
Sorting in Space and Network Distance Browsing

Hanan Samet
hjs@cs.umd.edu

http://www.cs.umd.edu/˜hjs

Department of Computer Science
University of Maryland

College Park, MD 20742, USA

These notes may not be reproduced by any means (mechanical or electronic or any other)
or posted on any web site without the express written permission of Hanan Samet

Copyright c©2008 Hanan Samet Sorting in Space – p.1/3

Why Sorting of Spatial Data is Important

Most operations invariably involve search

Search is sped up by sorting the data

sort - Definition: verb

1. to put in a certain place or rank according to kind, class, or nature

2. to arrange according to characteristics

Examples

1. Warnock algorithm: sorting objects for display
vector: hidden-line elimination
raster: hidden-surface elimination

2. Back-to-front and front-to-back algorithms

3. BSP trees for visibility determination

4. Accelerating ray tracing and ray casting by finding ray-object

intersections

5. Bounding box hierarchies arrange space according to whether

occupied or unoccupied

Copyright 2008 by Hanan Samet – p.2/9

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find

closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist

unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a does not dominate b but dominates c

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2008 by Hanan Samet – p.3/9

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find

closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist

unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a

does not dominate b but dominates c

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2008 by Hanan Samet – p.3/9

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find

closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist

unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a does not dominate b

but dominates c

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2008 by Hanan Samet – p.3/9

Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find

closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist

unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a does not dominate b but dominates c

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes

Copyright 2008 by Hanan Samet – p.3/9

PRINCE GEORGES COUNTY
hi28

Copyright © 2008 by Hanan Samet 2

hi27

EXAMPLE QUERIES ON LINE SEGMENT DATABASES
• Queries about line segments

1. All segments that intersect a given point or set of
points

2. All segments that have a given set of endpoints
3. All segments that intersect a given line segment
4. All segments that are coincident with a given line

segment
• Proximity queries

1. The nearest line segment to a given point
2. All segments within a given distance from a given

point (also known as a range or window query)
• Queries involving attributes of line segments

1. Given a point, find the closest line segment of a
particular type

2. Given a point, find the minimum enclosing polygon
whose constituent line segments are all of a given
type

3. Given a point, find all the polygons that are incident
on it

Copyright © 2008 by Hanan Samet 3

gs10

WHAT MAKES CONTINUOUS SPATIAL DATA
DIFFERENT

1. Spatial extent of the objects is the key to the
difference

2. A record in a DBMS may be considered as a point in
a multidimensional space
• a line can be transformed (i.e., represented) as a

point in 4-d space with (x1 , y1 , x2 , y2)
(x2, y2)

(x1, y1)

• good for queries about the line segments
• not good for proximity queries since points outside

the object are not mapped into the higher
dimensional space

• representative points of two objects that are
physically close to each other in the original space
(e.g., 2-d for lines) may be very far from each other
in the higher dimensional space (e.g., 4-d)

A

B

• Ex:
• problem is that the transformation

only transforms the space occupied
by the objects and not the rest of the
space (e.g., the query point)

• can overcome by projecting back to original space
3. Use an index that sorts based upon spatial

occupancy (i.e., extent of the objects)

Copyright © 2008 by Hanan Samet 4

hi29.1

SPATIAL INDEXING REQUIREMENTS
1. Compatibility with the data being stored
2. Choose an appropriate zero or reference point
3. Need an implicit rather than an explicit index

• impossible to foresee all possible queries in
advance

• cannot have an attribute for every possible spatial
relationship
a. derive adjacency relations
b. 2-d strings capture a subset of adjacencies

• all rows
• all columns

• implicit index is better as an explicit index which,
for example, sorts two-dimensional data on the
basis of distance from a given point is impractical
as it is inapplicable to other points

• implicit means that don't have to resort the data for
queries other than updates

Copyright © 2008 by Hanan Samet 5

gs11

SORTING ON THE BASIS OF SPATIAL OCCUPANCY
• Decompose the space from which the data is drawn into

regions called buckets (like hashing but preserves order)
• Interested in methods that are designed specifically for

the spatial data type being stored
• Basic approaches to decomposing space

1. minimum bounding rectangles
• e.g., R-tree
• good at distinguishing empty and non-empty

space
• drawbacks:

a. non-disjoint decomposition of space
• may need to search entire space

b. inability to correlate occupied and unoccupied
space in two maps

2. disjoint cells
• drawback: objects may be reported more than once
• uniform grid

a. all cells the same size
b. drawback: possibility of many sparse cells

• adaptive grid — quadtree variants
a. regular decomposition
b. all cells of width power of 2

• partitions at arbitrary positions
a. drawback: not a regular decomposition
b. e.g., R+-tree

• Can use as approximations in filter/refine query
processing strategy

Copyright © 2008 by Hanan Samet 6

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g
h

i

1
b

Order (m,M) R-tree
1. between m M/2 and M entries in each node

except root
2. at least 2 entries in root unless a leaf node

Copyright © 2008 by Hanan Samet 7

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g
h

i

1
b

Order (m,M) R-tree
1. between m M/2 and M entries in each node

except root
2. at least 2 entries in root unless a leaf node

Copyright © 2008 by Hanan Samet 7

2
r

R3

R4

R5 R6

ic feba hgd

hi31

R3: R4: R5: R6:
Copyright © 2008 by Hanan Samet 7

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g
h

i

1
b

Order (m,M) R-tree
1. between m M/2 and M entries in each node

except root
2. at least 2 entries in root unless a leaf node

Copyright © 2008 by Hanan Samet 7

2
r

R3

R4

R5 R6

ic feba hgd

hi31

R3: R4: R5: R6:
Copyright © 2008 by Hanan Samet 7

3
z

R4R3 R6R5

R1

R2

hi31

R2:R1:

Copyright © 2008 by Hanan Samet 7

MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure
similar to a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g
h

i

1
b

Order (m,M) R-tree
1. between m M/2 and M entries in each node

except root
2. at least 2 entries in root unless a leaf node

Copyright © 2008 by Hanan Samet 7

2
r

R3

R4

R5 R6

ic feba hgd

hi31

R3: R4: R5: R6:
Copyright © 2008 by Hanan Samet 7

3
z

R4R3 R6R5

R1

R2

hi31

R2:R1:

Copyright © 2008 by Hanan Samet 7

4
g

R2R1

hi31

R0:

R0

Copyright © 2008 by Hanan Samet 7

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a
b

c

d

e

f

g

h

i

R3

R4
R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2008 by Hanan Samet 8

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a
b

c

d

e

f

g

h

i

R3

R4
R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2008 by Hanan Samet 8

hi32

Q is in R0

2
v

Copyright © 2008 by Hanan Samet 8

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a
b

c

d

e

f

g

h

i

R3

R4
R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2008 by Hanan Samet 8

hi32

Q is in R0

2
v

Copyright © 2008 by Hanan Samet 8

hi32

Q can be in both R1 and R2

3
r

Copyright © 2008 by Hanan Samet 8

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a
b

c

d

e

f

g

h

i

R3

R4
R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2008 by Hanan Samet 8

hi32

Q is in R0

2
v

Copyright © 2008 by Hanan Samet 8

hi32

Q can be in both R1 and R2

3
r

Copyright © 2008 by Hanan Samet 8

hi324
z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

Copyright © 2008 by Hanan Samet 8

hi32
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a
b

c

d

e

f

g

h

i

R3

R4
R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Copyright © 2008 by Hanan Samet 8

hi32

Q is in R0

2
v

Copyright © 2008 by Hanan Samet 8

hi32

Q can be in both R1 and R2

3
r

Copyright © 2008 by Hanan Samet 8

hi324
z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

Copyright © 2008 by Hanan Samet 8

hi325
g

Searching R2 finds that Q can only be in R5
Copyright © 2008 by Hanan Samet 8

hi33DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a
b

c

d

e

f

g
h

i

1
b

Q

Copyright © 2008 by Hanan Samet 9

hi33DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a
b

c

d

e

f

g
h

i

1
b

Q

Copyright © 2008 by Hanan Samet 9

hi332
r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2008 by Hanan Samet 9

hi33DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a
b

c

d

e

f

g
h

i

1
b

Q

Copyright © 2008 by Hanan Samet 9

hi332
r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2008 by Hanan Samet 9

hi333
z

R4R3 R6R5

R1

R2

R1: R2:

Copyright © 2008 by Hanan Samet 9

hi33DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a
b

c

d

e

f

g
h

i

1
b

Q

Copyright © 2008 by Hanan Samet 9

hi332
r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

Copyright © 2008 by Hanan Samet 9

hi333
z

R4R3 R6R5

R1

R2

R1: R2:

Copyright © 2008 by Hanan Samet 9

hi334
g

R2R1R0:

R0

Copyright © 2008 by Hanan Samet 9

hi33.1K-D-B-TREES

a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended

to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet

hi33.1K-D-B-TREES

a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended

to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet

hi33.12
r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:
Copyright © 2008 by Hanan Samet

hi33.1K-D-B-TREES

a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended

to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet

hi33.12
r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:
Copyright © 2008 by Hanan Samet

hi33.13
z

R4R3 R6R5

R1 R2

R1: R2:

Copyright © 2008 by Hanan Samet

hi33.1K-D-B-TREES

a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended

to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet

hi33.12
r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:
Copyright © 2008 by Hanan Samet

hi33.13
z

R4R3 R6R5

R1 R2

R1: R2:

Copyright © 2008 by Hanan Samet

hi33.14
g

R2R1R0:

R0

Copyright © 2008 by Hanan Samet

UNIFORM GRID

Ideal for uniformly distributed data

Supports set-theoretic operations

Spatial data (e.g., line segment data) is rarely uniformly
distributed

hi34

Copyright © 2008 by Hanan Samet 10

hi35

QUADTREES
• Hierarchical variable resolution data structure based on

regular decomposition
• Many different decomposition schemes and applicable

to different data types:
1. points
2. lines
3. regions
4. rectangles
5. surfaces
6. volumes
7. higher dimensions including time

• changes meaning of nearest
a. nearest in time, OR
b. nearest in distance

• Can handle both raster and vector data as just a spatial
index

• Shape is usually independent of order of inserting data
• Ex: region quadtree
• A decomposition into blocks

— not necessarily a tree!

Copyright © 2008 by Hanan Samet 11

hi36

REGION QUADTREE

• Repeatedly subdivide until obtain homogeneous region
• For a binary image (BLACK ≡ 1 and WHITE ≡ 0)
• Can also use for multicolored data (e.g., a landuse

class map associating colors with crops)
• Can also define data structure for grayscale images
• A collection of maximal blocks of size power of two

and placed at predetermined positions
1. could implement as a list of blocks each of which

has a unique pair of numbers:
• concatenate sequence of 2 bit codes correspond-

ing to the path from the root to the block’s node
• the level of the block’s node

2. does not have to be implemented as a tree
• tree good for logarithmic access

• A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

A

B C D E

NW
NE SW

SE

F G H I J L M N O Q

K P

37 38 39 40 57 5859 60

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
1
1
1
1

0
0
1
1
1
1
1
0

0
0
1
1
1
1
0
0

0
0
1
1
1
1
0
0

B

60

37

L

J

Q

GF

H

N

I

O

M 57 58
59

4039
38

Copyright © 2008 by Hanan Samet 12

bg7
SPACE REQUIREMENTS
1. Rationale for using quadtrees/octrees is not so much

for saving space but for saving execution time
2. Execution time of standard image processing

algorithms that are based on traversing the entire
image and performing a computation at each image
element is proportional to the number of blocks in the
decomposition of the image rather than their size
• aggregation of space leads directly to execution

time savings as the aggregate (i.e., block) is visited
just once instead of once for each image element
(i.e., pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical
image compression methods are superior
• drawback: statistical methods are not progressive

as need to transmit the entire image whereas
quadtrees lend themselves to progressive
approximation

• quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques
a. e.g., checkerboard image
b. see also vector quantization

4. Sensitive to positioning of the origin of the
decomposition
• for an n x n image, the optimal positioning requires

an O(n 2 log2n) dynamic programming algorithm
(Li, Grosky, and Jain)

Copyright © 2008 by Hanan Samet

bg8
DIMENSION REDUCTION
1. Number of blocks necessary to store a simple polygon as a

region quadtree is proportional to its perimeter (Hunter)
• implies that many quadtree algorithms execute in

O(perimeter) time as they are tree traversals
• the region quadtree is a dimension reducing device as

perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions
a. region octree takes O (surface area) time and space

(Meagher)
b. d-dimensional data take time and space proportional

to a O (d-1)-dimensional quantity (Walsh)
2. Alternatively, for a region quadtree, the space

requirements double as the resolution doubles
• in contrast with quadrupling in the array representation
• for a region octree the space requirements quadruple

as the resolution doubles
• ex.

1
b

array region quadtree

Copyright © 2008 by Hanan Samet

bg8
DIMENSION REDUCTION
1. Number of blocks necessary to store a simple polygon as a

region quadtree is proportional to its perimeter (Hunter)
• implies that many quadtree algorithms execute in

O(perimeter) time as they are tree traversals
• the region quadtree is a dimension reducing device as

perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions
a. region octree takes O (surface area) time and space

(Meagher)
b. d-dimensional data take time and space proportional

to a O (d-1)-dimensional quantity (Walsh)
2. Alternatively, for a region quadtree, the space

requirements double as the resolution doubles
• in contrast with quadrupling in the array representation
• for a region octree the space requirements quadruple

as the resolution doubles
• ex.

1
b

array region quadtree

Copyright © 2008 by Hanan Samet

bg82
r

Copyright © 2008 by Hanan Samet

bg8
DIMENSION REDUCTION
1. Number of blocks necessary to store a simple polygon as a

region quadtree is proportional to its perimeter (Hunter)
• implies that many quadtree algorithms execute in

O(perimeter) time as they are tree traversals
• the region quadtree is a dimension reducing device as

perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions
a. region octree takes O (surface area) time and space

(Meagher)
b. d-dimensional data take time and space proportional

to a O (d-1)-dimensional quantity (Walsh)
2. Alternatively, for a region quadtree, the space

requirements double as the resolution doubles
• in contrast with quadrupling in the array representation
• for a region octree the space requirements quadruple

as the resolution doubles
• ex.

1
b

array region quadtree

Copyright © 2008 by Hanan Samet

bg82
r

Copyright © 2008 by Hanan Samet

bg83
z

Copyright © 2008 by Hanan Samet

bg8
DIMENSION REDUCTION
1. Number of blocks necessary to store a simple polygon as a

region quadtree is proportional to its perimeter (Hunter)
• implies that many quadtree algorithms execute in

O(perimeter) time as they are tree traversals
• the region quadtree is a dimension reducing device as

perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions
a. region octree takes O (surface area) time and space

(Meagher)
b. d-dimensional data take time and space proportional

to a O (d-1)-dimensional quantity (Walsh)
2. Alternatively, for a region quadtree, the space

requirements double as the resolution doubles
• in contrast with quadrupling in the array representation
• for a region octree the space requirements quadruple

as the resolution doubles
• ex.

1
b

array region quadtree

Copyright © 2008 by Hanan Samet

bg82
r

Copyright © 2008 by Hanan Samet

bg83
z

Copyright © 2008 by Hanan Samet

bg84
g

Copyright © 2008 by Hanan Samet

bg8
DIMENSION REDUCTION
1. Number of blocks necessary to store a simple polygon as a

region quadtree is proportional to its perimeter (Hunter)
• implies that many quadtree algorithms execute in

O(perimeter) time as they are tree traversals
• the region quadtree is a dimension reducing device as

perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions
a. region octree takes O (surface area) time and space

(Meagher)
b. d-dimensional data take time and space proportional

to a O (d-1)-dimensional quantity (Walsh)
2. Alternatively, for a region quadtree, the space

requirements double as the resolution doubles
• in contrast with quadrupling in the array representation
• for a region octree the space requirements quadruple

as the resolution doubles
• ex.

1
b

array region quadtree

Copyright © 2008 by Hanan Samet

bg82
r

Copyright © 2008 by Hanan Samet

bg83
z

Copyright © 2008 by Hanan Samet

bg84
g

Copyright © 2008 by Hanan Samet

bg85
r

• easy to see dependence on perimeter as decomposition
only takes place on the boundary as the resolution
increases

Copyright © 2008 by Hanan Samet

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-
tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-
tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

u

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence

Scalable Network Distance Browsing in Spatial Databases – p.12/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a

region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a

region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

R-tree

Shortest-Path Quadtree

Scalable Network Distance Browsing in Spatial Databases – p.13/43

Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Scalable Network Distance Browsing in Spatial Databases – p.14/43

Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Scalable Network Distance Browsing in Spatial Databases – p.14/43

Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree Scalable Network Distance Browsing in Spatial Databases – p.14/43

Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree

q

a
c d

b

Scalable Network Distance Browsing in Spatial Databases – p.14/43

Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree

q

a
c d

b

Scalable Network Distance Browsing in Spatial Databases – p.14/43

Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree

q

a
c d

b

Scalable Network Distance Browsing in Spatial Databases – p.14/43

Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing

Scalable Network Distance Browsing in Spatial Databases – p.15/43

Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing

Scalable Network Distance Browsing in Spatial Databases – p.15/43

Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing

Scalable Network Distance Browsing in Spatial Databases – p.15/43

Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing

Scalable Network Distance Browsing in Spatial Databases – p.15/43

Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing

Scalable Network Distance Browsing in Spatial Databases – p.15/43

Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing

Scalable Network Distance Browsing in Spatial Databases – p.15/43

Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing

Scalable Network Distance Browsing in Spatial Databases – p.15/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �
	 	 		 	 		 	 		 	 		 	 	

� � �� � �� � �� � �� � � � � �� � �� � �� � �� � �

 � � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �

! ! !! ! !! ! !! ! !! ! ! " " "" " "" " "" " "" " "
#

$ $ $ $$ $ $ $$ $ $ $$ $ $ $$ $ $ $
% % %% % %% % %% % %% % %& & && & && & && & && & &

' ' '' ' '' ' '' ' '' ' '

N
0.5

N
0.5

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

((((((((((((((((((((
)))))))))))))))

* * * ** * * ** * * ** * * ** * * *
+ + ++ + ++ + ++ + ++ + +

, , , ,, , , ,, , , ,, , , ,, , , ,
- - -- - -- - -- - -- - -

.
/ / // / // / // / // / /
0 0 00 0 00 0 00 0 00 0 0
1 1 11 1 11 1 11 1 11 1 1

2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2
3 3 33 3 33 3 33 3 33 3 3 4 4 44 4 44 4 44 4 44 4 4

5 5 55 5 55 5 55 5 55 5 5 6 6 66 6 66 6 66 6 66 6 6
7 7 77 7 77 7 77 7 77 7 7

8 8 8 88 8 8 88 8 8 88 8 8 88 8 8 8
9 9 99 9 99 9 99 9 99 9 9: : :: : :: : :: : :: : :

; ; ;; ; ;; ; ;; ; ;; ; ;

N
0.5

N
0.5

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N

, where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

< < < << < < << < < << < < << < < <
= = == = == = == = == = =

> > > >> > > >> > > >> > > >> > > >
? ? ?? ? ?? ? ?? ? ?? ? ?

@ @ @ @@ @ @ @@ @ @ @@ @ @ @@ @ @ @
A A AA A AA A AA A AA A A

B B BB B BB B BB B BB B B
C C CC C CC C CC C CC C C
D D DD D DD D DD D DD D D
E E EE E EE E EE E EE E E

F F F FF F F FF F F FF F F FF F F F
G G GG G GG G GG G GG G G H H HH H HH H HH H HH H H

I I II I II I II I II I I J J JJ J JJ J JJ J JJ J J
K K KK K KK K KK K KK K K

L L L LL L L LL L L LL L L LL L L L
M M MM M MM M MM M MM M MN N NN N NN N NN N NN N N

O O OO O OO O OO O OO O O

N
0.5

N
0.5

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

P P P PP P P PP P P PP P P PP P P P
Q Q QQ Q QQ Q QQ Q QQ Q Q

R R R RR R R RR R R RR R R RR R R R
S S SS S SS S SS S SS S S

T T T TT T T TT T T TT T T TT T T T
U U UU U UU U UU U UU U U

V V VV V VV V VV V VV V V
W W WW W WW W WW W WW W W
X X XX X XX X XX X XX X X
Y Y YY Y YY Y YY Y YY Y Y

Z Z Z ZZ Z Z ZZ Z Z ZZ Z Z ZZ Z Z Z
[[[[[[[[[[[[[[[\ \ \\ \ \\ \ \\ \ \\ \ \

]]]]]]]]]]]]]]] ^ ^ ^^ ^ ^^ ^ ^^ ^ ^^ ^ ^
_ _ __ _ __ _ __ _ __ _ _

` ` ` `` ` ` `` ` ` `` ` ` `` ` ` `
a a aa a aa a aa a aa a ab b bb b bb b bb b bb b b

c c cc c cc c cc c cc c c

N
0.5

N
0.5

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

d d d dd d d dd d d dd d d dd d d d
e e ee e ee e ee e ee e e

f f f ff f f ff f f ff f f ff f f f
g g gg g gg g gg g gg g g

h h h hh h h hh h h hh h h hh h h h
i i ii i ii i ii i ii i i

j j jj j jj j jj j jj j j
k k kk k kk k kk k kk k k
l l ll l ll l ll l ll l l
m m mm m mm m mm m mm m m

n n n nn n n nn n n nn n n nn n n n
o o oo o oo o oo o oo o o p p pp p pp p pp p pp p p

q q qq q qq q qq q qq q q r r rr r rr r rr r rr r r
s s ss s ss s ss s ss s s

t t t tt t t tt t t tt t t tt t t t
u u uu u uu u uu u uu u uv v vv v vv v vv v vv v v

w w ww w ww w ww w ww w w

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity

x x x xx x x xx x x xx x x xx x x x
y y yy y yy y yy y yy y y

z z z zz z z zz z z zz z z zz z z z
{ { {{ { {{ { {{ { {{ { {

| | | || | | || | | || | | || | | |
} } }} } }} } }} } }} } }

~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~
� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � � � � �� � �� � �� � �� � �

� � �� � �� � �� � �� � � � � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

N
0.5

N
0.5

 100000

 1e+06

 1e+07

 1e+08

 5000 10000 50000 100000

Nu
m

be
r o

f M
or

to
n

bl
oc

ks
(M

) (
lo

g
sc

al
e)

Number of Vertices (N) (log scale)

Slope = 1.5

Scalable Network Distance Browsing in Spatial Databases – p.16/43

hi37

PYRAMID
• Internal nodes contain summary of information in

nodes below them
• Useful for avoiding inspecting nodes where there could

be no relevant information

c1
c2
c3

c4
c5
c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

Copyright © 2008 by Hanan Samet 13

hi38

QUADTREES VS. PYRAMIDS
• Quadtrees are good for location-based queries

1. e.g., what is at location x?
2. not good if looking for a particular feature as have to

examine every block or location asking “are you the
one I am looking for?”

• Pyramid is good for feature-based queries — e.g.,
1. does wheat exist in region x?

• if wheat does not appear at the root node, then
impossible to find it in the rest of the structure and
the search can cease

2. report all crops in region x — just look at the root
3. select all locations where wheat is grown

• only descend node if there is possibility that wheat is
in one of its four sons — implies little wasted work

• Ex: truncated pyramid where 4 identically-colored sons
are merged

c1
c2
c3

c4
c5
c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

{c2,c3,c5} {c1,c2,c3,c5}

• Can represent as a list of leaf and nonleaf blocks (e.g.,
as a linear quadtree)

Copyright © 2008 by Hanan Samet 14

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

2
r

hp9

(52,10)
Mobile

Copyright © 2008 by Hanan Samet 15

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

2
r

hp9

(52,10)
Mobile

Copyright © 2008 by Hanan Samet 15

3
z

hp9

(62,77)
Toronto

Copyright © 2008 by Hanan Samet 15

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

2
r

hp9

(52,10)
Mobile

Copyright © 2008 by Hanan Samet 15

3
z

hp9

(62,77)
Toronto

Copyright © 2008 by Hanan Samet 15

4
g

hp9

(82,65)
Buffalo

Copyright © 2008 by Hanan Samet 15

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

2
r

hp9

(52,10)
Mobile

Copyright © 2008 by Hanan Samet 15

3
z

hp9

(62,77)
Toronto

Copyright © 2008 by Hanan Samet 15

4
g

hp9

(82,65)
Buffalo

Copyright © 2008 by Hanan Samet 15

5
v

hp9

(5,45)
Denver

Copyright © 2008 by Hanan Samet 15

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

2
r

hp9

(52,10)
Mobile

Copyright © 2008 by Hanan Samet 15

3
z

hp9

(62,77)
Toronto

Copyright © 2008 by Hanan Samet 15

4
g

hp9

(82,65)
Buffalo

Copyright © 2008 by Hanan Samet 15

5
v

hp9

(5,45)
Denver

Copyright © 2008 by Hanan Samet 15

6
g

hp9

(27,35)
Omaha

Copyright © 2008 by Hanan Samet 15

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

2
r

hp9

(52,10)
Mobile

Copyright © 2008 by Hanan Samet 15

3
z

hp9

(62,77)
Toronto

Copyright © 2008 by Hanan Samet 15

4
g

hp9

(82,65)
Buffalo

Copyright © 2008 by Hanan Samet 15

5
v

hp9

(5,45)
Denver

Copyright © 2008 by Hanan Samet 15

6
g

hp9

(27,35)
Omaha

Copyright © 2008 by Hanan Samet 15

7
z

hp9

(85,15)
Atlanta

Copyright © 2008 by Hanan Samet 15

PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points
• if two points are very close, then decomposition can be

very deep
• can be overcome by viewing blocks as buckets with

capacity c and only decomposing the block when it
contains more than c points

1.
2.

3.

4.

Ex: c = 1

Copyright © 2008 by Hanan Samet 15

2
r

hp9

(52,10)
Mobile

Copyright © 2008 by Hanan Samet 15

3
z

hp9

(62,77)
Toronto

Copyright © 2008 by Hanan Samet 15

4
g

hp9

(82,65)
Buffalo

Copyright © 2008 by Hanan Samet 15

5
v

hp9

(5,45)
Denver

Copyright © 2008 by Hanan Samet 15

6
g

hp9

(27,35)
Omaha

Copyright © 2008 by Hanan Samet 15

7
z

hp9

(85,15)
Atlanta

Copyright © 2008 by Hanan Samet 15

8
r

hp9

(90,5)
Miami

Copyright © 2008 by Hanan Samet 15

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

Copyright 2008 by Hanan Samet

0
4

2
-0

4
7

--P
R

 q
u

a
d

tre
e

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r

Copyright 2008 by Hanan Samet

0
4

2
-0

4
7

--P
R

 q
u

a
d

tre
e

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r
hp103

z

p

Copyright 2008 by Hanan Samet

0
4

2
-0

4
7

--P
R

 q
u

a
d

tre
e

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r

4

g

p

3

z

Copyright 2008 by Hanan Samet

0
4

2
-0

4
7

--P
R

 q
u

a
d

tre
e

REGION SEARCH
1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4

5

876

2

r

5

v

p

4

g

3

z

Copyright 2008 by Hanan Samet

0
4

2
-0

4
7

--P
R

 q
u

a
d

tre
e

hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2008 by Hanan Samet 17

hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2008 by Hanan Samet 17

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 2008 by Hanan Samet 17

hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2008 by Hanan Samet 17

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 2008 by Hanan Samet 17

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2008 by Hanan Samet 17

hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2008 by Hanan Samet 17

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 2008 by Hanan Samet 17

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2008 by Hanan Samet 17

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2008 by Hanan Samet 17

hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2008 by Hanan Samet 17

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 2008 by Hanan Samet 17

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2008 by Hanan Samet 17

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2008 by Hanan Samet 17

hp115
v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 2008 by Hanan Samet 17

hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2008 by Hanan Samet 17

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 2008 by Hanan Samet 17

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2008 by Hanan Samet 17

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2008 by Hanan Samet 17

hp115
v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 2008 by Hanan Samet 17

hp116
z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

Copyright © 2008 by Hanan Samet 17

hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 2008 by Hanan Samet 17

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 2008 by Hanan Samet 17

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 2008 by Hanan Samet 17

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 2008 by Hanan Samet 17

hp115
v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 2008 by Hanan Samet 17

hp116
z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

Copyright © 2008 by Hanan Samet 17

hp117
r

• If F was moved, a better order would have started with
block 11, the southern neighbor of 1, as it is closest

new F

Copyright © 2008 by Hanan Samet 17

Copyright © 2008 by Hanan Samet

INCREMENTAL NEAREST NEIGHBORS
(HJATASON/SAMET)
� Motivation

1. often don't know in advance how many neighbors
will need

2. e.g., want nearest city to Chicago with population > 1
million

� Several approaches

1. guess some area range around Chicago and check
populations of cities in range
� if find a city with population > 1 million, must

make sure that there are no other cities that are
closer with population > 1 million

� inefficient as have to guess size of area to search
� problem with guessing is we may choose too

small a region or too large a region

a. if size too small, area may not contain any
cities with right population and need to
expand the search region

b. if size too large, may be examining many
cities needlessly

2. sort all the cities by distance from Chicago
� impractical as we need to re-sort them each time

pose a similar query with respect to another city
� also sorting is overkill when only need first few

neighbors

3. find k closest neighbors and check population
condition

hp11b

Copyright © 2008 by Hanan Samet

MECHANICS OF INCREMENTAL NEAREST NEIGHBOR
 ALGORITHM

� Make use of a search hierarchy (e.g., tree) where

1. objects at lowest level

2. object approximations are at next level (e.g.,
bounding boxes in an R-tree)

3. nonleaf nodes in a tree-based index
� Traverse search hierarchy in a best-first manner similar

to A*-algorithm instead of more traditional depth-first or
breadth-first manners

1. at each step, visit element with smallest distance
from query object among all unvisited elements in
the search hierarchy
� i.e., all unvisited elements whose parents have

been visited

2. use a global list of elements, organized by their
distance from query object
� use a priority queue as it supports necessary

insert and delete minimum operations
� ties in distance: priority to lower type numbers
� if still tied, priority to elements deeper in search

hierarchy

hp11c

Copyright © 2008 by Hanan Samet

INCREMENTAL NEAREST NEIGHBOR ALGORITHM

Algorithm:

INCNEAREST(q, S, T)

1. Q � NEWPRIORITYQUEUE()

2. et � root of the search hierarchy induced by q, S,
and T

3. ENQUEUE(Q, et, 0)

4. while not ISEMPTY(Q) do

5. et � DEQUEUE(Q)

6. if t = 0 then /* et is an object */

7. Report et as the next nearest object

8. else

9. for each child element et’ of et do

10. ENQUEUE(Q, et’, dt’(q, et’))

3. Lines 1-3 initialize priority queue with root

4. In main loop take element et closest to q off the queue

� report et as next nearest object if et is an object

� otherwise, insert child elements of et into priority
queue

hp11d

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd323
z

c

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd323
z

c

Copyright © 2008 by Hanan Samet 18

cd324
g

d

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd323
z

c

Copyright © 2008 by Hanan Samet 18

cd324
g

d

Copyright © 2008 by Hanan Samet 18

cd325
v

e

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd323
z

c

Copyright © 2008 by Hanan Samet 18

cd324
g

d

Copyright © 2008 by Hanan Samet 18

cd325
v

e

Copyright © 2008 by Hanan Samet 18

cd32

f

6
r

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd323
z

c

Copyright © 2008 by Hanan Samet 18

cd324
g

d

Copyright © 2008 by Hanan Samet 18

cd325
v

e

Copyright © 2008 by Hanan Samet 18

cd32

f

6
r

Copyright © 2008 by Hanan Samet 18

cd327
z

g

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd323
z

c

Copyright © 2008 by Hanan Samet 18

cd324
g

d

Copyright © 2008 by Hanan Samet 18

cd325
v

e

Copyright © 2008 by Hanan Samet 18

cd32

f

6
r

Copyright © 2008 by Hanan Samet 18

cd327
z

g

Copyright © 2008 by Hanan Samet 18

cd32

h

8
g

Copyright © 2008 by Hanan Samet 18

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

Copyright © 2008 by Hanan Samet 18

cd32

b

2
r

Copyright © 2008 by Hanan Samet 18

cd323
z

c

Copyright © 2008 by Hanan Samet 18

cd324
g

d

Copyright © 2008 by Hanan Samet 18

cd325
v

e

Copyright © 2008 by Hanan Samet 18

cd32

f

6
r

Copyright © 2008 by Hanan Samet 18

cd327
z

g

Copyright © 2008 by Hanan Samet 18

cd32

h

8
g

Copyright © 2008 by Hanan Samet 18

cd32

i

9
v

Copyright © 2008 by Hanan Samet 18

hp14MX-CIF QUADTREE (Kedem) 1
b

Collections of small rectangles for VLSI applications
Each rectangle is associated with its minimum
enclosing quadtree block
Like hashing: quadtree blocks serve as hash buckets

1.
2.

3.

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B
C

E

D

F

Copyright © 2008 by Hanan Samet 24

hp14MX-CIF QUADTREE (Kedem) 1
b

Collections of small rectangles for VLSI applications
Each rectangle is associated with its minimum
enclosing quadtree block
Like hashing: quadtree blocks serve as hash buckets

1.
2.

3.

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B
C

E

D

F

Copyright © 2008 by Hanan Samet 24

hp142
r

Collision = more than one rectangle in a block
resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2008 by Hanan Samet 24

hp14MX-CIF QUADTREE (Kedem) 1
b

Collections of small rectangles for VLSI applications
Each rectangle is associated with its minimum
enclosing quadtree block
Like hashing: quadtree blocks serve as hash buckets

1.
2.

3.

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B
C

E

D

F

Copyright © 2008 by Hanan Samet 24

hp142
r

Collision = more than one rectangle in a block
resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2008 by Hanan Samet 24

hp14

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10
Y4

2

Y5

Y3

6
Y7

8

Y6

3
g

Copyright © 2008 by Hanan Samet 24

hp14MX-CIF QUADTREE (Kedem) 1
b

Collections of small rectangles for VLSI applications
Each rectangle is associated with its minimum
enclosing quadtree block
Like hashing: quadtree blocks serve as hash buckets

1.
2.

3.

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B
C

E

D

F

Copyright © 2008 by Hanan Samet 24

hp142
r

Collision = more than one rectangle in a block
resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2008 by Hanan Samet 24

hp14

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10
Y4

2

Y5

Y3

6
Y7

8

Y6

3
g

Copyright © 2008 by Hanan Samet 24

hp14

if a rectangle intersects both x and y axes, then
associate it with the y axis

4
v

Copyright © 2008 by Hanan Samet 24

hp14MX-CIF QUADTREE (Kedem) 1
b

Collections of small rectangles for VLSI applications
Each rectangle is associated with its minimum
enclosing quadtree block
Like hashing: quadtree blocks serve as hash buckets

1.
2.

3.

1

2

3

4 5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B
C

E

D

F

Copyright © 2008 by Hanan Samet 24

hp142
r

Collision = more than one rectangle in a block
resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

Copyright © 2008 by Hanan Samet 24

hp14

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10
Y4

2

Y5

Y3

6
Y7

8

Y6

3
g

Copyright © 2008 by Hanan Samet 24

hp14

if a rectangle intersects both x and y axes, then
associate it with the y axis

4
v

Copyright © 2008 by Hanan Samet 24

hp145
z

one for x-axis

Binary tree for x-
axis through A

X1

X3
9

X5

7

X4

X2

X6

Copyright © 2008 by Hanan Samet 24

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet – p.8/9

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet – p.8/9

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet – p.8/9

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet – p.8/9

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3

2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

{11,12}

{7,8,10}
{2,9}

{2,6,7,8,9,10}

{11}

{3,4,5}

{1}

A

B

E

C D

F
{6}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet – p.8/9

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A

B{}

E

C{2,9}

{2,4}

{5} {3} {6} {9} {7} {8} {10}

D

F

{11} {12}

{}

{1}

{7,8,10}

{11,12}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet – p.8/9

Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A

B{}

E

C{2,9}

{2,4}

{5} {3} {6} {9} {7} {8} {10}

D

F

{11} {12}

{}

{1}

{7,8,10}

{11,12}

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F

Copyright 2008 by Hanan Samet – p.8/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

o

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

o

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

o

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o

Copyright 2008 by Hanan Samet – p.7/9

sf2

HIERARCHICAL RECTANGULAR DECOMPOSITION
• Similar to triangular decomposition
• Good when data points are the vertices of a

rectangular grid
• Drawback is absence of continuity between adjacent

patches of unequal width (termed the alignment
problem)

• Overcoming the presence of cracks
1. use the interpolated point instead of the true point

(Barrera and Hinjosa)
2. triangulate the squares (Von Herzen and Barr)

• can split into 2, 4, or 8 triangles depending on how
many lines are drawn through the midpoint

• if split into 2 triangles, then cracks still remain
• no cracks if split into 4 or 8 triangles

Copyright © 2008 by Hanan Samet 25

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1
 Note: also used in finite element analysis to adptively

refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2008 by Hanan Samet 26

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1
 Note: also used in finite element analysis to adptively

refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2008 by Hanan Samet 26

sf32
r

Copyright © 2008 by Hanan Samet 26

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1
 Note: also used in finite element analysis to adptively

refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2008 by Hanan Samet 26

sf32
r

Copyright © 2008 by Hanan Samet 26

sf33
z

• 8-triangle decomposition rule
1. decompose each block into 8 triangles (i.e., 2 triangles

per edge)
2. unless the edge is shared by a larger block
3. in which case only 1 triangle is formed

Copyright © 2008 by Hanan Samet 26

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1
 Note: also used in finite element analysis to adptively

refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2008 by Hanan Samet 26

sf32
r

Copyright © 2008 by Hanan Samet 26

sf33
z

• 8-triangle decomposition rule
1. decompose each block into 8 triangles (i.e., 2 triangles

per edge)
2. unless the edge is shared by a larger block
3. in which case only 1 triangle is formed

Copyright © 2008 by Hanan Samet 26

sf34
g

• 4-triangle decomposition rule
1. decompose each block into 4 triangles (i.e., 1 triangle

per edge)
2. unless the edge is shared by a smaller block
3. in which case 2 triangles are formed along the edge

Copyright © 2008 by Hanan Samet 26

sf31
b

RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1
 Note: also used in finite element analysis to adptively

refine an element as well as to achieve element
compatibility (termed h-refinement by Kela, Perucchio, and
Voelcker)

Copyright © 2008 by Hanan Samet 26

sf32
r

Copyright © 2008 by Hanan Samet 26

sf33
z

• 8-triangle decomposition rule
1. decompose each block into 8 triangles (i.e., 2 triangles

per edge)
2. unless the edge is shared by a larger block
3. in which case only 1 triangle is formed

Copyright © 2008 by Hanan Samet 26

sf34
g

• 4-triangle decomposition rule
1. decompose each block into 4 triangles (i.e., 1 triangle

per edge)
2. unless the edge is shared by a smaller block
3. in which case 2 triangles are formed along the edge

Copyright © 2008 by Hanan Samet 26

sf3

• Prefer 8-triangle rule as it is better for display applications
(shading)

5
v

Copyright © 2008 by Hanan Samet 26

sf4

PROPERTY SPHERES (FEKETE)
• Approximation of spherical data
• Uses icosahedron which is a Platonic solid

1. 20 faces—each is a regular triangle
2. largest possible regular polyhedron

Copyright © 2008 by Hanan Samet 27

sf5

ALTERNATIVE SPHERICAL APPROXIMATIONS
• Could use other Platonic solids

1. all have faces that are regular polygons
• tetrahedron: 4 equilateral triangular faces
• hexahedron: 6 square faces
• octahedron: 8 equilateral triangular faces
• dodecahedron: 12 pentagonal faces

2. octahedron is nice for modeling the globe
• it can be aligned so that the poles are at opposite

vertices
• the prime meridian and the equator intersect at

another vertex
• one subdivision line of each face is parallel to the

equator
• Decompose on the basis of latitude and longitude

values
1. not so good if want a partition into units of equal

area as great problems around the poles
2. project sphere onto plane using Lambert’s

cylindrical projection which is locally area preserving
• Instead of approximating sphere with the solids,

project the faces of the solids on the sphere (Scott)
1. all edges become sub-arcs of a great circle
2. use regular decomposition on triangular, square, or

pentagonal spherical surface patches

Copyright © 2008 by Hanan Samet 28

hi60

OCTREES
1. Interior (voxels)

• analogous to region quadtree
• approximate object by aggregating similar voxels
• good for medical images but not for objects with

planar faces
Ex:

1 2 3 4 13 14 15

12111098765

B

A
14 15

49 10
6

1 2

13

1211

5

2. Boundary
• adaptation of PM quadtree to three-dimensional

data
• decompose until each block contains

a. one face
b. more than one face but all meet at same edge
c. more than one edge but all meet at same
vertex

• impose a spatial index on a boundary model
(BRep)

Copyright © 2008 by Hanan Samet 29

hi39

EXAMPLE QUADTREE-BASED QUERY
• Query: find all cities with population in excess of 5,000 in

wheat growing regions within 10 miles of the Mississippi
River
1. assume river is a linear feature

• use a line map
• could be a region if asked for sandbars in the river

2. region map for the wheat
3. assume cities are points

• point map for cities
• could be region is asked for high income areas

• Combines spatial and non-spatial (i.e., attribute) data
• Many possible execution plans - e.g.,

1. compute buffer or corridor around river
2. extract wheat area
3. intersect 1 with 2
4. intersect city map with 3
5. retrieve value of population attribute for cities in 4 from

the nonspatial database (e.g., relational)
• Regular decomposition hierarchical data structures such

as the quadtree
1. all maps are in registration

• all blocks are in the same positions
• not true for R+-trees and BSP trees
• disjoint decomposition of space - unlike R-tree

2. can perform set-theoretic operations on different
feature types (e.g., 3 and 4)

Copyright © 2008 by Hanan Samet

Copyright (c) 2008 by Hanan Samet

world wide web.

 Structures, Morgan−Kaufmann, San Francisco, 2006.

 Addison−Wesley, Reading, MA, 1990.

 [http://www.cs.umd.edu/~hjs/multidimensional−book−flyer.pdf]

 Reading, MA, 1990.
 Graphics, Image Processing, and GIS, Addison−Wesley,

2. H. Samet, Foundations of Multidimensional and Metric Data

3. H. Samet, Applications of Spatial Data Structures: Computer

4. H. Samet, Design and Analysis of Spatial Data Structures,

5. Spatial Data Applets at http://www.cs.umd.edu/~hjs/quadtree

FURTHER READING

1. F. Brabec and H. Samet, Client−based spatial browsing on the

Jan/Feb 2007.

rf1

IEEE Internet Computing, 11(1):52−59,

Order from Morgan Kaufmann Publishers and receive 20% off!
Please refer to code 85511.

Mail: Elsevier Science, Order Fulfillment, 11830 Westline Industrial Dr., St. Louis, MO 63146
Phone: US/Canada 800-545-2522, 1-314-453-7010 (Intl.) � Fax: 800-535-9935, 1-314-453-7095 (Intl.)

Email: usbkinfo@elsevier.com � Visit Morgan Kaufmann on the Web: www.mkp.com
Volume discounts available, contact: NASpecialSales@elsevier.com

Foundations of Multidimensional and Metric Data Structures
By Hanan Samet, University of Maryland at College Park 1024 pages

August 2006 � ISBN 0-12-369446-9 � Hardcover � $59.95� £29.99 � �43.95 � $47.96 � £23.99 � �35.16
�

�

�

The field of multidimensional and metric data structures is

large and growing very quickly. Here, for the first time,

is a thorough treatment of multidimensional point data,

object and image-based object representations, intervals

and small rectangles, high-dimensional datasets, as well as datasets

for which we only know that they reside in a metric space.

The book includes a thorough introduction; a comprehensive survey of

multidimensional (including spatial) and metric data structures and

algorithms; and implementation details for the most useful data structures.

Along with the hundreds of worked exercises and hundreds of illustrations,

the result is an excellent and valuable reference tool for professionals in

many areas, including computer graphics and visualization, databases,

geographic information systems (GIS), and spatial databases, game

programming, image processing and computer vision, pattern recognition,

solid modelling and computational geometry, similarity retrieval and multimedia databases, and VLSI design,

and search aspects of bioinformatics.

Features

� First comprehensive work on multidimensional and metric data structures available, a thorough and

authoritative treatment.

� An algorithmic rather than mathematical approach, with a liberal use of examples that allows the readers to

easily see the possible implementation and use.

� Each section includes a large number of exercises and solutions to self-test and confirm the reader's

understanding and suggest future directions.

� Written by a well-known authority in the area of multidimensional (including spatial) data structures who

has made many significant contributions to the field.

Hanan Samet is the dean of "spatial indexing"... This book is encyclopedic... this book will be invaluable for those of us who struggle with
spatial data, scientific datasets, graphics, vision problems involving volumetric queries, or with higher dimensional datasets common in
data mining.

- From the foreword by Jim Gray, Microsoft Research

Samet's book on multidimensional and metric data structures is the most complete and thorough presentation on this topic. It has broad
coverage of material from computational geometry, databases, graphics, GIS, and similarity retrieval literature. Written by the leading
authority on hierarchical spatial representations, this book is a "must have" for all instructor, researches, and developers working and
teaching in these areas.

- Dinesh Manocha, University of North Carolina at Chapel Hill

To summarize, this book is excellent! It’s a very comprehensive survey of spatial and multidimensional data structures and algorithms,
which is badly needed. The breadth and depth of coverage is astounding and I would consider several parts of it required reading for real
time graphics and game developers.

- Bretton Wade, University of Washington and Microsoft Corp.

MORGAN KAUFMANN PUBLISHERS

 20% OFF!

Foundations of Multidimensional and Metric Data Structures
By Hanan Samet, University of Maryland at College Park

Available August 2006 • ISBN 0-12-369446-9 • 1024 pages • Hardcover $59.95 • $47.96
with 20% discount

Order from Morgan Kaufmann Publishers
To receive 20% off, please refer to code 85511

Mail: Elsevier Science, Order Fulfillment, 11830 Westline Industrial Dr., St. Louis, MO 63146
Phone: US/Canada 800-545-2522, 1-314-453-7010 (Intl.) � Fax: 800-535-9935, 1-314-453-7095 (Intl.)

Email: usbkinfo@elsevier.com � Visit Morgan Kaufmann on the Web: www.mkp.com
Volume discounts available, contact: NASpecialSales@elsevier.com

�

Table of Contents and Topics

Chapter 1:
Multidimensional Point Data

1.1 Introduction
1.2 Range Trees
1.3 Priority Search Trees
1.4 Quadtrees

1.4.1 Point Quadtrees
1.4.2 Trie-Based Quadtree
1.4.3 Comparison of Point and Trie-Based
Quadtrees

1.5 K-d Trees
1.5.1 Point K-d Trees
1.5.2 Trie-Based K-d Trees
1.5.3 Conjugation Tree

1.6 One-Dimensional Orderings
1.7 Bucket Methods

1.7.1 Tree Directory Methods (K-d-B-Tree,
Hybrid Tree, LSD Tree, hB-Tree, K-d-B-Trie, BV-
Tree)

1.7.2 Grid Directory Methods (Grid File,
EXCELL, Linear Hashing, Spiral Hashing)

1.7.3 Storage Utilization
1.8 PK-Tree
1.9 Conclusion

Chapter 2
Object-based and Image-based Image
Representations

2.1 Interior-Based Representations
2.1.1 Unit-Size Cells
2.1.2 Blocks (Medial Axis Transform, Region

Quadtree and Octree, Bintree, X-Y Tree, Treemap,
Puzzletree)

2.1.3 Nonorthogonal Blocks (BSP Tree,
Layered DAG)

2.1.4 Arbitrary Objects (Loose Octree, Field
Tree, PMR Quadtree)

2.1.5 Hierarchical Interior-Based
Representations (Pyramid, R-Tree, Hilbert R-
tree, R*-Tree, Packed R-Tree,R+-Tree, Cell
Tree, Bulk Loading)

2.2 Boundary-Based Representations
2.2.1 The Boundary Model (CSG,BREP,
Winged Edge, Quad Edge,Lath, Voronoi
Diagram, Delaunay Triangulation, Tetrahedra,
Triangle Table, Corner Table
2.2.2 Image-Based Boundary Representations
(PM Quadtree and Octree, Adaptively
Sampled Distance Field)
2.2.3 Object-based Boundary Representation
(LOD, Strip Tree, Simplification Methods)
2.2.4 Surface-Based Boundary Representations
(TIN)

2.3 Difference-Based Compaction Methods
2.3.1 Runlength Encoding
2.3.2 Chain Code
2.3.3 Vertex Representation

2.4 Historical Overview

Chapter 3
Intervals and Small Rectangles

3.1 Plane-Sweep Methods and the Rectangle
Intersection Problem

3.1.1 Segment Tree
3.1.2 Interval Tree
3.1.3 Priority Search Tree
3.1.4 Alternative Solutions and Related
Problems

3.2 Plane-sweep Methods and the Measure Problem
3.3 Point-Based Methods

3.3.1 Representative Points
3.3.2 Collections of Representative Points
3.3.3 LSD Tree
3.3.4 Summary

3.4 Area-Based Methods
 3.4.1 MX-CIF Quadtree
 3.4.2 Alternatives to the MX-CIF Quadtree
(HV/VH Tree)

3.4.3 Multiple Quadtree Block Representations

Chapter 4
High-Dimensional Data

4.1 Best-First Incremental Nearest Neighbor
Finding (Ranking)

4.1.1 Motivation
4.1.2 Search Hierarchy
4.1.3 Algorithm
4.1.4 Duplicate Objects
4.1.5 Spatial Networks
4.1.6 Algorithm Extensions (Farthest Neighbor,

Skylines)
4.1.7 Related Work

4.2 The Depth-First K-Nearest Neighbor Algorithm
4.2.1 Basic Algorithm
4.2.2 Pruning Rules
4.2.3 Effects of Clustering Methods on Pruning
4.2.4 Ordering the Processing of the Elements
of the Active List
4.2.5 Improved Algorithm
4.2.6 Incorporating MaxNearestDist in a Best-
First Algorithm
4.2.7 Example
4.2.8 Comparison

4.3 Approximate Nearest Neighbor Finding
4.4 Multidimensional Indexing Methods

4.4.1 X-Tree
4.4.2 Bounding Sphere Methods: Sphere Tree,
SS-Tree, Balltree, and SR-Tree
4.4.3 Increasing the Fanout: TV-Tree, Hybrid
Tree, and A-Tree
4.4.4 Methods Based on the Voronoi Diagram:
OS-Tree
4.4.5 Approximate Voronoi Diagram (AVD)
4.4.6 Avoiding Overlapping All of the Leaf
Blocks
4.4.7 Pyramid Technique
4.4.8 Sequential Scan Methods (VA-File, IQ-
Tree,VA+-File)

4.5 Distance-Based Indexing Methods
4.5.1 Distance Metric and Search Pruning
4.5.2 Ball Partitioning Methods (VP-Tree,
MVP-Tree)
4.5.3 Generalized Hyperplane Partitioning

Methods (GH-Tree, GNAT, MB-Tree)
4.5.4 M-Tree
4.5.5 Sa-Tree
4.5.6 kNN Graph
4.5.7 Distance Matrix Methods
4.5.8 SASH - Indexing Without Using the
Triangle Inequality

4.6 Dimension-Reduction Methods
4.6.1 Searching in the Dimensionally-
Reduced Space
4.6.2 Using Only One Dimension
4.6.3 Representative Point Methods
4.6.4 Transformation into a Different and
Smaller Feature Set (SVD,DFT)
4.6.5 Summary

4.7 Embedding Methods
4.7.1 Introduction
4.7.2 Lipschitz Embeddings
4.7.3 FastMap
4.7.4 Locality Sensitive Hashing (LSH)

Appendix 1: Overview of B-Tbrees
Appendix 2: Linear Hashing
Appendix 3: Spiral Hashing
Appendix 4: Description of Pseudo-Code
Language
Solutions to Exercises
Bibliography
Name and Credit Index
Index
Keyword Index

MORGAN KAUFMANN PUBLISHERS
 an imprint of Elsevier

About the Author

Hanan Samet is Professor in the Department of
Computer Science at the University of Maryland
at College Park, and a member of the Center for
Automation Research and the Institute for
Advanced Computer Studies. He is widely
published in the fields of spatial databases and
data structures, computer graphics, image
databases and image processing, and geographic
information systems (GIS), and is considered an
authority on the use and design of hierarchical
spatial data structures such as the quadtree and
octree for geographic information systems,
image processing, and computer graphics. He is
the author of the first two books on spatial data
structures: The Design and Analysis of Spatial
Data Structures and Applications of Spatial
Data Structures: Computer Graphics, Image
Processing and GIS. He holds a Ph.D. in
computer science from Stanford University

