Hanan Samet
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O SPECIAL CASES

1. Closed curve

2. Curve extends beyond its endpoints

* enclosed by a rectangle

Copyright © 2007 by Hanan Samet
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O SPECIAL CASES

1. Closed curve

2. Curve extends beyond its endpoints

N

]

* enclosed by a rectangle
* split into two rectangular strips

Copyright © 2007 by Hanan Samet
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O APPLICATIONS

1. Curve intersection

Ny

2. Union of two curves

3. Others
* length
* area of a closed curve
* intersection of curves with areas
* etc.

Copyright © 2007 by Hanan Samet
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O APPLICATIONS cdé O

rb
1. Curve intersection
or
NULL CLEAR POSSIBLE

2. Union of two curves

A =

3. Others

* length
area of a closed curve
intersection of curves with areas
* etc.

Copyright © 2007 by Hanan Samet

98



HdSg ‘e84 oJe ‘eau dulS--98¢-28¢

O APPLICATIONS

1. Curve intersection

Ny

NULL CLEAR

2. Union of two curves

zrb

or

cdé O

iy =

3. Others
* length
* area of a closed curve
* intersection of curves with areas
* etc.

Copyright © 2007 by Hanan Samet
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O APPLICATIONS

1. Curve intersection

Ny

NULL

CLEAR

2. Union of two curves

gzrb

or

cdé O

iy =

POSSIBLE

* not possible as the result may fail to be continuous

3. Others
* length

* area of a closed curve
* intersection of curves with areas

* efc.

Copyright © 2007 by Hanan Samet
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O @ hp13©

MX QUADTREE FOR REGIONS (Hunter)

» Represent the boundary as a sequence of BLACK
pixels in a region quadtree

« Useful for a simple digitized polygon (i.e., non-
intersecting edges)

« Three types of nodes
1. interior - treat like WHITE nodes
2. exterior - treat like WHITE nodes

3. boundary - the edge of the polygon passes
through them and treated like BLACK nodes

« Disadvantages
1. athickness is associated with the line segments
2. no more than 4 lines can meet at a point

TR

Copyright 2008 by Hanan Samet 101
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21 hp13
b

MX QUADTREE FOR REGIONS (Hunter)

» Represent the boundary as a sequence of BLACK
pixels in a region quadtiree

« Useful for a simple digitized polygon (i.e., non-
intersecting edges)

« Three types of nodes
1. interior - treat like WHITE nodes
2. exterior - treat like WHITE nodes

3. boundary - the edge of the polygon passes
through them and treated like BLACK nodes

« Disadvantages
1. athickness is associated with the line segments
2. no more than 4 lines can meet at a point

Copyright 2008 by Hanan Samet 102
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1 ¢cd32 O
PM1 QUADTREE b

» Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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211 ¢d32 ()
PM1 QUADTREE " b

» Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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cd32 ()
PM1 QUADTREE zrb

» Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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PM1 QUADTREE

» Vertex-based (one vertex per block)

43211 ¢d32 O

gzrb

N

\‘\

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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PM1 QUADTREE

» Vertex-based (one vertex per block)

54321 ¢d32 ()

vgzrhb

N

\‘\

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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654321 ¢d32 ()

PM1 QUADTREE rvgzrb
» Vertex-based (one vertex per block)
/a [\
/ \_ e
———

N

\‘\

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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PM1 QUADTREE

» Vertex-based (one vertex per block)

7654321 ¢d32 ()

zrvgzrhb

\‘\

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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87654321 ¢d32 ()
PM1 QUADTREE gzrvgzrb

» Vertex-based (one vertex per block)

ST

\‘\ C

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
110



saJlpenb |\d-69E€-G9E

987654321 ¢d32 ()
PM1 QUADTREE vgzrvgzrb

» Vertex-based (one vertex per block)

ST e

N
\/\\C\/

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

« Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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1 ¢d33 ()
PM2 QUADTREE b

» Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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2[1] ¢d33 ()

Cw
PM2 QUADTREE rb

» Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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cd33 ()

- PM2 QUADTREE zrb

» Vertex-based (one vertex per block)

\o

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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I

- PM2 QUADTREE

4332[1] cd33 ()

gzrb

» Vertex-based (one vertex per block)

N

S| c
\o

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O
- PM2 QUADTREE

» Vertex-based (one vertex per block)

s[aj3f2li] cd33 ()

vgzrhb

N

SNe__|

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O
PM2 QUADTREE

6/5/4312]1] ¢d33 ()

rvgzrb
» Vertex-based (one vertex per block)
/a [\
/ \_ e
E—

N

SNe__|

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

117



saJlpenb |\d-69E€-G9E

O

PM2 QUADTREE

» Vertex-based (one vertex per block)

7.6/5[432]1] ¢d33 ()

zrvgzrhb

SNe__|

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O '8[7]6[5[4[3[2[1] cd33 ()
PM2 QUADTREE gzrvgzrb

» Vertex-based (one vertex per block)

ST
_—

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O o[8|7[6]5/4[3[2[1] ¢d33 ()
PM2 QUADTREE vgzrvgzrhb

» Vertex-based (one vertex per block)

ST e

i
\./\\C\/

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
120



saJlpenb |\d-69E€-G9E

1 cd34 ()
PM3 QUADTREE b

» Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O 2[1] cd34

PM3 QUADTREE rb

» Vertex-based (one vertex per block)

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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C cd34 ()

- PM3 QUADTREE zrb

» Vertex-based (one vertex per block)

\o

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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C 4321 cd34 ()

- PM3 QUADTREE gzrb

» Vertex-based (one vertex per block)

N

S| c
\o

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O 5/43[2[1] cd34 ()
PM3 QUADTREE vgzrhb

» Vertex-based (one vertex per block)

N

S c
\o

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O 6543 2[1] cd34 ()
PM3 QUADTREE rvgzrb

» Vertex-based (one vertex per block)

N f

D

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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7.6/5[43121] cd34 ()

O
PM3 QUADTREE zrvozrb

» Vertex-based (one vertex per block)

D

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet

127



saJlpenb |\d-69E€-G9E

O '8[7/6/5/43)2[1] cd34 ()
PM3 QUADTREE gzrvgzrb

» Vertex-based (one vertex per block)

ST M
-

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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O o[8|7[6/5/4[3]2[1] cd34 ()
PM3 QUADTREE vgzrvgzrb

» Vertex-based (one vertex per block)

o

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

» Shape independent of order of insertion

Copyright © 2007 by Hanan Samet
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~/ PMR QUADTREE 1) ed35 O
« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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) PMR QUADTREE 2l ed35 O

« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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) PMR QUADTREE cd35 ()

zrb
« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

\o

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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gzrb
« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

\o

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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“ PMR QUADTREE slafslzl1] ed35 O

vgzrhb

« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

//\‘

C

\o

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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“ PMR QUADTREE olslasizlt] cd35 O

rvgzrhb

« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

//\‘

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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) PMR QUADTREE 7lelsals21] €d3S )

zrvgzrhb

« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

A
s

N |

D

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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) PMR QUADTREE SZ??;‘E?@ cd35 ()

« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

A
e N

N |

\.\ C

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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" PMR QUADTREE 07054 2l1 cd3 ()

« Edge-based

 Avoids having to split many times when two vertices or
lines are very close as in PM1 quadtree

* Probabilistic splitting and merging rules
» Uses a splitting threshold value — say N

Ex: N=2

JJ T~ e
&\ // f
\V\\C \/

DECOMPOSITION RULE:

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

Merge a block with its siblings if the total number of line
segments intersecting them is less than N

Merges can be performed more than once

Does not guarantee that each block will contain at
most N line segments

Splitting threshold is not the same as bucket capacity
Shape depends on order of insertion

Copyright © 2007 by Hanan Samet
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Triangulations

m PM, quadtiree is quite useful vis-a-vis PM{ quadtree

®m Given a triangle table, only need to store at most a single vertex with each
cell and can reconstruct mesh with the aid of clipping

B Example triangular mesh

PM; quadtree PM> quadtree

m Can also formulate a PM-triangle quadtree variant

Copyright 2012 by Hanan Samet
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REGION QUADTREE

« Repeatedly subdivide until obtain homogeneous region
« For a binary image (BLACK = 1 and WHITE = 0)

- Gan also use for multicolored data (e.g., a landuse
class map associating colors with crops)

« Can also define data structure for grayscale images

* A collection of maximal blocks of size power of two
and placed at predetermined positions
1. could implement as a list of blocks each of which
has a unique pair of numbers:

» concatenate sequence of 2 bit codes correspond-
ing to the path from the root to the block’s node

« the level of the block’s node
2. does not have to be implemented as a tree
* tree good for logarithmic access

e A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

39/40

57|58
59|60

olo|lo|jojo|o|Oo|Oo

“ =2 OlOO|O|O

o|lo|lo|lo|o|o|o|o
g g g e N =R E=1=)
alalalala|lalolo
o|l=|=a|a|a|m]|o|lo
olo|=|=|2 |- |o|lo
olo|=|a|a|-|o|lo

37 38 39 40 57 5859 60
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SPACE REQUIREMENTS

1.

2.

Rationale for using quadtrees/octrees is not so much
for saving space but for saving execution time

Execution time of standard image processing
algorithms that are based on traversing the entire
image and performing a computation at each image
element is proportional to the number of blocks in the
decomposition of the image rather than their size

« aggregation of space leads directly to execution
time savings as the aggregate (i.e., block) is visited
just once instead of once for each image element
(i.e., pixel, voxel) in the aggregate (e.g., connected
component labeling)

. If want to save space, then, in general, statistical

image compression methods are superior

« drawback: statistical methods are not progressive
as need to transmit the entire image whereas
quadtrees lend themselves to progressive
approximation

« quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques

a. e.g., checkerboard image
b. see also vector quantization

. Sensitive to positioning of the origin of the

decomposition

« for an n x nimage, the optimal positioning requires
an O(nzlog,n) dynamic programming algorithm
(Li, Grosky, and Jain)

Copyright © 2007 by Hanan Samet
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DIMENSION REDUCTION b

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

« implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

* the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a.region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

* in contrast with quadrupling in the array representation

« for a region octree the space requirements quadruple
as the resolution doubles

) X .
© array region quadtree

Copyright © 2007 by Hanan Samet
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O 2llbgs O
DIMENSION REDUCTION rb

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

« implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

* the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a.region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

* in contrast with quadrupling in the array representation

« for a region octree the space requirements quadruple
as the resolution doubles

) X .
© array region quadtree

/\
[\
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O sllbgs O
DIMENSION REDUCTION zrb

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

« implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

* the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a.region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

* in contrast with quadrupling in the array representation

« for a region octree the space requirements quadruple
as the resolution doubles

) X .
© array region quadtree

/\
/ .\ \
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1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

« implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

* the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a.region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

* in contrast with quadrupling in the array representation

« for a region octree the space requirements quadruple
as the resolution doubles

) X .
© array region quadtree
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1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

« implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

* the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a.region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

* in contrast with quadrupling in the array representation

« for a region octree the space requirements quadruple
as the resolution doubles

* ex. :
array region quadtree

« easy to see dependence on perimeter as decomposition
only takes place on the boundary as the resolution
increases

Copyright © 2007 by Hanan Samet
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O

1. infinitely repetitive

1 O
ALTERNATIVE DECOMPOSITION METHODS

» A planar decomposition for image representation should be:

2. infinitely decomposable into successively finer patterns

« Classification of tilings (Bell, Diaz, Holroyd, and Jackson)

1. isohedral — all tiles are equivalent under the symmetry
group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

A0
S RNy = N

SRR ARKKN
SO0 20 AAVAVAVAVA
N/ /N NN NN NN\

2. regular — each tile is a regular polygon
» There are 81 types if classify by their symmetry groups
- Only 11 types if classify by their adjacency structure

[33.42] % [3.6.3.6] % [4.6.12]

/

* [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 2007 by Hanan Samet
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O

ALTERNATIVE DECOMPOSITION METHODS '°

» A planar decomposition for image representation should be:

1. infinitely repetitive

2. infinitely decomposable into successively finer patterns

« Classification of tilings (Bell, Diaz, Holroyd, and Jackson)

1. isohedral — all tiles are equivalent under the symmetry
group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

A0
S RNy = N

NO / YES
E0SNE0=O=NIAVAVAVAVA
SO 20 AAVAVAVAVAVAY

N/ /N NN NN NN\

2. regular — each tile is a regular polygon
» There are 81 types if classify by their symmetry groups
« Only 11 types if classify by their adjacency structure

[33.42] % [3.6.3.6] % [4.6.12]

/

* [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 2007 by Hanan Samet
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{12

PROPERTIES OF TILINGS — SIMILARITY o

« Similarity — a tile at level k has the same shape as a tile

at level O (basic tile shape)

/

[6°]

[44]

[3]

 Limited = NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

« Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

 Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

[4.82]

/

/

/

(e
P
’ '

« Two additional hierarchies:

'
yau
'

rotation of 135° between levels

[4.6.12] B

A

D
N
\

i\

reflection between levels

Note: [4.82] and [4.6.12] are not regular

Copyright © 2007 by Hanan Samet
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2N t12

PROPERTIES OF TILINGS — SIMILARITY rb

« Similarity — a tile at level k has the same shape as a tile

at level O (basic tile shape)

/

[6°]

YES

[44]

[3]

YES NO

 Limited = NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

« Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

 Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

[4.82]

/

/

/

(e
P
’ '

« Two additional hierarchies:

'
yau
'

rotation of 135° between levels

[4.6.12] B

A

D
N
\

i\

reflection between levels

Note: [4.82] and [4.6.12] are not regular

Copyright © 2007 by Hanan Samet
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O 13 O
PROPERTIES OF TILINGS — ADJACENCY  ©

» Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

 Uniform adjacency = distances between the centroid of
one tile and the centroids of all its neighbors are the same

» Adjacency number of a tiling (A) = number of different
adjacency distances

[36] [44] [63]

Copyright © 2007 by Hanan Samet
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O

PROPERTIES OF TILINGS — ADJACENCY b

» Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

 Uniform adjacency = distances between the centroid of
one tile and the centroids of all its neighbors are the same

» Adjacency number of a tiling (A) = number of different
adjacency distances

[36]

Copyright © 2007 by Hanan Samet

[44]

A=2

[6°]

A=3

il 43 O

153



spoylew Bulji1--861-96

O e O
PROPERTIES OF TILINGS — UNIFORM ORIENTATION

« Uniform orientation

« All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

/

[44] [63] [36]

Conclusion:

* [44] has a lower adjacency number than [63]

* [44] has a uniform orientation while [63] does not
* [44] is unlimited while [36] is limited

Use [44]!

Copyright © 2007 by Hanan Samet
154



spoylew Bulji1--861-96

O 21 14 O
PROPERTIES OF TILINGS — UNIFORM ORIENTATION

« Uniform orientation

« All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

/

[44] [63] [36]

YES NO YES
Conclusion:

« [44] has a lower adjacency number than [63]
* [44] has a uniform orientation while [63] does not
* [44] is unlimited while [36] is limited

Use [44]!

Copyright © 2007 by Hanan Samet
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Bintree

Wi
B2
W2 | B1
A1
W3
A2 A3
W7
W4 W5
W8] C1
W6 C3
W9| C2

Chapter 2: Copyright 2007 Hanan Samet

B Regular decomposition k-d tree
m Cycle through attributes

O
north south
() @
west east west east
() () ()
A1
() [ | () [ | [ | ()
W3 We W7
() ) ) ()
B2 C3
[ | ) [ | [ | ) O
Wi1 A2 W4 A3 W5
[ | [ | [ |
W2 B1 W8 C1 W9 (C2
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Generalized Bintree

B Regular decomposition k-d tree but no need to cycle through attributes
B Need to record identity of partition axis at each nonleaf node

W1
B2
W2| B1

A1

W3
A2

W6
W4
W5 W7|C1| C2

Chapter 2: Copyright 2007 Hanan Samet

X:(O

y-Q)

A1

X:O)

y-Q)
B2

W2 B1

y:Q0

X

y-Q y-Q

W5 W6

A2 W4 C2

W7 C1
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X-Y Tree, Treemap, and Puzzletree

W Split into two or more parts at each partition step

B Implies no two successive partitions along the same attribute as they are
combined

B Implies cycle through attributes in two dimensions

W3
— B2
B1
A1
W2 W4
Wi
C1

Chapter 2: Copyright 2007 Hanan Samet
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Three-Dimensional X-Y Tree, Treemap, and Puzzletree

B No longer require cycling through dimensions as this results in losing
some perceptually appealing block combinations

Chapter 2: Copyright 2007 Hanan Samet
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Bintree compared with X-Y Tree, Treemap, Puzzletree

B Much more decomposition in bintree

W1 w4 W9

B1
A2 C2

W2 W6 W10

s : A1 A3 W5B2 B3W7C3  Ci
X-Y Tree

Bintree

x(1 4 5 11 12 15)

Ix678 ] X

“ AT

W2 A3 W5 B2 W6 B3 W7 C3 W10

Chapter 2: Copyright 2007 Hanan Samet
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ar2

BSP TREES (Fuchs, Kedem, Naylor)

 Like a bintree except that the decomposition lines are
at arbitrary orientations (i.e., they need not be parallel
or orthogonal)

« For data of arbitrary dimensions

« In 2D (8D), partition along the edges (faces) of a
polygon (polyhedron)

« Ex: arrows indicate direction of positive area

« Usually used for hidden-surface elimination
1. domain is a set of polygons in three dimensions

2. position of viewpoint determines the order in which
the BSP tree is traversed

« A polygon’s plane is extended infinitely to partition the
entire space

Copyright © 2007 by Hanan Samet
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O ar3 O
DRAWBACKS OF BSP TREES b

» A polygon may be included in both the left and right
subtrees of node

« Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

» Shape of the Bsp tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

* Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

« Ex: use line segments A
in two dimensions N 'X B

D
CT/r

Copyright © 2007 by Hanan Samet
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O ol arg O

DRAWBACKS OF BSP TREES '

o|—

» A polygon may be included in both the left and right
subtrees of node

« Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

» Shape of the Bsp tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

* Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

« Ex: use line segments

A
in two dimensions N ’X B
D
¢l 2,
1. partition
induced by A 5
choosing B as 4
the root o\ 5

Copyright © 2007 by Hanan Samet
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O sl2lt]  gr3 O
DRAWBACKS OF BSP TREES zrb

» A polygon may be included in both the left and right
subtrees of node

« Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

» Shape of the Bsp tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

* Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

« Ex: use line segments A
in two dimensions N 'X B

D
CT/r

1. partition
induced by
choosing B as
the root

2. partition
induced by
choosing C as
the root

Copyright © 2007 by Hanan Samet
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Introduction

Points

Lines

Regions, Bounding Box Hierarchies, and Surfaces
Rectangles

Surfaces and Volumes

Operations

Example system

Words

© 0 NOoO O bk
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") MX-CIF QUADTREE (Kedem) 1 hpt4 O

1. Collections of small rectangles for VLSI applications

2. Each rectangle is associated with its minimum
enclosing quadtree block

3. Like hashing: quadtree blocks serve as hash buckets

. EH i F
; | +-|+|+
I
B E
: C
| __6
I
| I|I_|I | A 9
7] :

10 1

A {2,6,7,8,9,10}
B {1} D {11}

E {3,4,5}
Copyright © 2007 by Hanan Samet
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" MX-CIF QUADTREE (Kedem) 210 hpt4 )

1. Collections of small rectangles for VLSI applications

2. Each rectangle is associated with its minimum
enclosing quadtree block

3. Like hashing: quadtree blocks serve as hash buckets

4. Collision = more than one rectangle in a block

e resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

A {2,6,7,8,9,10}
B {1} D {11}
E {3,4,5) F {12}

Copyright © 2007 by Hanan Samet 24
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") MX-CIF QUADTREE (Kedem) 21 hpi4 ()

1. Collections of small rectangles for VLSI applications

2. Each rectangle is associated with its minimum
enclosing quadtree block

3. Like hashing: quadtree blocks serve as hash buckets

4. Collision = more than one rectangle in a block

e resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

. B o F
| +|+|+
1 | |
B, E
: ] C .
| 6 n
|
| I|I_|I | _—|A 9 .
T
- D, |
10 J 11

A {2,6,7,8,9,10}
B {1} D {11}
E {3,4,5) F {12}
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") MX-CIF QUADTREE (Kedem) 21 hpt4 ()

1. Collections of small rectangles for VLSI applications

2. Each rectangle is associated with its minimum
enclosing quadtree block

3. Like hashing: quadtree blocks serve as hash buckets

4. Collision = more than one rectangle in a block

e resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

i 2] =+

+ e
|

E

A IR S I .

e C ]

6 m

o

[>T 1]

A {2,6,7,8,9,10}

B {1} D {11}

E {3,4,5} F {12}
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" MX-CIF QUADTREE (Kedem) 21 hpi4 ()

1. Collections of small rectangles for VLSI applications

2. Each rectangle is associated with its minimum
enclosing quadtree block

3. Like hashing: quadtree blocks serve as hash buckets

4. Collision = more than one rectangle in a block

e resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

==
_ _1__545 ___H4T||5+. -
— ] [ .
| |_|: | __lA |_?| 2
i SJ [
— 3
10 J 11 :

A {2,6,7,8,9,10}
B {1} D {11}
E {3,4,5) F {12}
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Loose Quadtree (Octree)/Cover Fieldtree

Copyright 2012 by Hanan Samet

m Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

10

plemy 700z 10 Jeded [euinop 1seg

11 F

12

A {2,6,7,8,9,10}

D{11}

F{12}
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Loose Quadtree (Octree)/Cover Fieldtree

m Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

B Instead, it depends on the position of the centroid of o and often
considerably larger than o EaTg
i

®
C @
6 g
m| A 9 é_U
dE
>
3
D
10 1 F

A {2,6,7,8,9,10}

D{11}

F{12}
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Loose Quadtree (Octree)/Cover Fieldtree

B Instead, it depends on the position of the centroid of o and often

m Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

considerably larger than o

Copyright 2012 by Hanan Samet
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| A 9 g
I
D
10 1| E
12
A {2,6,7,8,9,10}

D{11}

F{12}
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Loose Quadtree (Octree)/Cover Fieldtree

considerably larger than o

W Solution:  expand size of space
spanned by each quadiree block of
width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

Copyright 2012 by Hanan Samet

B Instead, it depends on the position of the centroid of o and often

m Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

[2

]

7

6

A

E

[~ ]

10

pIeMY /002 J0 Jaded [euinor 1seg

11 F

A {2,6,7,8,9,10}

D{11}

F{12}
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Loose Quadtree (Octree)/Cover Fieldtree

considerably larger than o

W Solution:  expand size of space
spanned by each quadiree block of
width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p=0.3

Copyright 2012 by Hanan Samet

B Instead, it depends on the position of the centroid of o and often

[2

]

7

6

A

E

[~ ]

10

12

m Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

pIeMY /002 J0 Jaded [euinor 1seg

D4

F{11,12)
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Loose Quadtree (Octree)/Cover Fieldtree

m Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o
B Instead, it depends on the position of the centroid of o and often
COﬂSIFierably larger thaq 0 = | g
W Solution:  expand size of space M1 H
spanned by each quadtree block of ' B g E .
width w by expansion factor p (p > 0) - C o
so expanded block is of width (1 + p)w - N - s
1. p=0.3 i )
2. p=1.0 Ll |
10 D1 - )
|- =
QA
O B} Q Ct557 D546+ QD{}
E e
e o Q@ L ¢ O [0 Q OO0 O QF
{1} {2,4} [ B0 OB I8 0] CIE 10T G LI 107
{5/} {?3} {6y {9} {7} {8 {10} {11} {12}
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Loose Quadtree (Octree)/Cover Fieldtree

m Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o
B Instead, it depends on the position of the centroid of o and often
COﬂSIFierably larger thar? 0 zo g
W Solution:  expand size of space M1 H
spanned by each quadtree block of ' B g E .
width w by expansion factor p (p > 0) ) C -
so expanded block is of width (1 + p)w - N - s
1. p=20.3 i o ?%
2. p=1.0 Ll L] S
m Maximum w (i.e., minimum depth of 0 o .|
minimum enclosing quadtree block) is — =
a function of p and radius r of o and in-
dependent of position of centroid of o
QA
1. Range of possible ratios w/2r : o0
O O , S O
1/(1+p)-w/2r < 2/p R R i
2. For p > 1, restricting w and r{1}24 HAPA AZARE B R
to powers of 2, w/2r takes on at - }{5/ 3y (6} {9H{7} {8} {10} (11} (12}
most 2 values and usually just 1
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Partition Fieldtree

W Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

Copyright 2012 by Hanan Samet
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Partition Fieldtree

W Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2012 by Hanan Samet

pIeMY /002 J0 Jaded [euinor 1seg

179



Partition Fieldtree

B Alternative to loose quadiree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2012 by Hanan Samet
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Partition Fieldtree

B Alternative to loose quadiree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2012 by Hanan Samet
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Partition Fieldtree

B Alternative to loose quadiree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Copyright 2012 by Hanan Samet
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Partition Fieldtree

W Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent » of o

Copyright 2012 by Hanan Samet
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Partition Fieldtree

W Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent » of o

Copyright 2012 by Hanan Samet
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Partition Fieldtree

W Alternative to loose quadtree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent » of o
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drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent » of o
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Partition Fieldtree

B Alternative to loose quadiree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent » of o
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Partition Fieldtree

B Alternative to loose quadiree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent » of o

B Same ratio is obtained for the
loose quadtree (octree)/cover field-
tree when p =1/4, and thus partition
fieldtree is superior to the cover field-
tree when p <1/4
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Partition Fieldtree

B Alternative to loose quadiree (octree)/cover fieldtree at overcoming
drawback of MX-CIF quadtree that the width w of the minimum enclosing
quadtree block of a rectangle o is not a function of the size of o

B Achieves similar result by shifting positions of the centroid of quadtree
blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

B Subdivision rule guarantees that width of minimum enclosing quadtree
block for rectangle o is bounded by 8 times the maximum extent » of o

B Same ratio is obtained for the
loose quadtree (octree)/cover field-
tree when p =1/4, and thus partition
fieldtree is superior to the cover field-
tree when p <1/4

B Summary: cover fieldtree expands r
the width of the quadtree blocks while
the partition fieldiree shifts the posi-
tions of their centroids

(O] [
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sf2

HIERARCHICAL RECTANGULAR DECOMPOSITION
« Similar to triangular decomposition

« Good when data points are the vertices of a
rectangular grid

« Drawback is absence of continuity between adjacent
patches of unequal width (termed the alignment
problem)

« Overcoming the presence of cracks

1. use the interpolated point instead of the true point
(Barrera and Hinjosa)

2. triangulate the squares (Von Herzen and Barr)

« can split into 2, 4, or 8 triangles depending on how
many lines are drawn through the midpoint

« if split into 2 triangles, then cracks still remain
* no cracks if split into 4 or 8 triangles

Copyright © 2007 by Hanan Samet 25
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O sf3 O
RESTRICTED QUADTREE (VON HERZEN/BARR)

 All 4-adjacent blocks are either of equal size or of ratio 2:1

Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2007 by Hanan Samet 26
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O sf3 O
RESTRICTED QUADTREE (VON HERZEN/BARR)

 All 4-adjacent blocks are either of equal size or of ratio 2:1

Note: also used in finite element analysis to adptively
refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)
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OCTREES

1. Interior (voxels)

td3

« analogous to region quadtiree
« approximate object by aggregating similar voxels
« good for medical images but not for objects with

planar faces
Ex:

14 /15

B

13

12 34 31415

2. Boundary (PM octrees)
« adaptation of PM quadiree to three-dimensional

data

567 8 9 101112

« decompose until each block contains

a. one face

b. more than one face but all meet at same edge
c. more than one edge but all meet at same

vertex

» impose spatial index on a boundary model (BRep)

T~

Copyright 2008 by Hanan Samet
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Incremental Nearest Neighbors (Hjaltason/Samet)

B Motivation
1. often don’t know in advance how many neighbors will need

2. e.g., want nearest city to Chicago with population > 1 million

B Several approaches

1. guess some area range around Chicago and check populations of

cities in range

m if find a city with population > 1 million, must make sure that there
are no other cities that are closer with population > 1 million

W inefficient as have to guess size of area to search

B problem with guessing is we may choose too small a region or too
large a region
a. if size too small, area may not contain any cities with right

population and need to expand the search region
b. if size too large, may be examining many cities needlessly

2. sort all the cities by distance from Chicago
B impractical as we need to re-sort them each time pose a similar
query with respect to another city
W also sorting is overkill when only need first few neighbors

3. find k closest neighbors and check population condition

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications — p.98/113
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Mechanics of Incremental Nearest Neighbor Algorithm

B Make use of a search hierarchy (e.g., tree) where
1. objects at lowest level
2. object approximations are at next level (e.g., bounding boxes in an
R-tree)
3. nonleaf nodes in a tree-based index

B Traverse search hierarchy in a “best-first” manner similar to A*-algorithm
instead of more traditional depth-first or breadth-first manners

1. at each step, visit element with smallest distance from query object
among all unvisited elements in the search hierarchy
M |.e., all unvisited elements whose parents have been visited

2. use a global list of elements, organized by their distance from query
object
M use a priority queue as it supports necessary insert and delete
minimum operations
M ties in distance: priority to lower type numbers
m if still tied, priority to elements deeper in search hierarchy

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications — p.99/113
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Incremental Nearest Neighbor Algorithm

Algorithm:

INCNEAREST(q, S, T
1 () < NEWPRIORITYQUEUE()

3 ENQUEUE(Q, e, 0)
4 while not ISEMPTY(() do
5 et + DEQUEUE(Q)
6 ift = 0then/* et is an object */
7 Report e; as the next nearest object
8 else
9 for each child element e;s of e¢ do
10 ENQUEUE(Q, ey, dy (g, €r))

1. Lines 1-3 initialize priority queue with root

Copyright 2007: Hanan Samet

2 et < root of the search hierarchy induced by ¢, S, and T’

2. In main loop take element e; closest to ¢ off the queue
M report e; as next nearest object if e; is an object
W otherwise, insert child elements of e; into priority queue

Similarity Searching for Multimedia Databases Applications — p.100/113
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Example of INCNEAREST

m |nitially, algorithm descends tree to leaf
node containing g

Copyright 2007: Hanan Samet

— <— front

queue
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Example of INCNEAREST

m |nitially, algorithm descends tree to leaf
node containing g

M expand n

Copyright 2007: Hanan Samet

® n
n10a c .®
® X(Q
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Example of INCNEAREST

m |nitially, algorithm descends tree to leaf
node containing g

M expand n
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Example of INCNEAREST

m |nitially, algorithm descends tree to leaf
node containing g

M expand n
B expand n;

Copyright 2007: Hanan Samet

expand

@2 ® "
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o «x °

q
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Example of INCNEAREST

m |nitially, algorithm descends tree to leaf
node containing g

M expand n
B expand n;

Copyright 2007: Hanan Samet

<~ front
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queue
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Example of INCNEAREST

m |nitially, algorithm descends tree to leaf
node containing g

M expand n
B expand n;

B Start growing search region
H expand nj

Copyright 2007: Hanan Samet

~ < front

queue
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Example of INCNEAREST

m |nitially, algorithm descends tree to leaf
node containing g

M expand n
B expand n;
B Start growing search region
H expand nj
W report e as nearest neighbor

Copyright 2007: Hanan Samet

n :
N m)n?’
n,
C ¥ [ ) n

Slo| o| v ol | ®

queue
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VASCO Spatial Applet

http://www.cs.umd.edu/ "hijs/quadtree/index.html

Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications — p.102/113
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Complexity Analysis

m Algorithm is I/0O optimal
B no nodes outside search region are accessed
W better pruning than branch and bound algorithm

®m Observations for finding k& nearest neighbors for uniformly-distributed
two-dimensional points

m expected # of points on priority queue: O(Vk)
m expected # of leaf nodes intersecting search region: O(k + Vk)
B In worst case, priority queue will be as large as entire data set

M e.g., when data objects are all nearly —— —
equidistant from query object : _ T |

m probability of worst case very low, as it % R geefer -,

depends on a particular configuration of gy \:'. :

both the data objects and the query object |t/ \X |

(but: curse of dimensionality!) . k x }',,5

N .\Ii ................ |/ _E-

s i
Copyright 2007: Hanan Samet Similarity Searching for Multimedia Databases Applications — p.103/113
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Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”
2. Precompute and store shortest paths between all vertices in network

B Reduce cost of storing shortest paths between all

pairs of N vertices from O(N?) to O(N!-°) using
path coherence of destination vertices

Scalable Network Distance Browsing in Spatial Databases — p.2/15

211



Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”
2. Precompute and store shortest paths between all vertices in network

B Reduce cost of storing shortest paths between all
pairs of NV vertices from O(N?) to O(N!°) using
path coherence of destination vertices

B Can reduce to O(NV) by also using path coherence
of source vertices
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Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”
2. Precompute and store shortest paths between all vertices in network

B Reduce cost of storing shortest paths between all

pairs of NV vertices from O(N?) to O(N!°) using
path coherence of destination vertices

B Can reduce to O(NV) by also using path coherence

. B
of source vertices

3. Decouple domain S of query objects (¢) and objects from which neighbors are
drawn from domain V' of vertices of network

® Implies no need to recompute shortest paths
each time g or S change
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Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”
2. Precompute and store shortest paths between all vertices in network

B Reduce cost of storing shortest paths between all

pairs of N vertices from O(N?) to O(N!-°) using
path coherence of destination vertices

B Can reduce to O(NV) by also using path coherence
of source vertices

B

3. Decouple domain S of query objects (¢) and objects from which neighbors are
drawn from domain V' of vertices of network

® Implies no need to recompute shortest paths
each time g or S change

4. Avoids Dijkstra’s algorithm which visits too many vertices

B Ex: Dijkstra’s algorithm visits 3191 out of the 4233 ver
tices in network to identify a 76 edge path from X to V
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Key to Nearest Neighbor Finding in Spatial Networks

1. Use distance along a graph rather than “as the crow flies”
2. Precompute and store shortest paths between all vertices in network

B Reduce cost of storing shortest paths between all =z ey

pairs of N vertices from O(N?) to O(N!-°) using
path coherence of destination vertices

® Can reduce to O(N) by also using path coherence
of source vertices

3. Decouple domain S of query objects (¢) and objects from which neighbors are
drawn from domain V' of vertices of network

® Implies no need to recompute shortest paths
each time ¢ or S change

4. Avoids Dijkstra’s algorithm which visits too many vertices

B Ex: Dijkstra’s algorithm visits 3191 out of the 4233 ver
tices in network to identify a 76 edge path from XtoV -, % =
'\}1\

5. Instead, only visit vertices on shortest paths to nearest i 2L
neighbors 17 10

Scalable Network Distance Browsing in Spatial Databases — p.2/15
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Application — Find the closest Kinko’s

B et us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures
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Application — Find the closest Kinko’s

Kinko’s
Oakland Pianos
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Kinkos ®
Greentree
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o _ ’ Kinko’s
Kinko’s Monroeville
Downtown

B et us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures
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Application — Find the closest Kinko’s

Kinko’s
Oakland Pianos
_ o
Kinkos \
Greentree
o
o _ ’ Kinko’s
Kinko’s Monroeville
Downtown

B et us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

B geodesic ordering M
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Application — Find the closest Kinko’s

Kinko’s
Oakland Pianos
) ®
Kinkos 4\
Greentree
o
o _ ’ Kinko’s
Kinko’s Monroeville
Downtown

B et us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

W geodesic ordering M O
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Application — Find the closest Kinko’s

Kinko’s
North Hills Kinko’s
[ ] Oakland Pianos
- . *
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Greentree
o
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Kinko’s Monroeville
Downtown

B et us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

B geodesic ordering M O N D G
B network distance ordering
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Application — Find the closest Kinko’s
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Application — Find the closest Kinko’s

Kinko’s
North Hills Kinko’s
Oakland Pianos
Kinkos
Greentree

_ , Kinko’s
Kinko’s Monroeville
Downtown

B et us compare the nearest neighbor (FedEx Kinkos) to a query point Piano
store using both geodesic and exact distance measures

B geodesic ordering M O N D G
B network distance ordering O D N M G (Error: +26 miles)
| trafficability ordering O D G N M (Error: +32 minutes)

m Challenge: Real time + exact queries
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)

Fesults 1-10 of about 2,062 for Restaurant
Moroccan near Broadway St & W Grand 5t,
Bayonne, MJ 07002 - Mvodity search

Categories: Bestaurants, Restaurant Moroccan

Marrachech Moroccan Cuisine -

more.info s

144 Union St, Brooklyn, MY
(718) B55-2632 - call - 3.3 ml E
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7803 3rd Ave, Brogklyn, MY
(718) B33-1700 - call- 5.3 mi SE
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(212) RE3-3206 - call - =78 mi ME
Category: Restaurant Mmi,vcan

Moroccan CUising - more info
358 W dBth St, MNew York, MY
{212) 582-5850 - call - 8.0 mi MNE

Zeytin - more info s

213 Columbus Awve, MNew York, MY
(2121 578-1145- call - #rerdreesr - 3.9
Category: Restaurant Moroccan
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)

Eesults 1-10 of about 2,062 for Restaurant
Moroccan near Broadway St & W Grand 5t,
Bayonne, MJ 07002 - Mvodity search
Categories: Bestaurants, Restaurant Moroccan

Marrachech Moroccan Cuisine -

morenfo s

144 Union St, Brooklyn, MY
(718) B55-2632 - call - 3.3 ml E

Les Babouches Restaurant - more nfo =
7803 3rd Ave, Brogklyn, MY
(718) B33-1700 - call- 5.3 mi SE

?

La Maison DU CoUscoUs - moreinfo »

484 77th 3t, Brooklyn, MY
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358 W dBth St, MNew York, MY
{212) 582-5850 - call - 8.0 mi MNE
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213 Columbus Awve, MNew York, MY
(2121 578-1145- call - Awrdreer - 3.8
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)

Eesults 1-10 of about 2,062 for Restaurant
Moroccan near Broadway St & W Grand 5t,
Bayonne, MJ 07002 - Mvodity search
Categories: Bestaurants, Restaurant Moroccan

\

Marrachech Moroccan Cuisine -

maore nfo

144 Union St, Brookl

[718) B35-2632 - cal 53m E
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7803 3rd Ave, Brogklyn, MY
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484 77th 3t, Brooklyn, MY

(718) 921-2400 - call - 1 review - 5.6 mi SE
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Moroccan Star Restaurant - more info
205 Atlantic Ave, Brooklyn IW
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Taging Dining Gallery - more info -«
237 Sth Ave, New York, N\r‘
(212) 5647292 - call - +

Category: Restaurant I\ﬁﬁl oGcan
Coupons »

Al Baba Turkish Cusing - more info »

212 E Jdth St Mew york NY

(212) RE3-3206 - call - =78 mi ME
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Moroccan CUising - more info
358 W dBth St, MNew York, MY
{212) 582-5850 - call - 8.0 mi MNE
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Zeytin - more info s

213 Columbus Awve, MNew York, MY

(212) 578-1145- call - Awrdreetr - 3.5 mi ME
Category: Restaurant Moroccan
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)

-J P ey oL § e e ry s
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)

maywou; Pty Rty
Teaneck Enulewwd’
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)

Fesults 1-10 of about 2,062 for Restaurant
Moroccan near Broadway St & W Grand 5t,
Bayonne, MJ 07002 - Mvodity search

Categories: Bestaurants, Restaurant Moroccan
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)
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Proximity Search on “Google Local”

W Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)

Fesults 1-10 of about 2,062 for Restaurant
Moroccan near Broadway St & W Grand 5t,
Bayonne, MJ 07002 - Mvodity search
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Proximity Search on “Google Local”

B Let us examine the errors between ordering by the spatial distance (“as
the crow flies” used by Google) and by the network distance (used by us)
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
m How? Use a coloring algorithm
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
m How? Use a coloring algorithm

B Source vertex u in a spatial network
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
®m How? Use a coloring algorithm

-

B Source vertex u in a spatial network
B Assign colors to the outgoing edges of u
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence

®m How? Use a coloring algorithm

B Source vertex u in a spatial network
B Assign colors to the outgoing edges of «

B Color vertex based on the first edge on
the shortest path from w
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
m How? Use a coloring algorithm

\
/ u

B Source vertex « in a spatial network B Source vertex u in the spatial

m Assign colors to the outgoing edges of w  N€twork of Silver Spring, MD

B Color vertex based on the first edge on
the shortest path from
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
®m How? Use a coloring algorithm

B Source vertex u in a spatial network B Source vertex « in the spatial

m Assign colors to the outgoing edges of w  N€twork of Silver Spring, MD

B Color remaining vertices based
on which of the six adjacent
vertices of u is the first link in
the shortest path from «

B Color vertex based on the first edge on
the shortest path from w
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
®m How? Use a coloring algorithm

B Source vertex u in a spatial network B Source vertex « in the spatial

m Assign colors to the outgoing edges of w  N€twork of Silver Spring, MD

B Color remaining vertices based
on which of the six adjacent
vertices of u is the first link in
the shortest path from «

B Color vertex based on the first edge on
the shortest path from w

B Resulting representation is termed the shortest-path map of u
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SILC: Using Path Coherence to Encode Shortest Paths

B The SILC path encoding takes advantage of the path coherence
®m How? Use a coloring algorithm

B Source vertex u in a spatial network B Source vertex « in the spatial

m Assign colors to the outgoing edges of w  N€twork of Silver Spring, MD

B Color remaining vertices based
on which of the six adjacent
vertices of u is the first link in
the shortest path from «

B Color vertex based on the first edge on
the shortest path from w

B Resulting representation is termed the shortest-path map of u

B Assuming planar spatial network graphs means that the coloring results in spa-
tially contiguous colored regions due to path coherence
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How to Store Colored Regions? &gl

Shortest-path Map
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

Shortest-path Map

R-tree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

Shortest-path Map

R-tree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

Shortest-path Map

R-tree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

Shortest-path Map

R-tree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

Shortest-path Map

R-tree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

Shortest-path Map

R-tree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

Shortest-path Map

R-tree
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i .é;’-:af“‘%i‘*-"'.':%
How to Store Colored Regions? Al b e il
e S
- . Jt‘% ; L, 2
B Minimum bounding boxes (e.g., SR ig;é-..g
R-tree) [Wagn03] e g}"

m overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Shortest-path Map

R-tree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g., v_‘&;,, _ d__‘a-g.."
R-tree) [Wagn03] i

m overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Shortest-path Map

B Disjoint decomposition: shortest-path quadtree

R-tree

lII- I++ H
] HH

Shortest-Path Quadtree
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How to Store Colored Regions? A el
S LR ﬁ& ,%;3,
B Minimum bounding boxes (e.g., '.&I_—ﬁ _ ,?z-v
R-tree) [Wagn03] i

m overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

Shortest-path Map

B Disjoint decomposition: shortest-path quadtree

® Decompose until all vertices in block have ‘ Il
the same color 1

R-tree

lII- I++ H
] HH

Shortest-Path Quadtree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

m overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

B Disjoint decomposition: shortest-path quadtree
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J fa ¥ 3 o,
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=59 3 ;
1 Wt

Shortest-path Map

® Decompose until all vertices in block have
the same color

W Shortest-path quadiree stored as a collection
of Morton blocks

R-tree

III- I++ H
=

Shortest-Path Quadtree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

m overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

B Disjoint decomposition: shortest-path quadtree
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Shortest-path Map

® Decompose until all vertices in block have
the same color

W Shortest-path quadiree stored as a collection
of Morton blocks

® Note: no need to store identity of vertices
in the blocks

R-tree

lII- I++ H
] HH

Shortest-Path Quadtree
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How to Store Colored Regions?

B Minimum bounding boxes (e.g.,
R-tree) [Wagn03]

m overlapping boxes imply identity of next
vertex cannot be uniquely determined
causing the shortest path algorithm to
possibly degenerate to Dijkstra’s algorithm

B Disjoint decomposition: shortest-path quadtree
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=% . P N
o 7 P et
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WEE ey .
R S

Shortest-path Map

® Decompose until all vertices in block have
the same color

W Shortest-path quadiree stored as a collection
of Morton blocks

® Note: no need to store identity of vertices
in the blocks

B Proposed encoding leverages the
dimensionality reduction property of MX and
region quadtrees

B Required storage cost to represent a
region R in a region and MX quadtree is
O(p), where p is the perimeter of R

R-tree

lll- I++ H
] HH

Shortest-Path Quadtree
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
and embed it
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
in a square grid of size NV x NV and embed it

B Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N"-?) n

0.5

0.5
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices

in a square grid of size NV x NV and embed it

B Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N"-?)

B Perimeter of a region with a non-monotonic
boundary can be of size O(NN)

0.5

0.5
n

0.5

0.5
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
in a square grid of size NV x NV and embed it

B Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N"-?)

B Perimeter of a region with a non-monotonic
boundary can be of size O(NN)

B Assumption: Regions of the shortest-path
quadtree have monotonic boundaries 0.5

0.5
n

0.5

0.5
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
in a square grid of size NV x NV and embed it

B Perimeter of a region with monotonic boundary on .
one of its coordinates is of size O(N"-?) -

B Perimeter of a region with a non-monotonic
boundary can be of size O(NN)

B Assumption: Regions of the shortest-path
quadtree have monotonic boundaries 0.5

B Size of a shortest-path quadtree of a vertex u is

v/ N

0.5

0.5
n
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
in a square grid of size NV x NV and embed it

B Perimeter of a region with monotonic boundary on .
one of its coordinates is of size O(N"-?) -

B Perimeter of a region with a non-monotonic
boundary can be of size O(NN)

B Assumption: Regions of the shortest-path
quadtree have monotonic boundaries 0.5

B Size of a shortest-path quadtree of a vertex u is
cv/ N , where ¢ is a function of the outdegree of u

0.5

0.5
n
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
in a square grid of size NV x NV and embed it

B Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N"-?) n

0.5

B Perimeter of a region with a non-monotonic
boundary can be of size O(N)

B Assumption: Regions of the shortest-path

quadtree have monotonic boundaries . 0.5
B Size of a shortest-path quadtree of a vertex uis ‘18—
. . X
v/ N , where c is a function of the outdegree of u 1_8%
_ _ NS Slope = 1.5 4
m Total storage complexity of the SILC framework is g8 ™ +
o
O(N+/N); closely follows empirical results =8
S’é 1e+06
=
£
2 e
100000

5000 10000 50000 100000
Number of Vertices (n) (log scale)
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Space Complexity Analysis of Shortest-Path Quadtrees

m Consider a spatial network containing N vertices
in a square grid of size NV « NY” and embed it

B Perimeter of a region with monotonic boundary on
one of its coordinates is of size O(N"-?) n

0.5

B Perimeter of a region with a non-monotonic
boundary can be of size O(N)

B Assumption: Regions of the shortest-path
quadtree have monotonic boundaries 0.5

B Size of a shortest-path quadtree of a vertex u is fe+08
cv/ N , where ¢ is a function of the outdegree of u

B Total storage complexity of the SILC framework is
O(N+/'N); closely follows empirical results
B Contribution: A mechanism to capture shortest

paths in spatial networks based solely on
geometry and independent of topology or

connectivity

Slope = 1.5 3

1e+07 ¢

Morton lf})locks
le

(m)o(ﬁog sca

1e+06

Number

+
4 3
oy

100000 ! ! !
5000 10000 50000 100000

Number of Vertices (n) (log scale)
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Path Retrieval

B Problem: How to retrieve the shortest path from a

|| /
H A

s
VAR
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s

|| /
A

[ .
| |
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

1 /
N
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

A”* //v/
NN

1l
W

B Retrieve the shortest-path quadtree Qs corresponding to s
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

d

7

AL

/

\

L

|

B Retrieve the shortest-path quadtree Qs corresponding to s
B Find the colored region that contains d in Qs
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

d

7

AL

/

_'l

\

\

]/1_

]

A

B Retrieve the shortest-path quadtree Qs corresponding to s
B Find the colored region that contains d in Qs
B Retrieve the vertex t connected to s in the region containing d in Qs
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

—
|_
Ne
e

B Retrieve the shortest-path quadtree Qs corresponding to s
B Find the colored region that contains d in Qs
B Retrieve the vertex t connected to s in the region containing d in Qs

Scalable Network Distance Browsing in Spatial Databases — p.8/15

288



Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

[/

/{

\

A

B Retrieve the shortest-path quadtree Qs corresponding to s

B Find the colored region that contains d in Qs

B Retrieve the vertex t connected to s in the region containing d in Qs
B Retrieve the shortest-path quadtree @Q; corresponding to t
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

d

/

/

/

(

\

A

B Retrieve the shortest-path quadtree Qs corresponding to s

B Find the colored region that contains d in Qs

B Retrieve the vertex t connected to s in the region containing d in Qs
B Retrieve the shortest-path quadtree @Q; corresponding to t

B Find the colored region that contains d in Q;
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

d

/ /

-

\

[

B Retrieve the shortest-path quadtree Qs corresponding to s

B Find the colored region that contains d in Qs

B Retrieve the vertex t connected to s in the region containing d in Qs
B Retrieve the shortest-path quadtree @Q; corresponding to t

B Find the colored region that contains d in Q;

B Retrieve the vertex u connected to t in the region containing d in Q;
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

B Retrieve the shortest-path quadtree Qs corresponding to s

B Find the colored region that contains d in Qs

B Retrieve the vertex t connected to s in the region containing d in Qs
B Retrieve the shortest-path quadtree @Q; corresponding to t

B Find the colored region that contains d in Q;

B Retrieve the vertex u connected to t in the region containing d in Q;

B Entire shortest path can be retrieved in size-of-path steps
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Path Retrieval

B Problem: How to retrieve the shortest path from a source s to a destination d?

B Retrieve the shortest-path quadtree Qs corresponding to s

B Find the colored region that contains d in Qs

B Retrieve the vertex t connected to s in the region containing d in Qs
B Retrieve the shortest-path quadtree @Q; corresponding to t

B Find the colored region that contains d in Q¢

B Retrieve the vertex u connected to t in the region containing d in Q;

B Entire shortest path can be retrieved in size-of-path steps
B Network distance between s and d is immediately obtained from shortest path
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Progressive Refinement of Distances

B Avoid full shortest path retrievals using progressive refinement
B |[dea: Use distance intervals instead of the exact distance
B Progressive refinement: Improve interval if query cannot be answered

B Associate Min/Max distance information with each Morton block
B Refinement involves finding the next link in the shortest path
® Worst case: retrieve entire shortest path to answer query

B Many queries require distance comparison primitives
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Progressive Refinement of Distances

B Avoid full shortest path retrievals using progressive refinement
B |[dea: Use distance intervals instead of the exact distance
B Progressive refinement: Improve interval if query cannot be answered

B Associate Min/Max distance information with each Morton block
B Refinement involves finding the next link in the shortest path
® Worst case: retrieve entire shortest path to answer query

B Many queries require distance comparison primitives

B Example: Is Munich closer to Mainz than Bremen?

Bremen

Berlin
Mainz

Hanover
Munich
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Progressive Refinement of Distances

B Avoid full shortest path retrievals using progressive refinement
B |[dea: Use distance intervals instead of the exact distance
B Progressive refinement: Improve interval if query cannot be answered

B Associate Min/Max distance information with each Morton block
B Refinement involves finding the next link in the shortest path
® Worst case: retrieve entire shortest path to answer query

B Many queries require distance comparison primitives

B Example: Is Munich closer to Mainz than Bremen?

Munich [Bremen
Mainz [10,20] |[15,30]

Bremen

Berlin
Mainz

Hanover

Munich
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Progressive Refinement of Distances

B Avoid full shortest path retrievals using progressive refinement
B |[dea: Use distance intervals instead of the exact distance
B Progressive refinement: Improve interval if query cannot be answered

B Associate Min/Max distance information with each Morton block
B Refinement involves finding the next link in the shortest path
® Worst case: retrieve entire shortest path to answer query

B Many queries require distance comparison primitives

B Example: Is Munich closer to Mainz than Bremen?

Munich [Bremen

Mainz [10,20] [[15,30]
Berlin Hanover |[12,18]|[17,20]

Bremen

Mainz

Hanover

Munich
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Progressive Refinement of Distances

B Avoid full shortest path retrievals using progressive refinement
B |[dea: Use distance intervals instead of the exact distance
B Progressive refinement: Improve interval if query cannot be answered

B Associate Min/Max distance information with each Morton block
B Refinement involves finding the next link in the shortest path
® Worst case: retrieve entire shortest path to answer query

B Many queries require distance comparison primitives

B Example: Is Munich closer to Mainz than Bremen?

Bremen Munich [Bremen
Mainz 10,20] {[15,30]

Berlin Hanover |[12,18]|[17,20

Mainz Berlin 13,15] |[18,19]

Hanover

Munich
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Progressive Refinement of Distances

B Avoid full shortest path retrievals using progressive refinement
B |[dea: Use distance intervals instead of the exact distance
B Progressive refinement: Improve interval if query cannot be answered

B Associate Min/Max distance information with each Morton block
B Refinement involves finding the next link in the shortest path
® Worst case: retrieve entire shortest path to answer query

B Many queries require distance comparison primitives

B Example: Is Munich closer to Mainz than Bremen?

Munich [Bremen
Mainz 10,20] |[15,30
Berlin Hanover |[12,18]([17,20
Mainz Berlin 13,15] {[18,19]

Bremen

Hanover

Munich

B Munich is closer as distance interval via Berlin does not intersect distance
interval to Bremen via Berlin
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Properties of a Non-Incremental kNN Algorithm

B Neighbors produced in increasing order of distance from ¢
m Use a priority queue @ of objects and blocks

B () contains network distance interval [§—, 6] of objects from ¢

B Additional information stored with each object o in Q
1. An intermediate vertex u in shortest path from ¢ to u
2. network distance d from ¢ to «
B Uses another priority queue L in addition to Q
m Stores k objects found so far in increasing order of 6 *
W D, is the maximum of the distance interval of the kth element in L
W |dea: Prune elements e from @ such that 6, > D,
B Elements are removed from @ in increasing order of the minimum of their
distance interval 5~ from q
® Objects may be reinserted in Q if 6~ < Dy,
® Terminate when 6~ > Dy
B Advantages over Incremental best-first KNN (INN)

®m Smaller size of )
W Faster than INN
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from g is > Dy,
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T°

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from g is > Dy,

3. If pis a LEAF block, then replace it with all objects contained within it for
which 6~ < D, along with their network distance interval from ¢

B Also enqueue objects in L if 67 < Dy,
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T°

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from g is > Dy,

3. If pis a LEAF block, then replace it with all objects contained within it for
which 6~ < D, along with their network distance interval from ¢

B Also enqueue objects in L if 67 < Dy,

4. If pis a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from g is < Dy,
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from g is > Dy,

3. If pis a LEAF block, then replace it with all objects contained within it for
which 6~ < D, along with their network distance interval from ¢

B Also enqueue objects in L if 67 < Dy,
4. If pis a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from g is < Dy,

5. If pis an OBJECT, then test the distance interval of p for possible collisions
with the current top element of
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from g is > Dy,

3. If pis a LEAF block, then replace it with all objects contained within it for
which 6~ < D, along with their network distance interval from ¢

B Also enqueue objects in L if 67 < Dy,

4. If pis a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from g is < Dy,

5. If pis an OBJECT, then test the distance interval of p for possible collisions
with the current top element of
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from g is > Dy,

3. If pis a LEAF block, then replace it with all objects contained within it for
which 6~ < D, along with their network distance interval from ¢

B Also enqueue objects in L if 67 < Dy,

4. If pis a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from g is < Dy,

5. If pis an OBJECT, then test the distance interval of p for possible collisions
with the current top element of

W Collision:
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > D,

3. If pis a LEAF block, then replace it with all objects contained within it for
which 6~ < D, along with their network distance interval from ¢

B Also enqueue objects in L if 67 < Dy,
4. If pis a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from g is < Dy,

5. If pis an OBJECT, then test the distance interval of p for possible collisions
with the current top element of

| Collision:
B Remove p from L if 67 < Dy,
B Apply refinement to improve distance interval of p and reinsert p in

LiféT < D; andin Qif §~ < D, and go to Step 2
® No collision:
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kNN Algorithm

1. Initialize priority queue @ by inserting the root T

2. Retrieve top element p in Q at each iteration and halt if minimum distance
from q is > D,

3. If pis a LEAF block, then replace it with all objects contained within it for
which 6~ < D, along with their network distance interval from ¢

B Also enqueue objects in L if 67 < Dy,

4. If pis a NONLEAF block, then replace it with all its children blocks for
which the minimum distance from g is < Dy,

5. If pis an OBJECT, then test the distance interval of p for possible collisions
with the current top element of

| Collision:
B Remove p from L if 67 < Dy,
B Apply refinement to improve distance interval of p and reinsert p in

LiféT < D; andin Qif §~ < D, and go to Step 2
B No collision: p is already one of k£ nearest neighbors in L (Theorem 1)
and go to Step 2
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Example of a Non-incremental © Neighbor Search
k=2

oL efgmanonnob
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Example of a Non-incremental © Neighbor Search

®
ad x
lo
a_l
®h

k=2

efgmanonnob
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Example of a Non-incremental © Neighbor Search

ad x

®b

k=2

efgmanonnob

front
L Queue
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Example of a Non-incremental © Neighbor Search

k=2
o |f 4
‘ e |e
X g
|® m 0
a_i
o s efgmanonnob
1. Insert n into Queue.
n | front
L Queue
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Example of a Non-incremental © Neighbor Search

k=2
e |f N <—— expand
‘ e |e
X lo 9
5 @

®b

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.

o | front
L Queue
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Example of a Non-incremental © Neighbor Search

k=2
n
o |f
; e |eo
X g
[® m 0 \n
a_‘
oL efgmanonnob
1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
m | front
L  Queue
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Examp on-incremental & Neighbor Search

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk

e f oOoaoob

k=2
n
expand
0
b
b a
a m | front
L Queue
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Example of a Non-incremental © Neighbor Search

k=2
— f n
°
e |e expand
9 x g
— m 0
°]
efgomanob
v g
1. Insert n into Queue. f
2. Expand n. Insert o,m into Queue. 5
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L. e
9 g
a a | front
L  Queue
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Example of a Non-incremental © Neighbor Search

k=2
: n
e\|le expand
-
m 0
\,\-;/ efgmanonnob
1. Insert n into Queue. f
2. Expand n. Insert o,m into Queue. 5
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L. e
Update Dk g g
a a | front
L  Queue
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Example of a Non-incremental © Neighbor Search

k=2
f Iprune n
e\|le expand
-
m 0
a/ /
\_,\';‘Fprune efgomamnonob
1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L. e
Update Dk. Prune f and b from Queue. g g
d a | front
L  Queue
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Example of a Non-incremental © Neighbor Search

k=2
n
m 0
efgomanob
19 Db| collision J
1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L. e
Update Dk. Prune f and b from Queue. g g
5. Process a. Collision of a with g.
a a | front
L  Queue
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Example of a Non-incremental © Neighbor Search

-----
- ~
~

b| collision

refine

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dy

4. Expand m. Insert g,e,f into Queue and g into L.

Update Dk. Prune f and b from Queue.
5. Process a. Collision of a with g.

Refine a. Reinsert a into Queue and L.

efgmanonnob

k=2
n
o)
e
a
a g | front

L Queue
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Example of a Non-incremental © Neighbor Search

-----
® Ve

O]
X
4
‘ L4
’0
;CQ ..

------

collision \b
1. Insert n into Queue.

2. Expand n. Insert o,m into Queue.

3. Expand o. Insert a,b into Queue, L.Set Dk

4. Expand m. Insert g,e,f into Queue and g into L.

Update Dk. Prune f and b from Queue.
5. Process a. Collision of a with g.

Refine a. Reinsert a into Queue and L.
6. Process g. Collision of g with a.

efgmanonnob

k=2
n
o)
e
a
a g | front
L Queue
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Example of a Non-incremental © Neighbor Search

LI . k=2
o |f
: : o
. g x g:
"‘ "J's m
\“‘ ? "o \
B e e refine efgomaoaob
collision \b
1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L. e
Update Dk. Prune f and b from Queue. g g
5. Process a. Collision of a with g. - - f
Refine a. Reinsert a into Queue and L. a a_| front
6. Process g. Collision of g with a. L Queue

Refine and Reinsert g into Queue and L.
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Example of a Non-incremental © Neighbor Search

k=2
o\ f 4
e\ls
m 0
~—1— efgmamamob
collision \b
1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L. e
Update Dk. Prune f and b from Queue. g g
5. Process a. Collision of a with g. - - f
Refine a. Reinsert a into Queue and L. a a_| front
6. Process g. Collision of g with a. L Queue

Refine and Reinsert g into Queue and L.Update D

Scalable Network Distance Browsing in Spatial Databases — p.12/15

323



Example of a Non-incremental © Neighbor Search

.............. N k = 2

':"" “‘\‘ f n

:: ‘i '.—

|t q x g:

|‘ “‘ N m O

\“‘ ‘ >

e efgomamoaob
b| Nno.
collision *

1. Insert n into Queue. report

2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L. e
Update Dk. Prune f and b from Queue. g
5. Process a. Collision of a with g. = s
Refine a. Reinsert a into Queue and L. front
6. Process g. Collision of g with a. L Queue
Refine and Reinsert g into Queue and L.Update D |
7. Process a. No collision of a with g. No need to refine a further.

(@]
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Example of a Non-incremental & Neighbor Search

,° no GO||ISIOn
K \\ k=2
74 .3
I P fa n
! -
: 9x O
\ " m 0]
‘\ a_‘ !
\ ’
‘. e efgomamoab
S o 9 ’ f
1. Insert n into Queue. report
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L.
Update Dk. Prune f and b from Queue. g e
5. Process a. Collision of a with g. 3 f
Refine a. Reinsert a into Queue and L. g front
6. Process g. Collision of g with a. L Queue

Refine and Reinsert g into Queue and L.Update D |
7. Process a. No collision of a with g. No need to refine a further.

8. Process g. No collision of g with e.
No need to refine g further. Report L.
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Example of a Non-incremental © Neighbor Search
k=2

efgmanonnob

1. Insert n into Queue.
2. Expand n. Insert o,m into Queue.
3. Expand o. Insert a,b into Queue, L.Set Dk
4. Expand m. Insert g,e,f into Queue and g into L.
Update Dk. Prune f and b from Queue.
5. Process a. Collision of a with g.
Refine a. Reinsert a into Queue and L.
6. Process g. Collision of g with a. L Queue
Refine and Reinsert g into Queue and L.Update D |
7. Process a. No collision of a with g. No need to refine a further.
8. Process g. No collision of g with e.
No need to refine g further. Report L.
Example of a best—first nearest neighbor algorithm.
(Search radius to first element in Queue)

front
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Musings on How Realistic is the Approach

® How about a system for the whole US?

® 24 million vertices x 10 seconds (say) per shortest path
Single machine = 2777 days
Google with 0.5 million machines = 480 seconds
Modest Cluster of 2000 machines = 1 day, 10 hours

m Storage shown to be ¢cN+v/'N Morton Blocks
N = 24 million vertices, 8 bytes per Morton block, ¢ = 2 from empirical
analysis =1.8 TB

® Easily Parallelizable: data parallelism
B Mostly a one-time effort (decoupling)

® Open Challenge: Updates!
B Changes to spatial network (e.g., road closure)
® Dynamic traffic information
m Strategy: How to localize changes to minimize recomputation?

B Approximation Strategies: location based services

B Shortest-path quadtree on proximal vertices only (say, 100 miles around a
vertex)

B Multiresolution spatial networks
Full resolution around a source vertex that gets sparse gradually
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Path Coherence Beyond SILC

B The SILC framework captures the path coherence in the shortest paths
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Path Coherence Beyond SILC

B The SILC framework captures the path coherence in the shortest paths
B Captured: single source vertex to multiple destination vertices
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Path Coherence Beyond SILC

B The SILC framework captures the path coherence in the shortest paths
B Captured: single source vertex to multiple destination vertices

B Not captured: multiple source vertices to multiple destination vertices
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Path Coherence Beyond SILC

B The SILC framework captures the path coherence in the shortest paths
B Captured: single source vertex to multiple destination vertices

B Not captured: multiple source vertices to multiple destination vertices

® A new framework: Path Coherent Pairs (PCP)
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Path Coherence Beyond SILC

®m The SILC framework captures the path coherence in the shortest paths
B Captured: single source vertex to multiple destination vertices

B Not captured: multiple source vertices to multiple destination vertices

® A new framework: Path Coherent Pairs (PCP)
B Example of a path coherent pair denoted by: ( )
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Path Coherence Beyond SILC

®m The SILC framework captures the path coherence in the shortest paths
B Captured: single source vertex to multiple destination vertices

B Not captured: multiple source vertices to multiple destination vertices

® A new framework: Path Coherent Pairs (PCP)
B Example of a path coherent pair denoted by: (A, )
A is a set of source vertices
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Path Coherence Beyond SILC

B The SILC framework captures the path coherence in the shortest paths
B Captured: single source vertex to multiple destination vertices

B Not captured: multiple source vertices to multiple destination vertices

® A new framework: Path Coherent Pairs (PCP)
®m Example of a path coherent pair denoted by: (A, B, )

A is a set of source vertices
B is a set of destination vertices

Scalable Network Distance Browsing in Spatial Databases — p.14/15

334



Path Coherence Beyond SILC

B The SILC framework captures the path coherence in the shortest paths
B Captured: single source vertex to multiple destination vertices

B Not captured: multiple source vertices to multiple destination vertices

® A new framework: Path Coherent Pairs (PCP)
m Example of a path coherent pair denoted by: (A, B, v)

A is a set of source vertices
B is a set of destination vertices
v is a common vertex to all pairs of shortest paths
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Finding Path Coherent Pairs in Spatial Networks
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Finding Path Coherent Pairs in Spatial Networks

B Source Vertices:
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D)
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N)
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
B Destination vertices:
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
B Destination vertices: Las Vegas (L)
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
W Destination vertices: Las Vegas (L) , Sacramento (S)
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
B Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
W Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)
B Anyone driving from “North-East” to “North-West” US uses |-80W

Scalable Network Distance Browsing in Spatial Databases — p.15/15

345



Finding Path Coherent Pairs in Spatial Networks

B Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
W Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)
B Anyone driving from “North-East” to “North-West” US uses |-80W

B Capture shortest paths from one million (say) sources in “North-East” to one
million (say) destinations in “North-West” using O(1) storage

Scalable Network Distance Browsing in Spatial Databases — p.15/15

346



Finding Path Coherent Pairs in Spatial Networks

B Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
W Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)
B Anyone driving from “North-East” to “North-West” US uses |-80W

B Capture shortest paths from one million (say) sources in “North-East” to one
million (say) destinations in “North-West” using O(1) storage

W Intuition: Sources “sufficiently far” from destinations share common vertices in
their shortest paths
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
W Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)
B Anyone driving from “North-East” to “North-West” US uses |-80W

B Capture shortest paths from one million (say) sources in “North-East” to one
million (say) destinations in “North-West” using O(1) storage

W Intuition: Sources “sufficiently far” from destinations share common vertices in
their shortest paths
B Decompose road network into PCPs:
B Any vertex pair is contained in

exactly one set in the shape of a
dumbbell

m All N2 shortest paths are captured

using O(s?N) storage where s is a
small constant

-

A
A XD

N =P
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Finding Path Coherent Pairs in Spatial Networks

m Source Vertices: Washington, DC (D) , New York (N) , Boston (B)
W Destination vertices: Las Vegas (L) , Sacramento (S) , Portland (P)
B Anyone driving from “North-East” to “North-West” US uses |-80W

B Capture shortest paths from one million (say) sources in “North-East” to one
million (say) destinations in “North-West” using O(1) storage

W Intuition: Sources “sufficiently far” from destinations share common vertices in
their shortest paths
B Decompose road network into PCPs:
B Any vertex pair is contained in

exactly one set in the shape of a
dumbbell

m All N2 shortest paths are captured

using O(s?N) storage where s is a
small constant

-

A
A XD

N =P

B Key idea is the analogy to the well-separated pairs in computational geometry
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O SET OPERATIONS ON QUADTREES tH

e UNION(S,T) : traverse S and T in tandem

1. GRAY(S) Q:
e GRAY(T) @ :recursively process subtrees and
merge if all resulting sons are BLACK
e BLACK(T) @ :resultisT
o WHITE(T) O :resultis S
2. BLACK(S) @ :resultis S
3. WHITE(S) O:resultis T
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O SET OPERATIONS ON QUADTREES tH

e UNION(S,T) : traverse S and T in tandem

1. GRAY(S) Q:
e GRAY(T) @ :recursively process subtrees and
merge if all resulting sons are BLACK
e BLACK(T) @ :resultisT
o WHITE(T) O :resultis S
2. BLACK(S) @ :resultis S
3. WHITE(S) O:resultis T
2
3| 4
6
A @
B C
5 6
1 2 3 4 7 8 9 10
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seinjonig eleq [eneds o suoneoddy-z g 9-uoioes

" SET OPERATIONS ON QUADTREES 2l27)
e UNION(S,T) : traverse S and T in tandem

1. GRAY(S) Q:

e GRAY(T) @ :recursively process subtrees and
merge if all resulting sons are BLACK

e BLACK(T) @ :resultisT
o WHITE(T) O :resultis S

2. BLACK(S) @ :resultis S

3. WHITE(S) O:resultis T

2

3| 4

15|16

18

20

10

A D
B C E F
5 6 19 20

1 2 3 4
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O SET OPERATIONS ON QUADTREES

N | &~
Q@ w

21| tf1
r

e UNION(S,T) : traverse S and T in tandem

1. GRAY(S) Q:
e GRAY(T) @ :recursively process subtrees and
merge if all resulting sons are BLACK
e BLACK(T) @ :resultisT
o WHITE(T) O :resultis S
2. BLACK(S) @ :resultis S
3. WHITE(S) O:resultis T
> 15 16
3| 4 18
6 20
A
p 5 6 S - . 19 20
“ful=lu T
1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18
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O SET OPERATIONS ON QUADTREES

21| tf1
r

Q@ w

e UNION(S,T) : traverse S and T in tandem

1. GRAY(S)
® GRAY(T)

e BLACK(T)
o WHITE(T)
BLACK(S)

WHITE(S)

W

2

3| 4

Oe0e 00

10

: recursively process subtrees and

merge if all resulting sons are BLACK

‘resultis T
‘resultis S
‘resultis S
‘resultis T

15|16

18

20

A
B C

E

F

19 20

:

[Wim

9 10 11 12 13 14 15 16 17 18

e INTERSECTION: interchange roles of BLACK and WHITE in

UNION
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6
r

<|O1
N | &~

Q@ w

O SET OPERATIONS ON QUADTREES

e UNION(S,T) : traverse S and T in tandem

1. GRAY(S) Q:
e GRAY(T) @ :recursively process subtrees and
merge if all resulting sons are BLACK
e BLACK(T) @ :resultisT
o WHITE(T) O :resultis S
2. BLACK(S) @ :resultis S
3. WHITE(S) O:resultis T

2 15|16

3| 4 18

20

9 |10

A
B C

G el B = Yo

9 10 11 12 13 14 15 16 17 18

E F

19 20

e INTERSECTION: interchange roles of BLACK and WHITE in
UNION

e Execution time is bounded by sum of nodes in two input
trees but may be less if don't create a new copy as really
just the sum of the minimum of the number of nodes at
corresponding levels of the two quadtrees
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716
zr

<O
N |

Q@ w

O SET OPERATIONS ON QUADTREES

e UNION(S,T) : traverse S and T in tandem

1. GRAY(S) Q:
e GRAY(T) @ :recursively process subtrees and
merge if all resulting sons are BLACK
e BLACK(T) @ :resultisT
o WHITE(T) O :resultis S
2. BLACK(S) @ :resultis S
3. WHITE(S) O:resultis T

2 15|16

3| 4 18

20

9 |10

A
B ()
L o

"Gl EENEr )

9 10 11 12 13 14 15 16 17 18

E F

19 20

e INTERSECTION: interchange roles of BLACK and WHITE in
UNION

e Execution time is bounded by sum of nodes in two input
trees but may be less if don't create a new copy as really
just the sum of the minimum of the number of nodes at
corresponding levels of the two quadtrees

e More efficient than vectors as make use of global data
1. vectors require a sort for efficiency
2. region quadtree is already sorted
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Buipuyy Joqubiau sanpend-£ 12

O nf1 O
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

« For quadtree/octree
representations replace 5
pixel/voxel by block

L | >

* Neighbor is defined to be an
adjacent block of greater than
or equal size

A has 5 neighbors

« Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks
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O nf1 C
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

« For quadtree/octree
representations replace
pixel/voxel by block

A oo
W >
—h

* Neighbor is defined to be an
adjacent block of greater than
or equal size

Ahas 86  neighbors

« Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks
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zrb
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

« For quadtree/octree
representations replace

; 5| 7
pixel/voxel by block INE
4132

* Neighbor is defined to be an
adjacent block of greater than
or equal size

Ahas 587 neighbors

« Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks
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NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

« For quadtree/octree
representations replace

; 51817
pixel/voxel by block INE
4132

* Neighbor is defined to be an
adjacent block of greater than
or equal size

A has 5 & . 8 neighbors

« Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks
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NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

« For quadtree/octree
representations replace 5317
pixel/voxel by block 6 1A
41312

* Neighbor is defined to be an
adjacent block of greater than
or equal size

A has § & 7. 8 neighbors

« Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

« Some block configurations are impossible, thereby
simplifying a number of algorithms

1. impossible for a node A to have
two larger neighbors B and C
on directly opposite sides or A
touching corners

2. partial overlap of two blocks B
and C with A is impossible
since a quadtree is constructed
by recursively splitting blocks A
into blocks that have side

lengths that are powers of 2
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NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

« For quadtree/octree
representations replace 5317
pixel/voxel by block 6 1A
41312

* Neighbor is defined to be an
adjacent block of greater than
or equal size

A has § & 7. 8 neighbors

« Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

« Some block configurations are impossible, thereby
simplifying a number of algorithms

1. impossible for a node A to have
two larger neighbors B and C C
on directly opposite sides or B A
touching corners

2. partial overlap of two blocks B
and C with A is impossible C
since a quadtree is constructed
by recursively splitting blocks A
into blocks that have side

lengths that are powers of 2
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O nf2 O
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (apJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

[ ] ®

AlG
B F
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rb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (apJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE | NW
NE /1A | GNINW

B O
NW [ 2 I:5 NE
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FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (apJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE | NW
NE /1A | GNINW

B O
NW [ 2 I:5 NE
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O al32[1]  nfo O

bzrb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (apJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE | NW
NE /1A | GNINW
B O
NW 2 Fl 5\UINE
C E
3 4
D

node procedure EQUAIL_LATERAL_NEIGHBOR (P,D);
/* Find = size neighbor of P in direction D */
begin
value pointer node P;
value direction D;
return (SON (1f ADJ (D, SONTYPE (P)) then
EQUAL_LATERAL_NEIGHBOR (FATHER (P),D)
else FATHER (P),
REFLECT (D, SONTYPE (P) ) ) ) ;
end;
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FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (apJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE | NW
NE /1A | GNINW
5T 6
NW 2 Fl 5\UINE
C E
3 4
D

node procedure EQUAIL_LATERAL_NEIGHBOR (P,D);
/* Find = size neighbor of P in direction D */ Pe >D
begin

value pointer node P;

value direction D;

return (SON (1£f|ADJ (D, SONTYPE (P) )| then

EQUAL_LATERAL_NEIGHBOR (FATHER (P),D)
else FATHER (P),

REFLECT (D, SONTYPE (P))) ) ;
end;

B
A NW NE SW SE
N T T F F
ADJ(A,B) E F T F T
S F F T T
W T F T F
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FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (apJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE | NW
NE /1A | GNINW
5T 6
NW 2 Fl 5\UINE
C E
3 4
D

node procedure EQUAIL_LATERAL_NEIGHBOR (P,D);
/* Find = size neighbor of P in direction D */ Pe >D
begin
value pointer node P;
value direction D;
return (SON (1£f|ADJ (D, SONTYPE (P) )| then
EQUAL_TLATERAL_NEIGHBOR (FATHER (P),D) Pe
else |[FATHER (P)|,

REFLECT (D, SONTYPE (P))) ) ;
end;

B
A NW NE SW SE
N T T F F
ADJ(A,B) E F T F T
S F F T T
W T F T F
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zrbzrb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (apJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE | NW
NE /1A | GNINW
5T 6
NW 2 Fl 5\UINE
C E
3 4
D

node procedure EQUAIL_LATERAL_NEIGHBOR (P,D);
/* Find = size neighbor of P in direction D */ Pe >D
begin
value pointer node P;
value direction D;
return (SON (1£f|ADJ (D, SONTYPE (P) )| then
EQUAL_TLATERAL_NEIGHBOR (FATHER (P),D) Pe
else |[FATHER (P)|,

REFLECT (D, SONTYPE (P))))|;
end;

B
A NW NE SW SE
N T T F F
ADJ(A,B) E F T F T
S F F T T
W T F T F
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ANALYSIS OF NEIGHBOR FINDING

1. Bottom-up random image model where each pixel
has an equal probability of being black or white

* probability of the existence of a 2x2 block at a
particular position is 1/8

» OK for a checkerboard image but inappropriate for
maps as it means that there is a very low probability
of aggregation

* problem is that such a model assumes
independence

 In contrast, a pixel’s value is typically related to that

of its neighbors
2. Top-down random image model where the probability

of a node being black or white is p and 1-2p for being

gray

* model does not make provisions for merging

* uses a branching process model and analysis is in
terms of extinct branching processes

3. Use a model based on positions of the blocks in the
decomposition

« a block is equally likely to be at any position and
depth in the tree

« compute an average case based on all the possible
positions of a block of size 1x1, 2x2, 4x4, eftc.

» 1 case at depth 0, 4 cases at depth 1, 16 cases at
depth 2, etc.

* this is not a realizable situation but in practice does
model the image accurately
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ANALYSIS OF FINDING LATERAL NEIGHBORS

23-(23—1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor
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ANALYSIS OF FINDING LATERAL NEIGHBORS

(ool BN o>l MO 1 IR OO RN B \O T B
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23-(23—1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

1-8 have NCA at level 3

2t ni5 O
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Theorem:

Proof:

23-(23—1) neighbor pairs of equal
sized nodes in direction E

NCA = nearest common ancestor
1-8 have NCA at level 3

9-24 have NCA at level 2
25-56 have NCA at level 1

average number of nodes visited by

EQUAL_LATERAL_NEIGHBOR iS <4

 Let node A be at level j (i.e., a 2/x2/ block)

« There are 2n—/-(2n-/—1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n—i rows

2n—I—1 adjacencies per row
2n-1-20 have NCA at level n
2n-1-21 have NCA at level n—1

2n-i-2n—-i—1 hgayve NCA at level i+1
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Theorem:

Proof:

23-(23—1) neighbor pairs of equal
sized nodes in direction E

NCA = nearest common ancestor
1-8 have NCA at level 3

9-24 have NCA at level 2

25-56 have NCA at level 1

average number of nodes visited by

EQUAL_LATERAL_NEIGHBOR iS <4

 Let node A be at level j (i.e., a 2/x2/ block)

« There are 2n—/-(2n-/—1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n—i rows

2n—I—1 adjacencies per row
2n-1-20 have NCA at level n
2n-1-21 have NCA at level n—1

2n-i-2n—-i—1 hgayve NCA at level i+1

« For node A at level j, direction D, and the NCA
at level j, 2-(j—i) nodes are visited in locating
an equal-sized neighbor at level /
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25-56 have NCA at level 1

Theorem:

Proof:

average number of nodes visited by

EQUAL_LATERAL_NEIGHBOR iS <4

 Let node A be at level j (i.e., a 2/x2/ block)

« There are 2n—/-(2n-/—1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

« For node A at levelli|direction b, and the NCA

2n—i rows

2n—I—1 adjacencies per row
2n-1-20 have NCA at level n
2n-1-21 have NCA at level n—1

2n-i-2n—-i—1 hgayve NCA at level i+1

at level j||2-(j—i) nodes are visited in locating
an equal-sized neighbor at levelli] ;i

)
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22 190 23 ; j; 1; ;‘3 23:(23—1) neighbor pairs of equal
B PP v e o sized nodes in direction E
SR EEIER PR PRI EN B NCA = nearest common ancestor
29|13[37] 5 |45[21]53 1-8 have NCA at level 3
30(14|38] 6 |46|22]|54
PP Y Y e e e e 9-24 have NCA at level 2
32[16[40] 8 [48]24|56 25-56 have NCA at level 1

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR iS <4
Proof:

 Let node A be at level j (i.e., a 2/x2/ block)

« There are 2n—/-(2n-/—1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

21— rows

2n—I—1 adjacencies per row
2n—1-20 have NCA at level n
2n—-21 have NCA at level n—1

2n-i-2n—-i—1 hgayve NCA at level i+1

« For node A at levelli|direction b, and the NCA
at level j||2-(j—i) nodes are visited in locating A

an equal-sized neighbor at levelli]

n-1 n , _
Y, Ye2mt.2ml2.(j-i

i=0 j=i+1 f zxo
n—1 , .
221’7—/ .(217—/ o 1) i i

i=0
nodes are visited on the average < 4
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VASCO Spatial Applet

http://www.cs.umd.edu/ "hijs/quadtree/index.html
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Sorting in Words

Hanan Samet™

hjs@cs.umd.edu

COMMUNICATIONS

Reading News
with Maps by
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Spatial
Synonyms

Department of Computer Science
Institute for Advanced Computer Studies
Center for Automation Research
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College Park, MD 20742, USA
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* Based on Joint Work with Marco D. Adelfio, Brendan C. Fruin, Jack Lotkowski, Michael D. Lieberman, Daniele Panozzo, Jagan
Sankaranarayanan, Jon Sperling, and Ben E. Teitler
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http://vimeo.com/106352925

Application
B Questions
1. Do you travel?
2. Do you want to know what is going on in the town you are traveling to?

3. Do you want to keep up with the latest news in the town you have left
® Especially when it is your own hometown?
® E.g., keep up with the local sports team

® Answer: NewsStand
B Enables search with a map query interface instead of by keyword

® Advantage: a map, coupled with ability to vary the zoom level at which it is
viewed, provides a granularity to the search and facilitates an approximate
search
Can do an approximate search with a group of keywords (e.g.,
synonyms) in the query formulation
But users often have no clue as to which keyword to use
Would welcome the search automatically taking them into account

® Map query interface is a step in this direction
Pointing at a location and making the interpretation of the precision of
this positioning dependent on the zoom level is equivalent to using
spatial synonyms

Copyright 2015: Hanan Samet Sorting in Words — p.2/42
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Power of Spatial Synonyms

B Enables search for data when not exactly sure of what we are seeking, or what
should be the answer to the query

B Ex: Seek a “Rock Concert in Manhattan”

®m “Rock Concerts” in “Harlem”, “New York City”, or “Brooklyn” are good
answers when no such events can be found in “Manhattan” as they
correspond to spatial synonyms:
“Harlem” by virtue of being contained in Manhattan
“New York City” by virtue of containing Manhattan
“Brooklyn” by virtue of proximity and a sibling relationship (neighboring
borough)

Copyright 2015: Hanan Samet Sorting in Words — p.3/42
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Conventional Search Engines and Spatial Synonyms

B Use page rank method and good at finding documents containing keywords
that we are looking for, but cannot be easily modified to handle spatial
proximity query

B Primary utility is based on popularity in sense of ensuring that web pages in
response are ordered by a measure incorporating their frequency of being
linked to so results are same as provided to other users

B “Democratization of search”
m All users are treated equally

B They all get the same bad (or good!) answers

B Effectively means that if nobody ever looked for some data before or linked to
it, then it will never be found and, hence, never presented to users

B In case of synonyms, if no links to similar pages on account of being equivalent
but for the use of the same words, then similarity will never be found by the
search engine as the web crawler will never be able to find the similar pages
when building the index to the web pages

Copyright 2015: Hanan Samet Sorting in Words — p.4/42
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Taking Advantage of Spatial Synonyms:
Location Specification

B Explicit via geometry (latitude-longitude pairs of numbers)
®m Used in programs and calculations

® Not in search engines or mobile devices

® Users don’t know them in this way or used to communicate in this way
B Accustomed to textual specification

B Easy to communicate on smartphone devices with soft keyboard

m Can capture verbally by speech recognition (e.g., Siri)
® Behave like a polymorphic type
One size fits all

“Los Angeles” can be interpreted as a point or an area and user
need not be concerned about it

® Supports use of spatial synonyms
®m Drawback is ambiguity

Is “London” reference a person or a location? (toponym recognition)
If “London” is a location, which of many? (toponym resolution)

Copyright 2015: Hanan Samet Sorting in Words — p.5/42
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Decoding or Forming an E-mail Address

Emailing in London is like emailing in London.

—
Uz your phone abiosd hke you do in Kentucky with ATAT s international datn packages, Rethink Possible® E
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Determining Performance of a Team in a Sports League

f

—
Use your phone sbeoad Bke you do in California with ATSET sinternational data packeges. Rethink Possible® E_’}

Checking scores in Dublin is like checking scores in Dublin.
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Interpreting Weather Temperature Measurement Unit

Getting the weather in Mexico is like getting the weather in Mexico.
Use your phone abro ad ke you doen New York with ATET s inernatsonal data packages. Rethink Possibie® %
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Finding Local Food

Finding restaurants in China is like finding restaurants in Ching.
Use yoser phone abroad Nkeoypoa 3o n Texas with ATAT s international data packages, Rethink Possible® é
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Goal: Change News Reading Paradigm

B Use map to read news for all media (e.g., text, photos, tweets, videos)
B Choose place of interest and find topics/articles relevant to it

B Topics/articles determined by location and level of zoom

B No predetermined boundaries on sources of articles

B Application: monitoring hot spots
1. Investors
2. National security
3. Disease monitoring

B One-stop shopping for spatially-oriented news reading
1. Summarize the news
® What are the top stories happening?
2. Explore the news
® What is happening in Darfur?
3. Discover patterns in the news
B How are the Olympics and Darfur related?

®m Overall goal: make map medium for presenting all spatially-referenced
information
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NeWSStand:Spatio-Textual Aggregation of News and Display

1.

Crawls the web looking for news sources and feeds
B Indexing 10,000 news sources
® About 50,000 news articles per day
Aggregate news articles by both content similarity and location
W Articles about the same event are grouped into clusters
Rank clusters by importance which is based on:
B Number of articles in cluster
B Number of unique newspapers in cluster
B Event’s rate of propagation to other newspapers

Associate each cluster with its geographic focus or foci

5. Display each cluster at the positions of the geographic foci

Other options:
m Category (e.g., General, Business, SciTech, Entertainment, Health,
Sports)
B Image and video galleries
m Map stories by disease, brands, people, etc.
B User-generated news (e.g., Social networks such as Twitter)

Copyright 2015: Hanan Samet Sorting in Words — p.13/42
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NewsStand: Map Mode

F Try TwitterStand | PhotoStand
(G OEID SN Sports N e
| ("NEWSSTAND | ' ‘

Top Stories  Map Mode Keyword Search...

Norwegian
Sea

Northwestern Display: 30 .
NU Passages Greenland
Iceland w
NT. : ) Minimap AV 4 X
(il Display: 3 Display: 5 e
' | ®
aada 4 Hudson i . cn
Bay i
i
AB v 2 © f ] . = =
: < ( © How Obama, Bush, Clinton viewed Russia's
SK NL i Qe Puti ti
Irel L In over time
oN 0C i 6 hours ago - usatoday.com -x\{\
S T I —— \V\J category: General
- I
” A ) 5
< Moscow, Idaho, United States i Reference:
\ o g
i A . sp ( Terms oiUse frqm garly warning systems and notifications
oy 7] L —~~| of missile launches at in Moscow, Russia on
ain w - | June 4, 2000. "[The] world demands that we take
( Greece urkey every ...

Languages Countries Sources Multimedia Close x

All v All v Al v Icon Layer v Has 0+ images v’

Arabic = Argentina - 25 25 - Jdu Yanayer Location Layer Has 1+ images
Chinese il Australia ki A Bola Keyword Layer Has 10+ images
Dutch == Austria == Algemeen Dagblad People Layer Has 50+ images

English ke Bahamas == Amar Ujala Disease Layer Has 0+ videos v

French il Belarus &= Associated Press Brand Layer Has 1+ videos

German LW Belgium £ Atlanta Journal-Constitution Has 5+ videos

Feat. Articles

Greek e Benin = Avesta Has 10+ videos
Most Reputable v

Most Recent

Hebrew = Bolivia 4z BBC News

Hindi \&d Brazil ww Baltische Rundschau

Italian l Burkina Faso = Bangkok Post Real-Time

Japanese \#i Canada kl Basler Zeitung

Persian i Chile Bild

B NewsStand is at http://newsstand.umiacs.umd.edu/
®m Query: What is happening at location Y?

Copyright 2015: Hanan Samet Sorting in Words — p.14/42

7~ N N


http://newsstand.umiacs.umd.edu/
http://newsstand.umiacs.umd.edu/

NewsStand: Top Stories Mode
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Video Gallery
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Static Disease Tracking Application
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Dynamic Disease Tracking Application: Time Mode
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Brand Remediation
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People on Map
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Port to Mobile Platforms (Apps)
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NewsStand’s Architecture
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NewsStand’s Architecture

NewsStand
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Data flow:
1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.
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NewsStand’s Architecture

NewsStand
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Data flow:
1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.

2. Downloader: Downloads news articles from URLSs.
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NewsStand’s Architecture

NewsStand
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Data flow:
1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.

2. Downloader: Downloads news articles from URLSs.
3. Cleaner: Extracts article content from source HTML.
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NewsStand’s Architecture

NewsStand
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Data flow:
1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.

2. Downloader: Downloads news articles from URLSs.
3. Cleaner: Exiracts article content from source HTML.
4. Clusterer: Groups together articles about the same story.
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NewsStand’s Architecture

NewsStand
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Data flow:
1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.

Downloader: Downloads news articles from URLSs.

Cleaner: Extracts article content from source HTML.

Clusterer: Groups together articles about the same story.

Topic Classifier: Assigns general topics to articles (e.g., “Sports”).
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NewsStand’s Architecture

, NewsStand
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1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.
Downloader: Downloads news articles from URLSs.

Cleaner: Extracts article content from source HTML.

Clusterer: Groups together articles about the same story.

Topic Classifier: Assigns general topics to articles (e.g., “Sports”).
Geotagger: Finds toponyms and assigns lat/long values to each.

SIS BN
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NewsStand’s Architecture

: NewsStand
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1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.
Downloader: Downloads news articles from URLSs.

Cleaner: Extracts article content from source HTML.

Clusterer: Groups together articles about the same story.

Topic Classifier: Assigns general topics to articles (e.g., “Sports”).
Geotagger: Finds toponyms and assigns lat/long values to each.
People/Disease Finder: Finds mentions of people/diseases.
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NewsStand’s Architecture
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Data flow:

1.
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RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.
Downloader: Downloads news articles from URLSs.

Cleaner: Extracts article content from source HTML.

Clusterer: Groups together articles about the same story.

Topic Classifier: Assigns general topics to articles (e.g., “Sports”).
Geotagger: Finds toponyms and assigns lat/long values to each.
People/Disease Finder: Finds mentions of people/diseases.

Media Extractor: Extracts captioned images and videos.
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NewsStand’s Architecture
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Data flow:
1. RSS Grabber: Polls RSS feeds and retrieves URLSs to news articles.

© 00 N Ok~

Downloader: Downloads news articles from URLSs.

Cleaner: Extracts article content from source HTML.

Clusterer: Groups together articles about the same story.

Topic Classifier: Assigns general topics to articles (e.g., “Sports”).
Geotagger: Finds toponyms and assigns lat/long values to each.
People/Disease Finder: Finds mentions of people/diseases.
Media Extractor: Extracts captioned images and videos.

Web Interface: Accesses database to retrieve data for display.
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Map Query Interface Requires a Geotagger

B Geotagger: processor that converts a textual specification of a location to
a geometric one (i.e., latitude-longitude pair)

m Geotagging issues:

1. Toponym recognition: identify geographical references in text
® Does “Jefferson” refer to a person or a geographical location?
®m Known as Geo/Non-Geo Ambiguity

2. Toponym resolution: disambiguate a geographical reference
® Does “London” mean “London, UK”, “London, Ontario”, or one of
2570 other instances of “London” in our gazetteer?
®m Known as Geo/Geo Ambiguity

3. Determine spatial focus of a document
® |s “Singapore” relevant to a news article about “Hurricane Katrina”?
® Not so, if article appeared in “Singapore Strait Times”
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Geo/Non-Geo Ambiguity Example: Obama

Japan's Obama town overjoyed

Wed, Mov 5 2008

By Toshi Maeda

OBAMA, Japan (Reuters) - The sleepy Japanese fishing town of Obama went wild Wednesday as locals
gathered to celebrate namesake Barack Obama's victory in the U5, presidential election.

More than a hundred residents gathered to watch the vote count on television in a public hall in the middle of the
day, and chanted "Obama, Obama!” as the result was announced on a news program.

Some were clad in hula costumes in honor of ©bama's birthplace in Hawaii. Others showed up wearing "l love
Obama” T-shirs.

The town has taken advantage of the name -- one of many named Obama, or "small beach” in Japanese - to
launch products from fish burgers and steamed cakes to chopsticks.

Buoyed by the victory, locals say they hope Obama, who once mentioned the town in a television interview, will
visit.

"The next thing we want to do is to go to the White House and dance the hula at Obama's inauguration
ceremony,” said Tatsuya Sano, 45, who runs a souvenir shop selling locally made Barack Cbama souvenirs.

Chikako Shimizu, 35, the leader of an "Obama Girls” hula dance group launched this year, said she was calm
while watching the vote count on television because she had no doubt Obama would win.

"l'was convinced that he would win. | couldn't be happier,” she said.
Obama City residents plan to dance and party mare in the evening.

Copyright 2015: Hanan Samet Sorting in Words — p.25/42

A 4 I~



Geo/Non-Geo Ambiguity Example: Batman

Mayor of Batman sues WB, Nolan
Southeastern city in Turkey fights for name

By ALl JAAFAR
Batman has a new adversary: Batman.

The mayor of an oil-producing city in southeastern Turkey, which has the same name as the
Caped Crusader, is suing helmer Christopher Molan and Warner Bros. for royalties from
mega-grosser "The Dark Knight.”

Huseyin Kalkan, the pro-Kurdish Democratic Society Party mayor of Batman, has accused "The
Dark Knight" praducers of using the city's name without permission.

"There is only one Batman in the world," Kalkan said. "The American producers used the name of
our city without informing us.”

Mo one from the town of Batman has explained why it took so many years to take legal action.
Batman first appeared as a comicbook character in 1939 and the "Batman” TV series started in
1966. Tim Burton's first bigscreen rendition for Warner Bros. came out in 1989. Undoubtedly the
factthat "Dark Knight" is about to pass the $1 bilion mark at the B.O. played a part in stirring the ire
of the Turkish hamlet.

BATMAN
L]
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Geo/Geo Ambiguity Example: Java, Georgia

= Photo1af T

Russia thrusts into South Ossetia; clashes
with Georgia reported

5 hours ago

JAVA, Georgia (AFP) — Russian tanks and troops surged into Georgia's breakaway South
Ossetia province on Friday to repel a Georgian offensive to reclaim the region amid fighting
said to have left hundreds dead.

Georgia accuses Russia of seeking

to take over South Ossetia "Fierce clashes" between Russian and Georgian troops in the southern suburbs of South
suaAgE B Ossetia's capital Tskhinvali were reported by Russian news agencies as night fell on the
[H] creavice ‘Chariotte | gity.
‘Sltianta. . South Wi
=R fuaUsisg Carolina == Moscow had vowed retaliation to defend Russians in Tskhinvali who had come under fire by
) e ﬁﬂﬁﬁﬂ-ﬁ' the Georgian artillery and air assault — the worst fighting since the 1992-94 separatist war in
eorqgi e ,
- - the region.
ey | All:gang,- reg
et AL "Georgian forces are controlling the entire territory of South Ossetia except Java," a city
———— . Jacksonville] g ; : i : ; e .
e north of Tskhinvali, Georgian President Mikheil Saakashvili said in a televised address.
L Daytons
(Ganesvla @ S

Elea-:h

"We are fully controlling Tskhinvali," he added, although the rebels shortly after said that
they were in control, according to the Interfax news agency.
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Geo/Geo Ambiguity: Vancouver

Oops, wrong Vancouver

Thu, Feb 4 2010

By Teresa Carson

VANCOUVER, Washington (Reuters) - Sallie Reavey picked up the phone at her
charming Briar Rose Inn and the caller asked about rooms in mid-February. "We have a
nice selection of rooms for those dates,” she replied, towhich the caller gasped: ™You still

have rooms during the Clympics?

Reavey had to tell him: wrong Vancouver.

The Briar Rose isin Vancouver, Washington, not Vancouver, British Columbia, the
Canadian city that will host the 2010 Winter Olympics starting on February 12.

"America's Vancouver,” as a former town mayor liked to describe it, sits 250 miles south
of the Olympic host Vancouwver and has a population of some 165 000 people -- far fewer
than the Canadian city.

The Hilton Wancouver Washington has also fielded Olympic enguiries and trained its resenvations staff to be sensitive to the possible
mistake and, naturally, turn it into & marketing opportunity.

"We absolutely want them to come here,” Gerry Link, the hotel's general manager said, adding of the Vancouver mix-ups: "So far it has all
been pretty good-natured.”
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Geotagging
B Geotagging: Understanding textual references to spatial data
1. ldentifying or recognizing
2. Classifying (is “Michigan” a state or a lake?)
3. Disambiguating or resolving
4. Localizing (geocoding to GPS coordinates)

B Context of textual references

1. Queries - use prior queries and location
® Ex: Query “Alexandria” when in “College Park, MD”

2. Underlying data being queried - need context

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

nnnnnnnnnnnnnnnnnnn
aaaaaaa

: Fort
FFFFFFF : Washington
Hybla Valley . o : P
v : =ET L Accokeek " = + syut
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M & 2 Alexandria;:,w - o ‘
APPIOIOSS iOSMapsby  Android  HereMaps  “PP® 15D
GOFZ) Iey Google Maps by on Windows a Maos
g Google Phone P
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Mechanics of Geotagging

1. Goal: high recall in toponym recognition (i.e., not missing toponyms) at
expense of precision

B Rectify by subsequent use of toponym resolution which can (and will)
also be used to filter erroneous location interpretations

2. Toponym recognition: 2 stages
B Finding toponyms
B Filtering toponyms: postprocessing to remove errors in recognition

3. Toponym resolution

B Use local lexicons containing locations that can be specified without all
of their containers (derived from articles from a particular news
source) to determine spatial reader scopes for particular sources

®m E.g., "Dublin" implies “Dublin, Ohio” for readers of a news source in
“Columbus, Ohio”

®m Use Wikipedia articles to find concepts related to particular locations
so that the presence of these concepts in conjunction with an
ambiguous reference to a location can be properly resolved
® E.g., mention of “White House” in conjunction with “Washington” to
provide evidence for resolving as “Washington, D.C.”
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Local Lexicon Example
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Finding Toponyms

1. Use entity tables of well-known locations (e.g., names of continents,
countries, etc.), abbreviations (e.g., “CA”, “FL”, etc.), and demonyms
(words used to refer to people from particular places such as "German")

2. Use entity dictionaries containing names of entities that appear frequently
In news thereby precluding their interpretation as toponyms (e.g., "Apple")

3. Use a Part of Speech (POS) tagger to find proper noun phrases which
could denote names even with possessives like "Prince George’s County"

4. Use Named Entity Recognition (NER) package which helps avoid
geo/non-geo errors by making use of entity types such as name, place,
organization, etc.

5. Compensate for NER errors

B Boundary expansion (e.g., "Guinea" and "Equatorial Guinea")

B Fragmented references such as names where parts can be interpreted
as locations (e.g., "Paul Washington" and "Washington")
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Running Example (1)

B Excerpt from an article in the Paris News about a local politician
campaigning in Paris, Texas

B Mentions multiple places in Texas

Democratic candidate for Texas Railroad Commissioner Jeff stumped in Paris late

in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark , D-Paris, said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A Houston attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled Lamar County “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in Austin. Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, Texas, the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of Paris.
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Running Example (1)

B Excerpt from an article in the Paris News about a local politician
campaigning in Paris, Texas

B Mentions multiple places in Texas

Democratic candidate for Texas Railroad Commissioner Jeff stumped in Paris late

in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark , D-Paris, said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A Houston attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled Lamar County “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in Austin. Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, Texas, the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of Paris.

B True toponyms: Texas, Paris, Houston, Lamar County, Austin, Dish
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Running Example (1)

B Excerpt from an article in the Paris News about a local politician
campaigning in Paris, Texas

B Mentions multiple places in Texas

Democratic candidate for Texas Railroad Commissioner Jeff stumped in Paris late

in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark , D-Paris, said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A Houston attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled Lamar County “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in Austin. Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, Texas, the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of Paris.

B True toponyms: Texas, Paris, Houston, Lamar County, Austin, Dish
N
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Running Example (2)

candidate for Texas Railroad Commissioner stumped in late
Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. ) , said it will be refreshing to
have someone on the who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, , the site of a gas compressor station. That station is similar to the

compressor station south of
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Running Example (2)
candidate for Texas Railroad Commissioner stumped in late
Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. ) , said it will be refreshing to
have someone on the who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, , the site of a gas compressor station. That station is similar to the
compressor station south of
1. Initial text

2. Entity tables: [ oc Texas], [per Jeff Weems], [pay Friday], [rer Mark Homer]

Copyright 2015: Hanan Samet Sorting in Words — p.34/42

A NN



Running Example (2)
candidate for Texas Railroad Commissioner stumped in late
Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. ) , said it will be refreshing to
have someone on the who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, , the site of a gas compressor station. That station is similar to the
compressor station south of
1. Initial text

2. Entity tables: [ oc Texas], [per Jeff Weems], [pay Friday], [rer Mark Homer]
3. : Rep. [per Mark Homer], D-[; oc Paris], [ oc Lamar County]
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Running Example (2)

candidate for Texas Railroad Commissioner stumped in late
Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. ) , said it will be refreshing to
have someone on the who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, , the site of a gas compressor station. That station is similar to the

compressor station south of

Initial text

Entity tables: [ oc Texas], [per Jeff Weems], [pay Friday], [rer Mark Homer]

: Rep. [per Mark Homer], D-[; oc Paris], [ oc Lamar County]
Proper nounWases: [ne Democratic], [yp Railroad Commissioner Jeff Weems], [np
Paris], [np Rep. Mark Homer], [np Railroad Commission], [np Houston], [np Weems],
[np Lamar County], [np Democrats], [np Austin], [np Dish], [np Texas], [np Midcontinent
Express Pipeline]

AN =~
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Running Example (2)

candidate for Texas Railroad Commissioner stumped in late
Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. ) , said it will be refreshing to
have someone on the who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —
labeled “ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, said he is upset about the handling of a complaint by
the mayor of Dish, , the site of a gas compressor station. That station is similar to the

compressor station south of

Initial text

Entity tables: [ oc Texas], [per Jeff Weems], [pay Friday], [rer Mark Homer]

: Rep. [per Mark Homer], D-[; oc Paris], [ oc Lamar County]
Proper nounWases: [ne Democratic], [yp Railroad Commissioner Jeff Weems], [np
Paris], [np Rep. Mark Homer], [np Railroad Commission], [np Houston], [np Weems],
[np Lamar County], [np Democrats], [np Austin], [np Dish], [np Texas], [np Midcontinent
Express Pipeline]

AN =~

[pER Jeff Weems] 0.999 [| oc Houston] 0.917 [ oc Paris] 0.997 [pER Weems] 0.849
lorg Railroad Commission] 0.995 [| oc Lamar County] 0.737 [| oc Austin] 0.995 [ oc Texas] 0.557
[lorg Midcont. Expr. Ppin.] 0.973 lorg Democratic] 0.539 [pER Mark Homer] 0.920

Copyright 2015: Hanan Samet Sorting in Words — p.34/42

AN d



Filtering Toponyms

1. Toponym refactoring:
B Account for different suffixes and prefixes for same entity

m Ex: "Fort" and "Ft", "County Kildare" and "Kildare County", "Fairfax Hi"
and "Fairfax High School", etc.

2. Active verbs
B People are active while locations are passive
B Account for metonymy where an entity like a government is referenced
by its location (e.g., "Washington expects ...") and is active but there
are usually other references to the location in the text so no harm in
ignoring some instances

3. Use Knowledge of noun adjuncts to avoid mistaken container relationships
such as "In Russia, U.S. officials ..." due to presence of comma

4. Type propagation to make unknown types consistent within a group as
long as there is just one known type in the group
B E.g., name of streets “Federalist”, “Market”, “Edgewood” while the type
entity of “Paul Revere” and “First” are not identified and thus could
interpret them as names of streets
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Running Example (3)

Democratic candidate for Railroad Commissioner in late

Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark Homer, D- , said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an

oil field worker and now representing both oil and gas firms as well as landowners —
“ground zero” for Democrats winning statewide elections before telling

his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, he is upset about the handling of a complaint by
the mayor of , , the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of
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Running Example (3)

Democratic candidate for Railroad Commissioner in late

Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark Homer, D- , said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an
oil field worker and now representing both oil and gas firms as well as landowners —

“ground zero” for Democrats winning statewide elections before telling
his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, he is upset about the handling of a complaint by
the mayor of , , the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of

1. Toponym refactoring: [Loc Lamar County] — [ oc County of Lamar]
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Running Example (3)

Democratic candidate for Railroad Commissioner in late

Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark Homer, D- , said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an

oil field worker and now representing both oil and gas firms as well as landowners —
“ground zero” for Democrats winning statewide elections before telling

his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, he is upset about the handling of a complaint by
the mayor of , , the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of

1. Toponym refactoring: [Loc Lamar County] — [ oc County of Lamar]

2. . [Per Jeff Weems] stumped, [per Weems] labeled, [per
Weems] said
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Running Example (3)

Democratic candidate for Railroad Commissioner in late

Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark Homer, D- , said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an

oil field worker and now representing both oil and gas firms as well as landowners —
“ground zero” for Democrats winning statewide elections before telling

his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, he is upset about the handling of a complaint by
the mayor of , , the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of

1. Toponym refactoring: [Loc Lamar County] — [ oc County of Lamar]

2. . [Per Jeff Weems] stumped, [per Weems] labeled, [per
Weems] said

3. Noun adjuncts: [ oc Houston] attorney
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Running Example (3)

Democratic candidate for Railroad Commissioner in late

Friday in the Precinct 5, Place 1 Justice of the Peace courtroom where he spoke to about 25
people. In introductory remarks, state Rep. Mark Homer, D- , said it will be refreshing to
have someone on the Railroad Commission who “has a concept of what those people are
there for.” A attorney with life-long experience in the energy business — first as an

oil field worker and now representing both oil and gas firms as well as landowners —
“ground zero” for Democrats winning statewide elections before telling

his audience what he plans to do differently in . Although he did not accuse
incumbents of wrong doing, he is upset about the handling of a complaint by
the mayor of , , the site of a gas compressor station. That station is similar to the
Midcontinent Express Pipeline compressor station south of

1. Toponym refactoring: [Loc Lamar County] — [ oc County of Lamar]

2. . [Per Jeff Weems] stumped, [per Weems] labeled, [per
Weems] said

3. Noun adjuncts: [ oc Houston] attorney

4. . Texas, Paris, Houston, Lamar County, Austin, Dish
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Toponym Resolution

. Dateline

2. Relative geography which is usually vague
m Ex: "Just outside Lewiston"

3. Comma group where use prominence, proximity, or sibling where share a
parent in a geographic hierarchy

® Prominence: Ex: New York, Philadelphia, Chicago
B Proximity: Ex: Milwaukee, Chicago, Minneapolis, St. Paul
m Sibling: Queens, Brooklyn, Manhattan

4. Location/Container — Ex: “College Park, MD”
5. Local lexicon — Ex: “Dublin” in the case of “Columbus, Ohio”

6. Global lexicon
B Gazetteer with names of places that are known regardless of their
geographic location

7. One sense
B Consistency with previously resolved instances of same name in same
source article
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News-Specific Geotagging Issues

1. Name of news source

B |[dentify a geographic focus (also known as a “spatial reader scope”)
for a particular news source in terms of the container(s) of the articles
in the source and use this to resolve geotagging ambiguities

2. Perform some preliminary clustering by focusing on the headline

3. Multiple vs: a single interpretation as a geographic location
®m Multiple: evidence that it is a geographic location
® Single: may be an error, verify by checking
¥ population
® presence of containers
W presence of proximate locations
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TwitterStand: News from Tweets

B News gathering system using Twitter

B Twitter is a popular social networking website
® Tweets are 140 character messages akin to SMS
® Mostly non-news, often frivolous

m TwitterStand is a spontaneous news medium

W |dea: users of Twitter help to gather news
Distributed news gathering

® Scooping tool bypassing reporters or newspapers
E.g., Michael Jackson’s death, Iranian election, Haitian earthquake
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TwitterStand: News from Tweets

B News gathering system using Twitter

B Twitter is a popular social networking website
® Tweets are 140 character messages akin to SMS
® Mostly non-news, often frivolous

m TwitterStand is a spontaneous news medium

W |dea: users of Twitter help to gather news
Distributed news gathering

® Scooping tool bypassing reporters or newspapers
E.g., Michael Jackson’s death, Iranian election, Haitian earthquake

B Key challenges:

® Managing the deluge
Twitter is a noisy medium as most of the Tweets are not news
Challenge: extract news Tweets from mountain of non-news Tweets

® Tweets are coming at a furious pace

m Tweets capture the pulse of the moment
S0, not a good strategy to store and process them in batches
TwitterStand uses online algorithms
Works without access to entire dataset (i.e., being offline)
Determine spatial focus of stories enabling news reading on map
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Access to Twitter

1. Whitelisted which means TwitterStand can access Twitter 20K times per
hour

2. Access to Gardenhose which yields many Tweets but not clear what
percentage

3. Birddog enables TwitterStand to obtain feeds from up to 200K users
4. Seeders are 2000 handpicked users who are known to publish news
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Ex: Tweets about Michael Jackson’s Death

1600
1400
1200
1000
800
600
400

I3 00:.00: 911 call
1] | 00:20: 1t tweet

'02:30: LA Times reports death

;’
()]
I_
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Ex: Tweets about Michael Jackson’s Death

1600
1400
1200
1000
800
600
400

I3 00:00: 911 call
-1 00:20: 1st tweet |

'02:30: LA Times reports death |

o
et
5
¢
|_

B Notice that Twitter beat the LA Times by more than two hours
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Live Demo: TwitterStand System

Diplomats deliver ultimatum on Honduras coup
Less than 1 hour ago - guardiannews Road Asrisl Hybrid [a] 38|
Diplomats deliver ultimatum on Honduras coup

1011 tweets - Similar Stories - Original Source - Locations

The news is all over Michael Jackson while North Korea is threating us and testing missiles North America
with no news coverage

ILess than 1 hour ago - Twitter-Streaming

The news is all over Michael Jackson while North Korea is threating us and testing missiles with no news coverage
1033 tweets - Similar Stories - Original Source - Locations

Europe

thinks jacksons dad Joe should not be anywhere near those kids he abused Michael and will
do the same to Michaels kids Give Debbie rowe a go

Less than 1 hour ago - Twitter-Streaming

thinks jacksons dad Joe should not be anywhere near those kids he abused Michael and will do the same to Michaels
kids Give Debbie rowe a go

574 tweets - Similar Stories - Original Source - Locations Pacific
South
Marines establish positions in Afghan assault ~l/m'rinm
3 Ocean ’ 4
Less than 1 hour ago - timesnews D {ustralia
Marines establish positions in Afghan assault

209 tweets - Similar Stories - Original Source - Locations glanticocean

Ocean
62 IranElection Tehran Mousavi Iran neda Neda How to send an anonymous email
1 hours ago - Twitter-Streaming

Southern Ocean
62 IranElection Tehran Mousavi Iran neda Neda How to send an anonymous email Weddell
5422 tweets - Similar Stories - Original Source - Locations
Sea {ntarctica
Sanford to reveal schedule details
Less than 1 hour ago - thestate s
Sanford to reveal schedule details
1175 tweets - Similar Stories - Original Source - Locations S Microsoft! %
Virtual Earth

http://twitterstand.umiacs.umd.edu/

® What people are tweeting about rather than where they are tweeting from
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Abstract

Spatial data is distinguished from conventional data by having extent. Therefore, spatial queries involve
both the objects and the space that they occupy. The handling of queries that involve spatial data is facil-
itated by building an index on the data. The traditional role of the index is to sort the data, which means
that it orders the data. However, since generally no ordering exists in dimensions greater than 1 without a
transformation of the data to one dimension, the role of the sort process is one of differentiating between
the data and what is usually done is to sort the spatial objects with respect to the space that they occupy.
The resulting ordering is usually implicit rather than explicit so that the data need not be resorted (i.e., the
index need not be rebuilt) when the queries change (e.g., the query reference objects). The index is said to
order the space and the characteristics of such indexes are explored further.

1 Introduction

The representation of multidimensional data is an important issue in solid modeling as well as in many other
diverse fields including computer-aided design (CAD), computational geometry, finite-element analysis, and
computer graphics (e.g., [44, 45, 47]). The main motivation in choosing an appropriate representation is to
facilitate operations such as search. This means that the representation involves sorting the data in some
manner to make it more accessible. In fact, the term access structure or index is often used as an alternative
to the term data structure in order to emphasize the importance of the connection to sorting.

The most common definition of “multidimensional data” is a collection of points in a higher dimensional
space (i.e., greater than 1). These points can represent locations and objects in space as well as more general
records where each attribute (i.e., field) corresponds to a dimension and only some, or even none, of the
attributes are locational. As an example of nonlocational point data, consider an employee record that has
attributes corresponding to the employee’s name, address, gender, age, height, weight, and social security
number (i.e., identity number). Such records arise in database management systems and can be treated
as points in, for this example, a seven-dimensional space (i.e., there is one dimension for each attribute),
although the different dimensions have different type units (i.e., name and address are strings of characters;
gender is binary; while age, height, weight, and social security number are numbers some of which have
are associated with different units). Note that the address attribute could also be interpreted in a locational
sense using positioning coordinates such as latitude and longitude readings although the stringlike symbolic
representation is far more common.

*This work was supported in part by the National Science Foundation under Grants EIA-00-91474, CCF-05-15241, and IIS-07-
13501, Microsoft Research, NVIDIA, and the University of Maryland General Research Board.
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When multidimensional data corresponds to locational data, we have the additional property that all of
the attributes usually have the same unit (possibly with the aid of scaling transformations), which is distance
in space. In this case, we can combine the distance-denominated attributes and pose queries that involve
proximity. For example, we may wish to find the closest city to Chicago within the two-dimensional space
from which the locations of the cities are drawn. Another query seeks to find all cities within 50 miles of
Chicago. In contrast, such queries are not very meaningful when the attributes do not have the same type.
Nevertheless, other queries such as range queries that seek, for example, all individuals born between 1940
and 1960 whose weight ranges between 150 and 200 pounds are quite common and can be posed regardless
of the nature of the attributes.

When the range of multidimensional data spans a continuous physical space (i.e., an infinite collection of
locations), the issues become more interesting. In particular, we are no longer just interested in the locations
of objects, but, in addition, we are also interested in the space that they occupy (i.e., their extent). Some
example objects with extent include lines (e.g., roads, rivers), intervals (which can correspond to time as well
as space), regions of varying shape and dimensionality (e.g., lakes, counties, buildings, crop maps, polygons,
polyhedra), and surfaces. The objects (when they are not points) may be disjoint or could even overlap.

The fact that the objects have extent has a direct effect on the type of indexes that we need. This can
be best understood by examining the nature of the queries that we wish to support. For example, consider
a database of objects. There are three types of queries that can be posed to such a database. The first is
the set of queries about the objects themselves such as finding all objects that contain a given point or set
of points, have a non-empty intersection with a given object, have a partial boundary in common, have a
boundary in common, have any points in common, contain a given object, included in a given object, etc.
The second consists of proximity queries such as the nearest object to a given point or object, and all objects
within a given distance of a point or object (also known as a range or window query). The third consists of
queries involving non-spatial attributes of objects such as given a point or object, finding the nearest object
of a particular type, the minimum enclosing object of a particular type, or all the objects of a particular type
whose boundary passes through it.

Being able to support the different types of queries described above has a direct effect on the type of
indexes that are useful for such data. In particular, recall our earlier observation that a record in a conventional
database may be considered as a point in a multidimensional space. For example, a straight line segment
object having endpoints (x,y1) and (x,y2) can be transformed (i.e., represented) as the point (x,y1,x2,y2)
in a 4-d space (termed a corner transformation [50])'. This representation is good for queries about the line
segments (the first type), while it is not good for proximity queries (i.e., the second and third type) since
points outside the object are not mapped into the higher dimensional space. In particular, the representative
points of two objects that are physically close to each other in the original space (e.g., 2-d for lines) may be
very far from each other in the higher dimensional space (e.g., 4-d), thereby leading to large search regions.
This is especially true if there is a great difference in the relative size of the two objects (e.g., a short line
in proximity to a long line as in Figure 1). On the other hand, when the objects are small (e.g., their extent
is small), then the method works reasonably well as the objects are basically point objects. The problem
is that the transformation only transforms the space occupied by the objects and not the rest of the space
(e.g., the query point). Proponents of the transformation method argue that this problem can be overcome by
projecting back to original space and indexing on the projection (e.g., [54]). However, at this point, it is not
unreasonable to ask why we bother to make the transformation in the first place.

-

Figure 1: Example of two objects that are close to each other in the original space but are
not clustered in the same region of the transformed space when using a transformation such
as the corner transformation.

! Although for ease of visualization, our discussion and examples are in terms of line segment and rectangle objects, it is applicable
to data of arbitrary dimension such as polyhedra and hyperrectangles.
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It is important to observe that our notion of sorting spatial objects is more one of differentiating between
the objects which is different from the conventional one which is intimately tied to the notion of providing
an ordering. As we know, such an ordering implies a linearization which restricts the underlying data to one
dimension, and such an ordering usually does not exist in dimensions d higher than one save for a dominance
relationship (e.g., [39]) where point a = {a;|1 < i < d} is said to dominate point b = {b;|1 <i < d} if
b; < aj,1 <i<d. On the other hand, it is clear that the rationale for our discussion is that the data in which
we are interested is of dimension greater than one. This leads to the conclusion that what is needed is an index
that sorts (i.e., differentiates) between objects on the basis of spatial occupancy (i.e., their spatial extent). In
other words, it sorts the objects relative to the space that they occupy, and this is the focus of the rest of this
paper.

Before choosing a particular index we should also make sure that the following requirements are satisfied.
First of all, the index should be compatible with the type of data (i.e., spatial objects) that is being stored. In
other words, it should enable users to distinguish between different objects as well as render the search effi-
cient in terms of pruning irrelevant objects from further consideration. Second, we must have an appropriate
zero or reference point. In the case of spatial occupancy, this is usually some easily identified point or object
(e.g., the origin of the multidimensional space from which the objects are drawn). Most importantly, given
our observation about the absence of an ordering, it is best to have an implicit rather than an explicit index.

In particular, an implicit index is needed because it is impossible to foresee all possible queries in advance.
For example, in the case of spatial relationships such as left, right, up, down, etc. it is impractical to have a
data structure which has an attribute for every possible spatial relationship. In other words, the index should
support the ability to derive the spatial relationships between the objects. It should be clear that an implicit
index is superior to an explicit index, which, for example in the case of two-dimensional data such as the
locations of cities, sorts the cities on the basis of their distance from a given point. The problem is that
this sorting order is inapplicable to other reference points. In other words, having sorted all of the cities in
the US with respect to their distance from Chicago, the result is useless if we want to find the closest city
to New Orleans that satisfies a particular condition like having a population greater than 50,000 inhabitants.
Therefore, having an implicit index means that we don’t have to resort the data for queries other than updates.

2 Methods Based on Spatial Occupancy

RO

R4‘1“‘\ R5 R6
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Figure 2: (a) Example collection of straight line segments embedded in a 4x4 grid, (b) the
object hierarchy for the R-tree corresponding to the objects in (a), and (c) the spatial extent
of the minimum bounding rectangles corresponding to the object hierarchy in (b). Notice that
the leaf nodes in (b) also store bounding rectangles although this is only shown for the nonleaf
nodes.

The indexing methods that are based on sorting the spatial objects by spatial occupancy essentially de-
compose the underlying space from which the data is drawn into regions called buckets in the spirit of classical
hashing methods, with the difference that the spatial indexing methods preserve order. In other words, objects
in close proximity should be placed in the same bucket or at least in buckets that are close to each other in the
sense of the order in which they would be accessed (i.e., retrieved from secondary storage in case of a false
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hit, etc.).

There are two principal methods of representing spatial data. The first is to use an object hierarchy that
initially aggregates objects into groups, preferably based on their spatial proximity, and then uses proximity
to further aggregate the groups thereby forming a hierarchy, where the number of objects that are aggregated
in each node of the hierarchy is permitted to range between parameters m < [M/2] and M. The rationale for
choosing this type of a range is for the hierarchy to mimic the behavior of a B-tree (e.g., [15]), where each
element of the hierarchy acts like a disk page and thus is guaranteed to be half full, provided that m = [M/2].

Note that the object hierarchy is not unique as it depends on the manner in which the objects were
aggregated to form the hierarchy (e.g., minimizing overlap between objects or coverage of the underlying
space). Queries are facilitated by also associating a minimum bounding box with each object and group
of objects as this enables a quick way to test if a point can possibly lie within the area spanned by the
object or group of objects. A negative answer means that no further processing is required for the object
or group while a positive answer means that further tests must be performed. Thus the minimum bounding
box serves to avoid wasting work. Equivalently, it serves to differentiate (i.e., “sort””) between occupied and
unoccupied space. Data structures that make use of axis-aligned bounding boxes (AABB) such as the R-
tree [23] and the R*-tree [10] illustrate the use of this method, as well as the more general oriented bounding
box (OBB) where the sides are orthogonal, while no longer having to be parallel to the coordinate axes
(e.g.,[22,40]). In addition, some data structures use other shapes for the bounding boxes such as spheres (e.g.,
SS-tree [35, 61]), combinations of hyperrectangles and hyperspheres (e.g.,SR-tree [30]), truncated tetrahedra
(e.g., prism tree [38]), as well as triangular pyramids which are 5-sided objects with two parallel triangular
faces and three rectangular faces forming a three-dimensional pie slice (e.g., BOXTREE [9]). These data
structures differ primarily in the properties of the bounding boxes, and their interrelationships, that they use
to determine how to aggregate the bounding boxes, and, of course, the objects. Aggregation is an issue
when the data structure is used in a dynamic environment, where objects are inserted and removed from the
hierarchy thereby leading to elements that are full or sparse vis-a-vis the values of m and M.

As an example of an R-tree, consider the collection of straight line segment objects given in Figure 2(a)
shown embedded in a 4 x 4 grid. Figure 2(b) is an example of the object hierarchy induced by an R-tree for
this collection, with m = 2 and M = 3. Figure 2(c) shows the spatial extent of the bounding rectangles of the
nodes in Figure 2(a), with heavy lines denoting the bounding rectangles corresponding to the leaf nodes, and
broken lines denoting the bounding rectangles corresponding to the subtrees rooted at the nonleaf nodes.

The drawback of the object hierarchy approach is that from the perspective of a space decomposition
method, the resulting hierarchy of bounding boxes often leads to a non-disjoint decomposition of the under-
lying space. This means that if a search fails to find an object in one path starting at the root, then it is not
necessarily the case that the object will not be found in another path starting at the root. This is the case in
Figure 2(c) when we search for the line segment object that contains Q. In particular, we first visit nodes R1
and R4 unsuccessfully, and thus need to visit nodes R2 and R5 in order to find the correct line segment object
i

The second method is based on a decomposition (usually recursive) of the underlying space into disjoint
blocks so that a subset of the objects is associated with each block. There are several ways to proceed. The
first is to simply redefine the decomposition and aggregation associated with the object hierarchy method so
that the minimum bounding boxes are decomposed into disjoint boxes, thereby also implicitly partitioning
the underlying objects that they bound. In this case, the partition of the underlying space is heavily dependent
on the data and is said to be at arbitrary positions. The k-d-B-tree [42] and the R*-tree [51] are examples of
such an approach, with the difference being that in the k-d-B-tree, the entire space which contains the objects
is decomposed into subspaces and it is these subspaces that are aggregated, while in the R™-tree, it is the
bounding boxes that are decomposed and subsequently aggregated.

Figure 3 is an example of one possible R -tree for the collection of line segments in Figure 2(a). This
particular tree is of order (2,3) although in general it is not possible to guarantee that all nodes save for the
root node will always have a minimum of 2 entries. In particular, the expected B-tree performance guarantees
are not necessarily valid (i.e., pages are not guaranteed to be m/M full) unless we are willing to perform very
complicated record insertion and deletion procedures. Notice that in this example line segment objects c, h,
and i appear in two different nodes. Of course, other variants are possible since the R -tree is not unique.
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RO R5

Figure 3: (a) RT-tree for the collection of line segments in Figure 2(a) with m=2 and M=3,
and (b) the spatial extents of the bounding rectangles. Notice that the leaf nodes in the index
also store bounding rectangles although this is only shown for the nonleaf nodes.

The second way is to partition the underlying space into cells (i.e., blocks) at fixed positions so that
all resulting cells are of uniform size, which is the case when using the uniform grid (e.g., [11, 33, 43]),
also the standard indexing method for maps. Figure 2(a) is an example of a 4 x 4 uniform grid in which a
collection of straight line segments has been embedded. One drawback of the uniform grid is the possibility
of a large number of empty or sparsely-filled cells when the objects are not uniformly distributed, as well
as the possibility that most of the objects will lie in a small subset of the cells. This is resolved by making
use of a variable resolution representation such as one of the quadtree variants (e.g., [47]) where the subset
of the objects that are associated with the cells is defined by placing an upper bound on the number of
objects that can be associated with each cell. The cells that comprise the underlying space are recursively
decomposed into congruent sibling cells whenever this upper bound is exceeded. Therefore, the upper bound
serves as a stopping condition for the recursive decomposition process. An alternative, as exemplified by
the PK-tree [46, 58], makes use of a lower bound on the number of objects that can be associated with each
cell (termed an instantiation or aggregation threshold). Depending on the underlying representation that is
used, the result can also be viewed as a hierarchy of congruent cells (see, e.g., the pyramid structure [55]
which is a family of representations that make use of multiple resolution which can be characterized as image
hierarchies [47]).

The PR quadtree [36, 45] is one example of a variable resolution representation for point objects where the
underlying space in which a set of point objects lie is recursively decomposed into four equal-sized square-
shaped cells until each cell is empty or contains just one object. For example, Figure 4 is the PR quadtree
for the set of point objects A—F and P. The PR quadtree represents the underlying decomposition as a tree
although our figure only illustrates the resulting decomposition of the underlying space into cells (i.e., the
leaf nodes/blocks of the PR quadtree).

Turning to more complex such objects such as line segments, which have extent, we consider the PM;
quadtree [49]. It is an example of a variable resolution representation for a collection of straight line segment
objects such as the polygonal subdivision given in Figure 2(a). In this case, the stopping condition of its
decomposition rule stipulates that partitioning occurs as long as a cell contains more than one line segment
unless the line segments are all incident at the same vertex, which is also in the same cell (e.g., Figure 5(a)),
The PM; quadtree and its variants are ideal for representing polygonal meshes as they provide an access
structure to enable the quick determination of the polygon that contains a given point (i.e., a point location
operation). In particular, the PM, quadtree [49], which differs from the PM; quadtree by permitting a cell
¢ to contain several line segments as long as they are incident at the same vertex v regardless of whether or
not v is in ¢ (e.g., Figure 5(b)), is particularly suitable for representing triangular meshes [16]. A similar
representation to the PM; quadtree has been devised for collections of three-dimensional objects such as
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Figure 4: Block decomposition induced by the PR quadtree for the point objects A—F and P.

polyhedra images (e.g., [8] and the references cited in [47]). The decomposition criteria are such that no cell
contains more than one face, edge, or vertex unless the faces all meet at the same vertex or are adjacent to the
same edge.

() (b)

Figure 5: (a) PM; quadtree and (b) PM; quadtree for a collection of straight line segment
objects that form a triangulation.

The above variants of the PM quadtree and PM octree represent an object by its boundary. The region
quadtree [32] and region octree [27, 34] are variable resolution representations of objects by their interiors.
In particular, the environment containing the objects is recursively decomposed into four or eight, respec-
tively, rectangular congruent blocks until each block is either completely occupied by an object or is empty.
For example, Figure 6(b) is the block decomposition for the region quadtree corresponding to the result of
embedding the two-dimensional object in Figure 6(a) in an 8 x 8 grid, while Figure 7(b) is the block decom-
position for the region octree corresponding to the three-dimensional staircaselike object in Figure 7(a).

Region octrees are also known as volumetric or voxel representations and are useful for medical ap-
plications. They are to be contrasted with procedural representations such as constructive solid geometry
(CSG) [41] where primitive instances of objects are combined to form more complex objects by use of geo-
metric transformations and regularized Boolean set operations (e.g., union, intersection). A disadvantage of
the CSG representation is that it is not unique. In particular, there are frequently several ways of constructing
an object (e.g., from different primitive elements). In addition, there is no overall notion of geometry except
of the primitives that form each of the objects and thus there is no easy correlation between the objects and
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Figure 6: (a) Sample object, and (b) its region quadtree block decomposition with the blocks
of the object being shaded, assuming that it is embedded in an 8 x 8 grid.

the space in which they are embedded unless techniques such as the PM-CSG tree [62] are used.

(6]
o

(a) (b)
Figure 7: (a) Example three-dimensional object, and (b) its region octree block decomposition.

The principal drawback of the disjoint method is that when the objects have extent (e.g., line segments,
rectangles, and any other non-point objects), then an object is associated with more than one cell when the
object has been decomposed. This means that queries such as those that seek the length of all objects in a
particular spatial region will have to remove duplicate objects before reporting the total length. Nevertheless,
methods have been developed that avoid these duplicates by making use of the geometry of the type of
the data that is being represented (e.g., [4, 5, 17]). Note that the result of constraining the positions of the
partitions means that there is a limit on the possible sizes of the resulting cells (e.g., a power of 2 in the
case of a quadtree variant). However, the result is that the underlying representation is good for operations
between two different data sets as their representations are in registration (i.e., it is easy to correlate occupied
and unoccupied space in the two data sets, which is not easy when the positions of the partitions are not
constrained as is the case with methods rooted in representations based an object hierarchy even though the
resulting decomposition of the underlying space is disjoint).

The PR, PM, and region quadtrees make use of a space hierarchy of where each level of the hierarchy
contains congruent cells. The difference is that in the PR quadtree, each object is associated with just one cell,
while in the PM and region quadtrees, the extent of the objects causes them to be decomposed into subobjects
and thereby possibly be associated with more than one cell, although the cells are disjoint. At times, we
want to use a space decomposition method that makes use of a hierarchy of congruent cells while still not
decomposing the objects. In this case, we relax the disjointness requirement by stipulating that only the cells
at a given level (i.e., depth) of the hierarchy must be disjoint. In particular, we recursively decompose the
cells that comprise the underlying space into congruent sibling cells so that each object is associated with
just one cell, and this is the smallest possible congruent cell that contains the object in its entirety. Assuming
a top-down subdivision process that decomposes each cell into four square cells (i.e., a quadtree) at each
level of decomposition, the result is that each object is associated with its minimum enclosing quadtree cell.
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Subdivision ceases whenever a cell contains no objects. Alternatively, subdivision can also cease once a cell
is smaller than a predetermined threshold size. This threshold is often chosen to be equal to the expected size
of the objects. We use the term MX-CIF quadtree [1, 31] (see also the multilayer grid file [53], R-file [28],
filter tree [52], and SQ-histogram [3]) to describe such a decomposition method.

In order to simplify our presentation, we assume that the objects stored in the MX-CIF quadtree are
rectangles, although the MX-CIF quadtree is applicable to arbitrary objects in arbitrary dimensions in which
case it keeps track of their minimum bounding boxes. For example, Figure 8b is the tree representation of the
MX-CIF quadtree for a collection of rectangle objects given in Figure 8a. Note that objects can be associated
with both terminal and non-terminal nodes of the tree.

= | B 3

{F} E
(a) (b) (© (d)

Figure 8: (a) Collection of rectangle objects and the cell decomposition induced by the MX-CIF
quadtree; (b) the tree representation of (a); the binary trees for the y axes passing through
the root of the tree in (b), and through (d) the NE son of the root of the tree in (b).

Since there is no limit on the number of objects that are associated with a particular cell, an additional
decomposition rule is sometimes provided to distinguish between these objects. For example, in the case
of the MX-CIF quadtree, a one-dimensional analog of the two-dimensional decomposition rule is used. In
particular, all objects that are associated with a given cell b are partitioned into two sets: those that intersect
(or whose sides are collinear) with the vertical axis passing through the center of b, and those that intersect
(or whose sides are collinear) with the horizontal axis passing through the center of b. Objects that intersect
with the center of b are associated with the horizontal axis. Associated with each axis is a one-dimensional
MX-CIF quadtree (i.e., a binary tree), where each object o is associated with the node that corresponds to
o’s minimum enclosing interval. For example, Figure 8c and Figure 8d illustrate the binary trees associated
with the y axes passing through the root and the NE son of the root, respectively, of the MX-CIF quadtree
of Figure 8b. Thus we see that the two-dimensional MX-CIF quadtree acts like a hashing function with the
one-dimensional MX-CIF quadtree playing the role of a collision resolution technique.

The MX-CIF quadtree can be interpreted as an object hierarchy where the objects appear at different
levels of the hierarchy and the congruent cells play the same role as the minimum bounding boxes. The
difference is that the set of possible minimum bounding boxes is constrained to the set of possible congruent
cells. Thus, we can view the MX-CIF quadtree as a variable resolution R-tree. An alternative interpretation
is that the MX-CIF quadtree provides a variable number of grids, each one being at half the resolution of its
immediate successor, where an object is associated with the grid whose cells have the tightest fit. In fact, this
interpretation forms the basis of the filter tree [52] and the multilayer grid file [53] where the only difference
from the MX-CIF quadtree is the nature of the access structure for the cells (i.e., a hierarchy of grids based
on a regular decomposition for the filter tree and based on a grid file for the multilayer grid file, and a tree
structure for the MX-CIF quadtree).

One of the main drawbacks of the MX-CIF quadtree is that the size (i.e., width w) of the cell ¢ corre-
sponding to the minimum enclosing quadtree cell of object 0’s minimum enclosing bounding box b is not a
function of the size of b or o. Instead, it is dependent on the position of o. In fact, ¢ is often considerably
larger than b thereby causing inefficiency in search operations due to a reduction in the ability to prune ob-
jects from further consideration. This situation arises whenever b overlaps the axes lines that pass through
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the center of ¢, and thus w can be as large as the width of the entire underlying space.

There are several ways of overcoming this drawback. One easy way is to introduce redundancy (i.e.,
representing the object several times thereby replicating the number of references to it) by decomposing
the quadtree cell ¢ into smaller quadtree cells, each of which minimally encloses some portion of o (or,
alternatively, some portion of o’s minimum enclosing bounding box b) and contains a reference to o. The
expanded MX-CIF quadtree [2] is a simple example of such an approach where c¢ is decomposed once into
four subblocks c;, which are then decomposed further until obtaining the minimum enclosing quadtree cell s;
for the portion of o, if any, that is covered by c;. A more general approach. used in spatial join algorithms [29],
sets a bound on the number of replications, (termed a size bound [37] and used in the GESS method [18])
or on the size of the covering quadtree cells resulting from the decomposition of ¢ that contain the replicated
references (termed an error bound [37]).

Replicating the number of references to the objects is reminiscent of the manner in which the non-
disjointness of the decomposition of the underlying space resulting from the use of an object hierarchy was
overcome, and thus has the same shortcoming of possibly requiring the application of a duplicate object re-
moval step prior to reporting the answer to some queries. The cover fieldtree [19, 20], and the equivalent loose
quadtree (loose octree in three dimensions) [57], adopt a different approach at overcoming the independence
of the sizes of ¢ and b drawback. In particular, they do not replicate the objects. Instead, they expand the
size of the space that is spanned by each quadtree cell ¢ of width w by a cell expansion factor p (p > 0) so
that the expanded cell is of width (14 p) - w. In this case, an object is associated with its minimum enclosing
expanded quadtree cell. It has been shown that given a quadtree cell ¢ of width w and cell expansion factor p,
the radius r of the minimum bounding box b of the smallest object o that could possibly be associated with
¢ must be greater than pw/4 [57]. However, the utility of the loose quadtree is best evaluated in terms of the
inverse of this relation (i.e., the maximum possible width w of ¢ given an object o with minimum bounding
box b of radius r) as reducing w is the primary motivation for the development of the loose quadtree as an
alternative to the MX-CIF quadtree.

It has been shown [48] that the maximum possible width w of ¢ given an object o0 with minimum bounding
box b of radius r is just a function of r and p and is independent of the position of 0. More precisely, taking
the ratio of cell to bounding box width w/(2r), we have [48]:

1/(1+p)<w/(2r)<1/p.

In particular, the range of possible ratios of width w/(2r) as a function of p for p > 1 takes on at most two
values, and usually just one value [48].

The ideal value for p is 1 [57]. The rationale is that using cell expansion factors much smaller than 1
increases the likelihood that the minimum enclosing expanded quadtree cell is large (as is the case for the
MX-CIF quadtree, where p = 0), and that letting p be much larger than 1 results in the areas spanned by the
expanded quadtree cells being too large, thereby having much overlap. For example, letting p = 1, Figure 9
is the loose quadtree corresponding to the collection of objects in Figure 8(a) and its MX-CIF quadtree in
Figure 8(b). In this example, there are only two differences between the loose and MX-CIF quadtrees:

1. Rectangle object E is associated with the SW child of the root of the loose quadtree instead of with the
root of the MX-CIF quadtree.

2. Rectangle object B is associated with the NW child of the NE child of the root of the loose quadtree
instead of with the NE child of the root of the MX-CIF quadtree.

Note that the loose quadtree (cover fieldtree) is not the only approach at overcoming the drawback of the
MX-CIF quadtree. In particular, the partition fieldtree [19, 20] is an alternative method of overcoming the
drawback of the MX-CIF quadtree. The partition fieldtree proceeds by shifting the positions of the centroids
of cells at successive levels of subdivision by one-half the width of the cell that is being subdivided. Figure 10
shows an example of such a subdivision. This subdivision rule guarantees that the width w of the minimum
enclosing quadtree cell for the minimum bounding box b for object o is bounded by eight times the maximum
extent r of b [20, 47]. The same ratio is obtained for the cover fieldtree when p = 1/4, and thus the partition
fieldtree is superior to the cover fieldtree when p < 1/4 [47].
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Figure 9: (a) Cell decomposition induced by the loose quadtree for a collection of rectangle
objects identical to those in Figure 8(a), and (b) its tree representation.

Figure 10: Example of the subdivision induced by a partition fieldtree.

3 Examples of the Utility of Sorting

As an example of the utility of sorting spatial data suppose that we want to determine the nearest object to
a given point (i.e., a “pick” operation in computer graphics). In order to see how the search is facilitated
by sorting the underlying data, consider the set of point objects A—F in Figure 4 which are stored in a PR
quadtree [36, 45], and let us find the nearest neighbor of P. The search must first determine the leaf that
contains the location/object whose nearest neighboring object is sought (i.e., P). Assuming a tree-based
index, this is achieved by a top-down recursive algorithm. Initially, at each level of the recursion, we explore
the subtree that contains P. Once the leaf node containing P has been found (i.e., 1), the distance from P to
the nearest object in the leaf node is calculated (empty leaf nodes have a value of infinity). Next, we unwind
the recursion so that at each level, we search the subtrees that represent regions overlapping a circle centered
at P whose radius is the distance to the closest object that has been found so far. When more than one subtree
must be searched, the subtrees representing regions nearer to P are searched before the subtrees that are
farther away (since it is possible that an object in them might make it unnecessary to search the subtrees that
are farther away).

In our example, the order in which the nodes are visited is given by their labels. We visit the brothers of
the node 1 containing the query point P (and all remaining nodes at each level) in the order of the minimum
distance from P to their borders (i.e., SE, NW, and NE for node 1). Therefore, as we unwind for the first
time, we visit the eastern brother of node 1 and its subtrees (nodes 2 and 3 followed by nodes 4 and 5), node
6, and node 7. Note that once we have visited node 2, there is no need to visit node 4 since node 2 contains
A. However, we must still visit node 3 containing point B (closer than A), but now there is no need to visit
node 5. Similarly, there is no need to visit nodes 6 and 7 as they are too far away from P given our knowledge
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of A. Unwinding one more level reveals that due to the distance between P and A, we must visit node 8 as it
could contain a point that is closer to P than A; however, there is no need to visit nodes 9, 10, 11, 12, and 13.

The algorithm that we described can also be adapted to find the k nearest neighbors in which case the
pruning of objects that cannot serve as the k nearest neighbors is achieved by making use of the distance
to the kth nearest object that has been found so far. Having retrieved the k closest objects, should we be
interested in retrieving an additional object (i.e., the k 4 1th nearest object), then we have to reinvoke the
algorithm again to find the k + 1 nearest objects. An alternative approach is incremental and makes use of a
priority queue [24, 25, 26] so that there is no need to look again for the neighboring objects that have been
reported so far.

There are many other applications where the sorting of objects is useful, and below we review a few
that arise in computer graphics. For example, sorting forms the basis of all operations on z buffers, visibility
calculations (e.g., BSP trees [21]), as well as back-to-front and front-to-back display algorithms. It also forms
the basis of Warnock’s hidden-line [59] and hidden-surface [60] algorithms that repeatedly subdivide the
picture area into successively smaller blocks while simultaneously searching it for areas that are sufficiently
simple to be displayed. It is also used to accelerate ray tracing by finding ray-object intersections (e.g., [7]).

4 Concluding Remarks

An overview has been given of the rationale for sorting spatial objects in order to be able to index them
thereby facilitating a number of operations involving search in the multidimensional domain. A distinction
has been made between spatial objects that could be represented by traditional methods that have been applied
to point data and those that have extent thereby rendering the traditional methods inapplicable.

Sorting is also used as the basis of an index in an environment where the data is drawn from a metric
space rather than a vector space. In this case, the only information that we have is a distance function d (often
a matrix) that indicates the degree of similarity (or dissimilarity) between all pairs of objects, given a set of N
objects. Usually, it is required that d obey the triangle inequality, be nonnegative, and be symmetric, in which
case it is known as a metric and also referred to as a distance metric. Indexes in such an environment are based
on either picking one distinguished object p and a value r, and then recursively subdividing the remaining
objects into two classes depending on a comparison of their distance from p with r, or by choosing two
distinguished objects p; and p; and recursively subdividing the remaining objects into two classes depending
on which of p; or p; is closer (e.g., [47, 56]). The difference between these methods and those for data that
lies in a vector space is that the subdivision lines in the embedding space from which the objects are drawn
are explicit for the vector space while they are implicit for the metric space (see [47] for more details).

The functioning of these various spatial sorting methods can be experienced by trying VASCO [12, 13,
14], a system for Visualizing and Animating Spatial Constructs and Operations. VASCO consists of a set of
spatial index JAVA™ (e.g., [6]) applets that enable users on the worldwide web to experiment with a number
of hierarchical representations (e.g., [44, 45, 47]) for different spatial data types, and see animations of how
they support a number of search queries (e.g., nearest neighbor and range queries). The VASCO system can
be found at http://cs.umd.edu/ "hjs/quadtree/.
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