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Why Sorting of Spatial Data is Important

Most operations invariably involve search

Search is sped up by sorting the data

sort - Definition: verb

1. to put in a certain place or rank according to kind, class, or nature

2. to arrange according to characteristics

Examples

1. Warnock algorithm: sorting objects for display
vector: hidden-line elimination
raster: hidden-surface elimination

2. Back-to-front and front-to-back algorithms

3. BSP trees for visibility determination

4. Accelerating ray tracing and ray casting by finding ray-object

intersections

5. Bounding box hierarchies arrange space according to whether

occupied or unoccupied
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Sorting Implies the Existence of an Ordering

1. Fine for one-dimensional data
sort people by weight and find

closest in weight to Bill and can

also find closest in weight to Larry

sort cities by distance from Chicago

and find closest to Chicago but can-

not find closest to New York unless
resort

a

b

c

2. Hard for two-dimensions as higher as notion of ordering does not exist

unless a dominance relation holds

point a = {ai|1 ≤ i ≤ d} dominates point b = {bi|1 ≤ i ≤ d} if
ai ≤ bi, 1 ≤ i ≤ d.

a does not dominate b but dominates c

3. Only solution is to linearize data as in a space-filling curve

sort is explicit

need implicit sort so no need to resort if reference point changes
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EXAMPLE QUERIES ON LINE SEGMENT DATABASES
• Queries about line segments

1. All segments that intersect a given point or set of
points

2. All segments that have a given set of endpoints
3. All segments that intersect a given line segment
4. All segments that are coincident with a given line

segment
• Proximity queries

1. The nearest line segment to a given point
2. All segments within a given distance from a given

point (also known as a range or window query)
• Queries involving attributes of line segments

1. Given a point, find the closest line segment of a
particular type

2. Given a point, find the minimum enclosing polygon
whose constituent line segments are all of a given
type

3. Given a point, find all the polygons that are incident
on it
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WHAT MAKES CONTINUOUS SPATIAL DATA
DIFFERENT

1. Spatial extent of the objects is the key to the
difference

2. A record in a DBMS may be considered as a point in
a multidimensional space
• a line can be transformed (i.e., represented) as a

point in 4-d space with (x1 , y1 , x2 , y2 )
(x2, y2)

(x1, y1)

• good for queries about the line segments
• not good for proximity queries since points outside

the object are not mapped into the higher
dimensional space

• representative points of two objects that are
physically close to each other in the original space
(e.g., 2-d for lines) may be very far from each other
in the higher dimensional space (e.g., 4-d)

A

B

• Ex:
• problem is that the transformation

only transforms the space occupied
by the objects and not the rest of the
space (e.g., the query point)

• can overcome by projecting back to original space
3. Use an index that sorts based upon spatial

occupancy (i.e., extent of the objects)
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SPATIAL INDEXING REQUIREMENTS
1. Compatibility with the data being stored
2. Choose an appropriate zero or reference point
3. Need an implicit rather than an explicit index

• impossible to foresee all possible queries in
advance

• cannot have an attribute for every possible spatial
relationship
a. derive adjacency relations
b. 2-d strings capture a subset of adjacencies

• all rows
• all columns

• implicit index is better as an explicit index which,
for example, sorts two-dimensional data on the
basis of distance from a given point is impractical
as it is inapplicable to other points

• implicit means that don't have to resort the data for
queries other than updates
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SORTING ON THE BASIS OF SPATIAL OCCUPANCY
• Decompose the space from which the data is drawn into

regions called buckets (like hashing but preserves order)
• Interested in methods that are designed specifically for

the spatial data type being stored
• Basic approaches to decomposing space

1. minimum bounding rectangles
• e.g., R-tree
• good at distinguishing empty and non-empty

space
• drawbacks:

a. non-disjoint decomposition of space
• may need to search entire space

b. inability to correlate occupied and unoccupied
space in two maps

2. disjoint cells
• drawback:  objects may be reported more than once
• uniform grid

a. all cells the same size
b. drawback:  possibility of many sparse cells

• adaptive grid — quadtree variants
a. regular decomposition
b. all cells of width power of 2

• partitions at arbitrary positions
a. drawback:  not a regular decomposition
b. e.g., R+-tree

• Can use as approximations in filter/refine query
processing strategy
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MINIMUM BOUNDING RECTANGLES
hi31

Objects grouped into hierarchies, stored in a structure 
similar to a B-tree

Object has single bounding rectangle, yet area that it 
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree  

a

b

c

d

e

f

g
h

i

1
b

Order (m,M ) R-tree
1. between m     M/2  and M entries in each node 

except root
2. at least 2 entries in root unless a leaf node
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R3: R4: R5: R6:
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SEARCHING FOR A POINT OR LINE 
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a
b

c

d

e

f

g

h

i

R3

R4
R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes 
since a line segment can be contained in the covering 
rectangles of many nodes yet its record is contained in 
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0
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Q is in R0

2
v
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2
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Q can be in both R1 and R2
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2
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Q can be in both R1 and R2

3
r
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Searching R1 first means that R4 is searched but this 
leads to failure even though Q is part of i which is in R4
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Searching R1 first means that R4 is searched but this 
leads to failure even though Q is part of i which is in R4
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hi33DISJOINT CELLS

Objects decomposed into disjoint subobjects; each 
subobject in different cell

Drawback: in order to determine area covered by 
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples 
of this technique  

a
b

c

d

e

f

g
h

i

1
b

Q
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a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically 
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree, 
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into 
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended 

to non-point objects represented by their minimum 
bounding boxes

• Drawback: in order to determine area covered by object, 
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet



hi33.1K-D-B-TREES

a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically 
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree, 
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into 
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended 

to non-point objects represented by their minimum 
bounding boxes

• Drawback: in order to determine area covered by object, 
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet

hi33.12
r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:
Copyright © 2008 by Hanan Samet



hi33.1K-D-B-TREES

a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically 
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree, 
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into 
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended 

to non-point objects represented by their minimum 
bounding boxes

• Drawback: in order to determine area covered by object, 
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet

hi33.12
r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:
Copyright © 2008 by Hanan Samet

hi33.13
z

R4R3 R6R5

R1 R2

R1: R2:

Copyright © 2008 by Hanan Samet



hi33.1K-D-B-TREES

a
b

c

d

e

f

g
h

i

1
b

Q

• Rectangular embedding space is hierarchically 
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree, 
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into 
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended 

to non-point objects represented by their minimum 
bounding boxes

• Drawback: in order to determine area covered by object, 
must retrieve all cells that it occupies

Copyright © 2008 by Hanan Samet

hi33.12
r

R3 R4 R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:
Copyright © 2008 by Hanan Samet

hi33.13
z

R4R3 R6R5

R1 R2

R1: R2:

Copyright © 2008 by Hanan Samet

hi33.14
g

R2R1R0:

R0

Copyright © 2008 by Hanan Samet



UNIFORM GRID

Ideal for uniformly distributed data

Supports set-theoretic operations

Spatial data (e.g., line segment data) is rarely uniformly 
distributed

hi34
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QUADTREES
• Hierarchical variable resolution data structure based on

regular decomposition
• Many different decomposition schemes and applicable

to different data types:
1. points
2. lines
3. regions
4. rectangles
5. surfaces
6. volumes
7. higher dimensions including time

• changes meaning of nearest
a. nearest in time, OR
b. nearest in distance

• Can handle both raster and vector data as just a spatial
index

• Shape is usually independent of order of inserting data
• Ex: region quadtree
• A decomposition into blocks

— not necessarily a tree!
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REGION QUADTREE

• Repeatedly subdivide until obtain homogeneous region
• For a binary image (BLACK ≡ 1 and WHITE ≡ 0)
• Can also use for multicolored data (e.g., a landuse

class map associating colors with crops)
• Can also define data structure for grayscale images
• A collection of maximal blocks of size power of two

and placed at predetermined positions
1. could implement as a list of blocks each of which

has a unique pair of numbers:
• concatenate sequence of 2 bit codes correspond-

ing to the path from the root to the block’s node
• the level of the block’s node

2. does not have to be implemented as a tree
• tree good for logarithmic access

• A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

A

B C D E

NW
NE SW

SE

F G H I J L M N O Q

K P

37 38 39 40 57 5859 60

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
1
1
1
1

0
0
1
1
1
1
1
0

0
0
1
1
1
1
0
0

0
0
1
1
1
1
0
0

B

60

37

L

J

Q

GF

H

N

I

O

M 57 58
59

4039
38
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SPACE REQUIREMENTS
1. Rationale for using quadtrees/octrees is not so much

for saving space but for saving execution time
2. Execution time of standard image processing

algorithms that are based on traversing the entire
image and performing a computation at each image
element is proportional to the number of blocks in the
decomposition of the image rather than their size
• aggregation of space leads directly to execution

time savings as the aggregate (i.e., block) is visited
just once instead of once for each image element
(i.e., pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical
image compression methods are superior
• drawback: statistical methods are not progressive

as need to transmit the entire image whereas
quadtrees lend themselves to progressive
approximation

• quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques
a. e.g., checkerboard image
b. see also vector quantization

4. Sensitive to positioning of the origin of the
decomposition
• for an n x n image, the optimal positioning requires

an O(n 2 log2n) dynamic programming algorithm
(Li, Grosky, and Jain)
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DIMENSION REDUCTION
1. Number of blocks necessary to store a simple polygon as a 

region quadtree is proportional to its perimeter (Hunter)          
• implies that many quadtree algorithms execute in 

O(perimeter) time as they are tree traversals
• the region quadtree is a dimension reducing device as 

perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions 
a. region octree takes O (surface area) time and space 

(Meagher)
b. d-dimensional data take time and space proportional 

to a O (d-1)-dimensional quantity (Walsh)
2. Alternatively, for a region quadtree, the space 

requirements double as the resolution doubles
• in contrast with quadrupling in the array representation
• for a region octree the space requirements quadruple 

as the resolution doubles
• ex.

1
b

array region quadtree
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SILC Path Encoding

The SILC path encoding takes advantage of the path coherence

How? Use a coloring algorithm

Source vertex u in a spatial network

Assign colors to the outgoing edges of u

Color vertex based on the first edge on

the shortest path from u

Source vertex u in the spatial

network of Silver Spring, MD

Color remaining vertices based

on which of the six adjacent

vertices of u is the first link in
the shortest path from u

Resulting representation is termed the shortest-path map of u

Assuming planar spatial network graphs means that the coloring results in spa-

tially contiguous colored regions due to path coherence
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How to Store Colored Regions?

Minimum bounding boxes (e.g.,

R-tree) [Wagn03]

overlapping boxes imply identity of next

vertex cannot be uniquely determined
causing the shortest path algorithm to

possibly degenerate to Dijkstra’s algorithm

Disjoint decomposition: shortest-path quadtree

Decompose until all vertices in block have
the same color

Shortest-path quadtree stored as a collection

of Morton blocks

Note: no need to store identity of vertices
in the blocks

Proposed encoding leverages the

dimensionality reduction property of MX and
region quadtrees

Required storage cost to represent a
region R in a region and MX quadtree is

O(p), where p is the perimeter of R

Shortest-path Map

Shortest-Path Quadtree
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Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Scalable Network Distance Browsing in Spatial Databases – p.14/43



Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Scalable Network Distance Browsing in Spatial Databases – p.14/43



Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree Scalable Network Distance Browsing in Spatial Databases – p.14/43



Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree

q

a
c d

b

Scalable Network Distance Browsing in Spatial Databases – p.14/43



Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree

q

a
c d

b

Scalable Network Distance Browsing in Spatial Databases – p.14/43



Quadtree Complexity Theorem

Quadtree corresponding to a polygon of perimeter p embedded in a

2q × 2q image has O(p + q) nodes (Hunter)

MX−Quadtree Simple Polygons Region Quadtree

h a b
e

fi

c

d

g

Easy to see dependence on perimeter as
decomposition only takes place on the
boundary as the resolution increases

Shortest-path quadtree requires less
space than MX and region quadtrees as

no decomposition takes place at bound-
aries that pass through empty nodes

even though number of polygons ex-
ceeds the vertex outdegree

q

a
c d

b

Scalable Network Distance Browsing in Spatial Databases – p.14/43



Quadtree Complexity Theorem on Shortest-Path Map

Quadtree Complexity theorem cannot
be directly applied to shortest-path
quadtrees owing to the discontinuous

regions

However, for planar graphs the

shortest-path map of a vertex is
contiguous

Quadtree Complexity Theorem can be

applied to the MX-quadtree for the
polygons containing the regions in the

shortest-path map

Size of shortest-path quadtree is no
more than the MX quadtree as no
need to decompose, to the pixel level,
the empty blocks through which the

boundaries pass

Hence, shortest-path quadtrees are at

worse O(perimeter) i.e., dimension re-
ducing
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N

, where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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Space Complexity Analysis of Shortest-Path Quadtrees

Consider a spatial network containing N vertices

in a square grid of size N0.5 × N0.5 and embed it

Perimeter of a region with monotonic boundary on

one of its coordinates is of size O(N0.5)

Perimeter of a region with a non-monotonic

boundary can be of size O(N)

Assumption: Regions of the shortest-path

quadtree have monotonic boundaries

Size of a shortest-path quadtree of a vertex u is

c
√

N , where c is a function of the outdegree of u

Total storage complexity of the SILC framework is

O(N
√

N); closely follows empirical results

Contribution: A mechanism to capture shortest
paths in spatial networks based solely on

geometry and independent of topology or

connectivity
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hi37

PYRAMID
• Internal nodes contain summary of information in

nodes below them
• Useful for avoiding inspecting nodes where there could

be no relevant information

c1
c2
c3

c4
c5
c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}
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QUADTREES VS. PYRAMIDS
• Quadtrees are good for location-based queries

1. e.g., what is at location x?
2. not good if looking for a particular feature as have to

examine every block or location asking “are you the
one I am looking for?”

• Pyramid is good for feature-based queries — e.g.,
1. does wheat exist in region x?

• if wheat does not appear at the root node, then
impossible to find it in the rest of the structure and
the search can cease

2. report all crops in region x — just look at the root
3. select all locations where wheat is grown

• only descend node if there is possibility that wheat is
in one of its four sons — implies little wasted work

• Ex: truncated pyramid where 4 identically-colored sons
are merged

c1
c2
c3

c4
c5
c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

{c2,c3,c5} {c1,c2,c3,c5}

• Can represent as a list of leaf and nonleaf blocks (e.g.,
as a linear quadtree)

Copyright © 2008 by Hanan Samet 14



PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more 
than one point
Useful when the domain of data points is not discrete 
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the 
minimum separation between two points
• if two points are very close, then decomposition can be 

very deep
• can be overcome by viewing blocks as buckets with 

capacity c and only decomposing the block when it 
contains more than c points

1.
2.

3.

4.

Ex: c = 1
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Regular decomposition point representation
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than one point
Useful when the domain of data points is not discrete 
but finite
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Maximum level of decomposition depends on the 
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Regular decomposition point representation
Decomposition occurs whenever a block contains more 
than one point
Useful when the domain of data points is not discrete 
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contains more than c points
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Regular decomposition point representation
Decomposition occurs whenever a block contains more 
than one point
Useful when the domain of data points is not discrete 
but finite
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PR QUADTREE (Orenstein)
1 hp9
b

Regular decomposition point representation
Decomposition occurs whenever a block contains more 
than one point
Useful when the domain of data points is not discrete 
but finite
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(35,42)
Chicago

Maximum level of decomposition depends on the 
minimum separation between two points
• if two points are very close, then decomposition can be 

very deep
• can be overcome by viewing blocks as buckets with 

capacity c and only decomposing the block when it 
contains more than c points

1.
2.

3.

4.
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PR QUADTREE (Orenstein)
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Regular decomposition point representation
Decomposition occurs whenever a block contains more 
than one point
Useful when the domain of data points is not discrete 
but finite
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Maximum level of decomposition depends on the 
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• if two points are very close, then decomposition can be 
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contains more than c points

1.
2.

3.

4.

Ex: c = 1
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Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A
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1 hp10
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

hp10

If a quadrant subdivision point p lies in a region l, then 
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW 
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211
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search the quadrants of p specified by l
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Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A
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If a quadrant subdivision point p lies in a region l, then 
search the quadrants of p specified by l
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hp11FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11
D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:
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1. start at block 2 and compute distance to P from A
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2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3
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 to P than any point in 3
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3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A
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 further from P than A
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4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance 
 from P to A
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5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A
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• If F was moved, a better order would have started with 
block 11, the southern neighbor of 1, as it is closest

new F
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INCREMENTAL NEAREST NEIGHBORS 
(HJATASON/SAMET)
� Motivation

1. often don't know in advance how many neighbors 
will need

2. e.g., want nearest city to Chicago with population > 1 
million

� Several approaches

1. guess some area range around Chicago and check 
populations of cities in range
� if find a city with population > 1 million, must 

make sure that there are no other cities that are 
closer with population > 1 million

� inefficient as have to guess size of area to search
� problem with guessing is we may choose too 

small a region or too large a region

a. if size too small, area may not contain any 
cities with right population and need to 
expand the search region

b. if size too large, may be examining many 
cities needlessly

2. sort all the cities by distance from Chicago
� impractical as we need to re-sort them each time 

pose a similar query with respect to another city
� also sorting is overkill when only need first few 

neighbors

3. find k closest neighbors and check population 
condition

hp11b
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MECHANICS OF INCREMENTAL NEAREST NEIGHBOR
 ALGORITHM

� Make use of a search hierarchy (e.g., tree) where

1. objects at lowest level

2. object approximations are at next level (e.g., 
bounding boxes in an R-tree)

3. nonleaf nodes in a tree-based index
� Traverse search hierarchy in a best-first manner similar 

to A*-algorithm instead of more traditional depth-first or 
breadth-first manners

1. at each step, visit element with smallest distance 
from query object among all unvisited elements in 
the search hierarchy
� i.e., all unvisited elements whose parents have 

been visited

2. use a global list of elements, organized by their 
distance from query object
� use a priority queue as it supports necessary 

insert and delete minimum operations
� ties in distance: priority to lower type numbers
� if still tied, priority to elements deeper in search 

hierarchy

hp11c
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INCREMENTAL NEAREST NEIGHBOR ALGORITHM

Algorithm:

INCNEAREST(q, S, T)

1. Q � NEWPRIORITYQUEUE()

2. et � root of the search hierarchy induced by q, S, 
and T

3. ENQUEUE(Q, et, 0)

4. while not ISEMPTY(Q) do

5.      et � DEQUEUE(Q)

6.      if  t = 0 then /* et is an object */

7.         Report et as the next nearest object

8.      else

9.         for each child element et’ of et do

10.             ENQUEUE(Q, et’, dt’(q, et’))

3. Lines 1-3 initialize priority queue with root

4. In main loop take element et closest to q off the queue

� report et as next nearest object if et is an object

� otherwise, insert child elements of et into priority 
queue

hp11d
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a

PM1 QUADTREE
1

DECOMPOSITION RULE:
Partitioning occurs when a block contains more than 
one segment unless all the segments are incident at 
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion
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hp14MX-CIF QUADTREE (Kedem) 1
b

Collections of small rectangles for VLSI applications
Each rectangle is associated with its minimum 
enclosing quadtree block
Like hashing: quadtree blocks serve as hash buckets
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2.

3.
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C {}

A

B
C

E

D

F
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Collision = more than one rectangle in a block
resolve by using two one-dimensional MX-CIF trees to 
store the rectangle intersecting the lines passing 
through each subdivision point

4.
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Collision = more than one rectangle in a block
resolve by using two one-dimensional MX-CIF trees to 
store the rectangle intersecting the lines passing 
through each subdivision point

4.
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Loose Quadtree (Octree)/Cover Fieldtree

Overcomes drawback of MX-CIF quadtree that the width w of the minimum
enclosing quadtree block of a rectangle o is not a function of the size of o

Instead, it depends on the position of the centroid of o and often
considerably larger than o

Solution: expand size of space

spanned by each quadtree block of

width w by expansion factor p (p > 0)
so expanded block is of width (1 + p)w

1. p = 0.3
2. p = 1.0

Maximum w (i.e., minimum depth of
minimum enclosing quadtree block) is

a function of p and radius r of o and in-
dependent of position of centroid of o

1. Range of possible ratios w/2r :

1/(1 + p) · w/2r < 2/p

2. For p ≥ 1, restricting w and r

to powers of 2, w/2r takes on at

most 2 values and usually just 1

A {2,6,7,8,9,10}

{1}
B

{3,4,5}

E

C{} D{11}

F 12}{

1
B

2

3 E

4 5

C
6

9A

8

11

12

10

7

D
F
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Partition Fieldtree

Alternative to loose quadtree (octree)/cover fieldtree at overcoming

drawback of MX-CIF quadtree that the width w of the minimum enclosing

quadtree block of a rectangle o is not a function of the size of o

Achieves similar result by shifting positions of the centroid of quadtree

blocks at successive levels of the subdivision by one half of the width of
the block that is being subdivided

Subdivision rule guarantees that width of minimum enclosing quadtree

block for rectangle o is bounded by 8 times the maximum extent r of o

Same ratio is obtained for the
loose quadtree (octree)/cover field-

tree when p =1/4, and thus partition
fieldtree is superior to the cover field-

tree when p <1/4

Summary: cover fieldtree expands

the width of the quadtree blocks while

the partition fieldtree shifts the posi-

tions of their centroids

r

o
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sf2

HIERARCHICAL RECTANGULAR DECOMPOSITION
• Similar to triangular decomposition
• Good when data points are the vertices of a

rectangular grid
• Drawback is absence of continuity between adjacent

patches of unequal width (termed the alignment
problem)

• Overcoming the presence of cracks
1. use the interpolated point instead of the true point

(Barrera and Hinjosa)
2. triangulate the squares (Von Herzen and Barr)

• can split into 2, 4, or 8 triangles depending on how
many lines are drawn through the midpoint

• if split into 2 triangles, then cracks still remain
• no cracks if split into 4 or 8 triangles
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RESTRICTED QUADTREE (VON HERZEN/BARR)

• All 4-adjacent blocks are either of equal size or of ratio 2:1
 Note: also used in finite element analysis to adptively 

refine an element as well as to achieve element 
compatibility (termed h-refinement by Kela, Perucchio, and 
Voelcker)
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• 8-triangle decomposition rule
1. decompose each block into 8 triangles (i.e., 2 triangles 

per edge)
2. unless the edge is shared by a larger block
3. in which case only 1 triangle is formed
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• 8-triangle decomposition rule
1. decompose each block into 8 triangles (i.e., 2 triangles 

per edge)
2. unless the edge is shared by a larger block
3. in which case only 1 triangle is formed
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• 4-triangle decomposition rule
1. decompose each block into 4 triangles (i.e., 1 triangle 

per edge)
2. unless the edge is shared by a smaller block
3. in which case 2 triangles are formed along the edge
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• 4-triangle decomposition rule
1. decompose each block into 4 triangles (i.e., 1 triangle 

per edge)
2. unless the edge is shared by a smaller block
3. in which case 2 triangles are formed along the edge
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• Prefer 8-triangle rule as it is better for display applications 
(shading)

5
v
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PROPERTY SPHERES (FEKETE)
• Approximation of spherical data
• Uses icosahedron which is a Platonic solid

1. 20 faces—each is a regular triangle
2. largest possible regular polyhedron
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ALTERNATIVE SPHERICAL APPROXIMATIONS
• Could use other Platonic solids

1. all have faces that are regular polygons
• tetrahedron:  4 equilateral triangular faces
• hexahedron:  6 square faces
• octahedron:  8 equilateral triangular faces
• dodecahedron:  12 pentagonal faces

2. octahedron is nice for modeling the globe
• it can be aligned so that the poles are at opposite

vertices
• the prime meridian and the equator intersect at

another vertex
• one subdivision line of each face is parallel to the

equator
• Decompose on the basis of latitude and longitude

values
1. not so good if want a partition into units of equal

area as great problems around the poles
2. project sphere onto plane using Lambert’s

cylindrical projection which is locally area preserving
• Instead of approximating sphere with the solids,

project the faces of the solids on the sphere (Scott)
1. all edges become sub-arcs of a great circle
2. use regular decomposition on triangular, square, or

pentagonal spherical surface patches
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OCTREES
1. Interior (voxels)

• analogous to region quadtree
• approximate object by aggregating similar voxels
• good for medical images but not for objects with

planar faces
Ex:

1 2 3 4 13 14 15

12111098765

B

A
14 15

49 10
6

1 2

13

1211

5

2. Boundary
• adaptation of PM quadtree to three-dimensional

data
• decompose until each block contains

a. one face
b. more than one face but all meet at same edge
c. more than one edge but all meet at same
vertex

• impose a spatial index on a boundary model
(BRep)
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EXAMPLE QUADTREE-BASED QUERY
• Query: find all cities with population in excess of 5,000 in

wheat growing regions within 10 miles of the Mississippi
River
1. assume river is a linear feature

• use a line map
• could be a region if asked for sandbars in the river

2. region map for the wheat
3. assume cities are points

• point map for cities
• could be region is asked for high income areas

• Combines spatial and non-spatial (i.e., attribute) data
• Many possible execution plans - e.g.,

1. compute buffer or corridor around river
2. extract wheat area
3. intersect 1 with 2
4. intersect city map with 3
5. retrieve value of population attribute for cities in 4 from

the nonspatial database (e.g., relational)
• Regular decomposition hierarchical data structures such

as the quadtree
1. all maps are in registration

• all blocks are in the same positions
• not true for R+-trees and BSP trees
• disjoint decomposition of space - unlike R-tree

2. can perform set-theoretic operations on different
feature types (e.g., 3 and 4)

Copyright © 2008 by Hanan Samet



Copyright (c) 2008 by Hanan Samet

world wide web.

    Structures, Morgan−Kaufmann, San Francisco, 2006.

    Addison−Wesley, Reading, MA, 1990. 

    [http://www.cs.umd.edu/~hjs/multidimensional−book−flyer.pdf]

    Reading, MA, 1990.
    Graphics, Image Processing, and GIS, Addison−Wesley,

2.  H. Samet, Foundations of Multidimensional and Metric Data

3.  H. Samet, Applications of Spatial Data Structures:  Computer

4.  H. Samet, Design and Analysis of Spatial Data Structures,

5.  Spatial Data Applets at http://www.cs.umd.edu/~hjs/quadtree

FURTHER READING

1. F. Brabec and H. Samet, Client−based spatial browsing on the

Jan/Feb 2007.
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