
zk0

Copyright © 2002 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

SPATIAL DATABASES AND GEOGRAPHICAL
INFORMATION SYSTEMS (GIS)

HANAN SAMET

COMPUTER SCIENCE DEPARTMENT AND
CENTER FOR AUTOMATION RESEARCH AND

INSTITUTE FOR ADVANCED COMPUTER STUDIES
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742-3411 USA

zk1

OUTLINE

1. GIS overview

2. Background

3. General database issues

4. Spatial indexing

5. The SAND browser

6. Spatial database issues

7. Challenges

zk2

WHAT IS A GIS?

Def: a system that uses spatial (i.e., geographically refer-
enced) and non-spatial (i.e., attribute) data and
includes operations that support spatial analysis

Alternative names:

• AM/FM (automated mapping and facilities management)

• geographically referenced information system

• land information system

• natural resources information system

• spatial data management (or handling) system

• spatial database

zk3

FIELDS THAT ARE INVOLVED IN GIS

1. Cartography—display of visual information

2. Civil Engineering—transportation

3. Computer science—databases, computer graphics,
image processing

4. Geodesy—high accuracy positional control

5. Geography—spatial analysis, relation of man to world

6. Mathematics—geometry, graph theory

7. Operations research—optimization

8. Photogrammetry—aerial photographs are best sources
for topography

9. Remote sensing—images from space

10. Statistics—models, analysis of error

11. Surveying—position of land boundaries, buildings, etc.

zk4

SOME TYPICAL GIS QUERIES

1. What feature is at location X ?

2. Does feature F exist anywhere?

3. Report the identity of all features present

4. Select all the locations where feature F is present

5. Where is object A with respect to object B ?

6. Simulate the effect of phenomenon P for time period T
in area A

7. What is the cheapest, fastest, or least resistant path
from A to B?

8. What is the value of function f at location X ?

9. What is the result of overlaying a given set of map
layers?

10. What is the result of intersecting a given set of map
layers?

11. What combination of features is at location X ?

12. Where is object A in relation to object B or location X ?

13. Report all features within distance d of location X or
object A

14. Reclassify certain ranges of feature values

15. Proximity queries such as what objects are next to
other objects having certain attribute values

16. Measure properties such as area, perimeter, etc.

zk5

GIS OPERATIONS

1. Display the data

2. Find a pattern in the data

• knowledge discovery

• “what is” or “what could be”?

• usually by decomposing data into finer levels of
meaning

3. Predict the behavior of the data at another time and
place

• “what should be”?

zk6

GIS ANALYSIS FUNCTIONS

1. Local operations

• retrieval

• classification and recoding

• generalization—reducing detail

• measurement

2. Overlay operations

3. Neighborhood operations

• search

• proximity—e.g., Voronoi diagrams

• TIN generation

• interpolation

• contour generation

• buffer or corridor generation

4. Connectivity operations

• network functions—e.g., flow, routing, siting

• spread functions—i.e., phenomena accumulate with
distance

• seek or stream functions—e.g., drainage

• intervisibility

zk7

EXAMPLE OF GIS (MUNICIPAL DATABASE)

1. Basemap data

• control points

• topographic contours

• building sites

2. Natural area data

• soil types

• landuse (e.g., industrial, agricultural, zoning, etc.)

• vegetation

• water (e.g., rivers, ponds, etc.)

3. Manmade area data

• school districts

• emergency service areas (e.g., fire, police, etc.)

4. Land records data

• lot boundaries

• zoning

• easements and rights-of-way

5. Network data

• utilities (e.g., phones, sewers, water, electricity, etc.)

• roads
a. road centerlines
b. road intersections
c. street lights

zk8

BACKGROUND (A PERSONAL VIEW!)

1. GIS originally focussed on paper map as output

• anything is better than drawing by hand

• no great emphasis on execution time

2. Paper output supports high resolution

• display screen is of limited resolution

• can admit less precise algorithms

• Ex: buffer zone computation (spatial range query)
a. usually use a Euclidean distance metric (L2)

• takes a long time
b. can be sped up using a quadtree and a

Chessboard distance metric (L∞)
• not as accurate as Euclidean — but may not be

able to perceive the difference on a display
screen!

• as much as 3 orders of magnitude faster

3. Users accustomed to spreadsheets

• GIS should work like a spreadsheet

• fast response time

• ability to ask “what if” questions and see the results

• incorporate a database for seamless integration of
spatial and nonspatial (i.e., attribute data)

zk9

GENERAL SPATIAL DATABASE ISSUES

1. Why do we want a database?
• to store data so that it can be retrieved efficiently
• should not lose sight of this purpose

2. How to integrate spatial data with nonspatial data

3. Long fields in a relational database are not the answer
• a stopgap solution as just a repository for data
• does not aid in retrieving the data
• if data is large in volume, then breaks down as tuples

get very large

4. A database is really a collection of records with fields
corresponding to attributes of different types
• records are like points in a higher dimensional space

a. some adaptations take advantage of this analogy
b. however, can act like a straight jacket in case of

relational model

5. Retrieval is facilitated by building an index
• need to find a way to sort the data
• index should be compatible with data being stored
• choose an appropriate zero or reference point
• need an implicit rather than an explicit index

a. impossible to foresee all possible queries in
advance

b. explicit would sort two-dimensional points on the
basis of their distance from a particular point P
• impractical as sort is inapplicable to points

different from P

zk10

6. Identify the possible queries and find their analogs in
conventional databases

• e.g., a map in a spatial database is like a relation in a
conventional database (also known as spatial
relation)
a. difference is the presence of spatial attribute(s)
b. also presence of spatial output

7. How do we interact with the database?

• SQL may not be easy to adapt

• graphical query language

• output may be visual in which case a browsing
capability (e.g., an iterator) is useful

8. What strategy do we use in answering a query that
mixes traditional data with nontraditional data?

• need query optimization rules

• must define selectivity factors
a. dependent on whether index exists on

nontraditional data
b. if no, then select on traditional data first

• Ex: find all cities within 100 miles of the Mississippi
River with population in excess of 1 million

a. spatial selection first if region is small (implies high
spatial selectivity)

b. relational selection first if very few cities with a
large population (implies high relational selectivity)

zk11

DATA IN SPATIAL DATABASES

1. Spatial information

• locations of objects (are discrete, individual points in
space)

• space occupied by objects (are continuous; have
extent)
a. example objects

• lines (e.g., roads, rivers)
• regions (e.g., buildings, crop maps, polyhedra)
• others ...

b. are objects disjoint or may they overlap?
• e.g., several crop types may be grown on a plot

of land

• not concerned here with raster vs: vector issues as
these are data representation issues rather than data
type issues

2. Non-spatial information

• region names, postal codes, ...

• city population, year founded, ...

• road names, speed limits, ...

zk12

SAMPLE QUERIES ON SPATIAL OBJECTS

• Queries about the objects

1. all objects that contain a given point or set of points

2. all objects that have a non-empty intersection with a
given object

3. all objects that have a partial boundary in common

4. all objects that have a boundary in common

5. all objects that have any points in common

6. all objects that contain a given object

7. all objects that are included in a given object

• Proximity queries

1. nearest object to a given point or object

2. all objects within a given distance of a point or object
(also known as a range or window query)

• Queries involving non-spatial attributes of objects

1. given a point or object, find the nearest object of a
particular type

2. Given a point, find the minimum enclosing object of a
particular type

3. Given a point, find all the objects of a particular type
whose boundary passes through it

zk13

WHAT MAKES CONTINUOUS SPATIAL DATA DIFFERENT

1. Spatial extent of the objects is the key to the difference

2. A record in a DBMS may be considered as a point in a
multidimensional space

• a line can be transformed (i.e., represented) as a
point in 4-d space with (x1 , y1 , x2 , y2)

(x2, y2)

(x1, y1)

• good for queries about the line segments

• not good for proximity queries since points outside
the object are not mapped into the higher
dimensional space

• representative points of two objects that are
physically close to each other in the original space
(e.g., 2-d for lines) may be very far from each other in
the higher dimensional space (e.g., 4-d)

A

B

• Ex:

• problem is that the transformation only
transforms the space occupied by the
objects and not the rest of the space
(e.g., the query point)

• can overcome by projecting back to original space

3. Use an index that sorts based upon spatial occupancy
(i.e., extent of the objects)

zk14

SORTING ON THE BASIS OF SPATIAL OCCUPANCY

• Decompose the space from which the data is drawn into
regions called buckets (like hashing but preserves order)

• Interested in methods that are designed specifically for
the spatial data type being stored

• Basic approaches to decomposing space

1. minimum bounding rectangles
• e.g., R-tree
• good at distinguishing empty and non-empty space
• drawbacks:

a. non-disjoint decomposition of space
• may need to search entire space

b. inability to correlate occupied and unoccupied
space in two maps

2. disjoint cells
• drawback: objects may be reported more than once
• uniform grid

a. all cells the same size
b. drawback: possibility of many sparse cells

• adaptive grid — quadtree variants
a. regular decomposition
b. all cells of width power of 2

• partitions at arbitrary positions
a. drawback: not a regular decomposition
b. e.g., R+-tree

• Can use as approximations in filter/refine query
processing strategy

zk15
MINIMUM BOUNDING RECTANGLES

Objects grouped into hierarchies, stored in another
structure such as a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Drawback: not a disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g

h

i

1
b

Order (m,M) R-tree
1. between m M/2 and M entries in each node

except root
2. at least 2 entries in root unless a leaf node

2
r

R3

R4

R5
R6

ic feba hgdR3: R4: R5: R6:

3
z

R4R3 R6R5

R1

R2

R2:R1:

4
g

R2R1R0:

R0

zk16
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a
b

c

d

e

f

g

h

i

R3

R4

R5

R6

R2

R1

Q

Drawback is that may have to examine many nodes
since a line segment can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Q is in R0

2
v

Q can be in both R1 and R2

3
r

4
z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

5
g

Searching R2 finds that Q can only be in R5

UNIFORM GRID

Ideal for uniformly distributed data

Supports set-theoretic operations

Spatial data (e.g., line segment data) is rarely uniformly
distributed

zk17

zk18

QUADTREES

• Hierarchical variable resolution data structure based on
regular decomposition

• Many different decomposition schemes and applicable to
different data types:
1. points
2. lines
3. regions
4. rectangles
5. surfaces
6. volumes
7. higher dimensions including time

• changes meaning of nearest
a. nearest in time, OR

b. nearest in distance

• Can handle both raster and vector data as just a spatial
index

• Shape is usually independent of order of inserting data

• Ex: region quadtree

• A decomposition into blocks —
not necessarily a tree!

zk19

REGION QUADTREE
• Repeatedly subdivide until obtain homogeneous region

• For a binary image (BLACK ≡ 1 and WHITE ≡ 0)

• Can also use for multicolored data (e.g., a landuse class
map associating colors with crops)

• Can also define the data structure for grayscale images
• A collection of maximal blocks of size power of two and

placed at predetermined positions
1. could implement as a list of blocks each of which has a

unique pair of numbers:
• concatenate a sequence of 2 bit codes correspond-

ing to the path from the root to the block’s node
• the level of the block’s node

2. does not have to be implemented as a tree
• tree good for logarithmic access

• A variable resolution data structure in contrast to a
pyramid (i.e., a complete quadtree) which is a
multiresolution data structure

A

B C D E

NW

NE SW

SE

F G H I J L M N O Q

K P

37 38 39 40 57 5859 60

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

1

1

1

0
0

0

0

1

1

1

1

0
0

1

1

1

1

1

1

0
0

1

1

1

1

1

0

0
0

1

1

1

1

0

0

0
0

1

1

1

1

0

0

B

60

37

L

J

Q

GF

H

N

I

O

M 57 58

59

4039
38

zk20

PYRAMID

• Internal nodes contain summary of information in nodes
below them

• Useful for avoiding inspecting nodes where there could
be no relevant information

c1
c2
c3

c4
c5
c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

zk21

QUADTREES VS. PYRAMIDS

• Quadtrees are good for location-based queries
1. e.g., what is at location x?
2. not good if looking for a particular feature as have to

examine every block or location asking “are you the
one I am looking for?”

• Pyramid is good for feature-based queries — e.g.,
1. does wheat exist in region x?

• if wheat does not appear at the root node, then
impossible to find it in the rest of the structure and
the search can cease

2. report all crops in region x — just look at the root
3. select all locations where wheat is grown

• only descend a node if there is a possibility that wheat
is in one of its four sons — implies little wasted work

• Ex: truncated pyramid where 4 identically-colored sons
are merged

c1
c2
c3

c4
c5
c6

{c1,c2,c3,c4,c5,c6}

{c2,c3,c6} {c2,c3,c4,c5}

{c1,c2,c3,
 c4,c5,c6}

{c6}

{c2,c3,c5} {c1,c2,c3,c5}

• Can represent as a list of leaf and nonleaf blocks (e.g., as
a linear quadtree)

zk22
PR QUADTREE (Orenstein)

1
b

Regular decomposition point representation

Decomposition occurs whenever a block contains more
than one point
Useful when the domain of data points is not discrete
but finite

(0,100) (100,100)

(100,0)(0,0)

(35,42)
Chicago

Maximum level of decomposition depends on the
minimum separation between two points

• if two points are very close, then decomposition can be
very deep

• can be overcome by viewing blocks as buckets with
capacity c and only decomposing the block when it
contains more than c points

1.

2.

3.

4.

Ex: c = 1

2
r

(52,10)
Mobile

3
z

(62,77)
Toronto

4
g

(82,65)
Buffalo

5
v

(5,45)
Denver

6
g

(27,35)
Omaha

7
z

(85,15)
Atlanta

8
r

(90,5)
Miami

zk23
REGION SEARCH

1
b

Use of quadtree results in pruning the search space

Ex: Find all points within radius r of point A

A

r

If a quadrant subdivision point p lies in a region l, then
search the quadrants of p specified by l

 1. SE 6. NE 11. All but SW
2. SE, SW 7. NE, NW 12. All but SE
 3. SW 8. NW 13. All
4. SE, NE 9. All but NW
5. SW, NW 10. All but NE

1 2 3
9 10

13

1211

4
5

876

2
r

3
z

zk24
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

2
r

1. start at block 2 and compute distance to P from A

3
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

4
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

5
v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

6
z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

7
r

• If F was moved, a better order would have started with
block 11, the southern neighbor of 1, as it is closest

new F

zk25

a

PM1 QUADTREE
1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

b

2
r

3

z

c

4

g

d

5

v

e

f

6

r

7

z

g

h

8
g

i

9
v

zk26

SAND BROWSER: A SPATIO-RELATIONAL BROWSER

• Assume a relational database

• Relations have spatial and nonspatial attributes

• Browse through tuples or objects (groups of tuples with
similar attribute values) of a relation one at a time
according to values within ranges of the

1. nonspatial attributes

2. underlying space in which the objects corresponding
to the spatial attributes are embedded

• Make use of indexes to facilitate viewing (termed ranking)
tuples in order of “nearness” to a reference attribute value
(e.g., zero, origin, etc.) and obtain tuples in this order

• Graphical user interface instead of SQL but functionally
equivalent

• Graphical result of spatial and nonspatial queries

• Output

1. display tuples satisfying the query one tuple or one
object at a time
• show the values of all of the attributes of the most

recently generated tuple
• cursor points at this tuple

2. cumulative display of spatial attributes

• Can save the result of an operation as a relation for future
operations (SAVE GROUP)

zk27

SAND RELATION OR OBJECT DESCRIPTION

• Assumes a relation
1. length: number of tuples
2. width: bytes per tuple

• only accounts for fixed size components of a tuple
• e.g., for a polygon, there is extra space needed for

each vertex of the polygon

• List of attributes
1. attribute names and type

• e.g., name is a 25 character array
• e.g., verts is a polygon

2. measurement type (e.g., nominal, ordinal, interval, ratio)
• range of possible values for nominals if finite
• range, if known, for interval and ratio

3. rendering attributes (e.g., color, iconic)
4. highlighting method
5. print name for tuple(s) or objects being displayed

• Indexes
1. name of index
2. type of index

• e.g., B-tree
• spatial index and type

3. sort sequence
• e.g., alphabetic
• spatial

a. sorted with respect to distance from Chicago
b. no reference point (with respect to space occupied)

zk28

RENDERING ATTRIBUTES FOR SPATIAL RELATIONS:
SPATIAL ATTRIBUTES

1. Set by user at query time or pre-defined at relation
creation time

2. For entire relation or on a tuple-by-tuple basis

3. Examples:

• line and fill colors, line thickness, point size

• highlight method

• what is being displayed
a. boundary
b. interior — need to fill when zoom in but can avoid

fill if draw boundary after interior
c. boundary plus interior

3. Name of type of objects being displayed

• useful in dialog box for scan order so user knows
what each tuple represents

• e.g., Silver Spring map contains tuples corresponding
to road segments

4. Scale for queries involving distance

• used when zooming while specifying a query

zk29

VALUES OF RENDERING ATTRIBUTES FOR SPATIAL
RELATIONS: SPATIAL ATTRIBUTES

• Coloring choice method to automatically differentiate
between displayed entities

1. specific color
• e.g., blue meaning all are displayed in blue

2. different from previous
• color is different from that of the tuple or object most

recently displayed

3. different from adjacent
• color is different from that of any spatially adjacent

tuple or object
• e.g., a side in common for regions and surfaces and

a vertex for lines

• Highlighting

1. shape
• pre-defined such as rectangle, minimum bounding

box, circle, etc.
• user-defined graphically

2. color
• fixed
• arbitrary
• different from colors of objects in the highlighted area

3. mode
• blinking or non-blinking (i.e., binary)

zk30

RENDERING ATTRIBUTES FOR SPATIAL RELATIONS:
NON-SPATIAL ATTRIBUTES

1. Scalar value or iconic rendering is displayed for each
tuple

• using the same rendering for different objects at
different locations conveys a notion of similarity

• e.g., company trademark to mark all its properties
such as plants, stores, fields, ...

• dissimilarity of rendering emphasizes differences
between objects (e.g., different size circle for different
cities based on their populations

• may need a legend to convey the semantics of the
different renderings

2. One attribute for the entire relation

3. Need to indicate position of displayed value

• absolute location OR

• relative to spatial attribute value

4. Icon for specifying the attribute value in a condition

• e.g., slider for a ratio attribute

• e.g., check box for a nominal attribute

zk31

SAND SPATIAL BROWSING CONSTRAINTS

• Range

1. all tuples overlapping an object (spatial selection or a
window query)
• also termed a spatial join if a non-constant window

2. all tuples within a distance of an object (spatial range
query)
• also termed a spatial join

3. Boolean combinations of the above

• Upper bound on the maximum number of tuples that can
be found

zk32

SAND SPATIAL BROWSING ORDERINGS

1. Random order

2. In order of nearness to a particular object (termed a
ranking object)

• can limit the ordering to a range of distance values
from the ranking object

• ranking object need not be the same as the object
a. being overlapped, OR

b. in whose range we are retrieving

• e.g., rank all streets within 10 miles of Georgia Ave. in
the order of their distance from University Blvd. — a
3-way spatial join

• could possibly be in order of farness (FUTURE!)

3. Could have multiple ranking objects with some priority

• rank objects with respect to a polygon

• rank objects with respect to a point

• all objects within the polygon have a distance 0 and
the tie is broken by ranking them with respect to the
point

4. Cardinality or frequency

• useful for finding which country has the most
instances of a particular spatial feature

• probably need to precede with a join

• more useful for nonspatial attributes such as finding
all cities with the same population and can use actual
value of the attribute as a secondary ranking key

zk33

PRIMITIVE BROWSER SETTINGS

1. Scan Order: which attribute values form the basis of
the browsing
• assumes that an index exists for the attributes
• can be a combination of attributes (e.g., name and

type for street proper name and nature of street —
i.e., “Avenue”)

2. Conditions:
• Boolean combination of condition values of various

attributes including ranges for attributes of type ratio
and interval

• take advantage of indexes on attributes, if they exist
• future; graphical specification with icons from the

rendering attributes

3. Display: output specifications

4. Browser Mode:
• one tuple at a time (usual case!) even if several tuples

have the same attribute value, OR

• one object at a time
a. retrieves all tuples with same attribute values
b. condition specification is in terms of sets of

attribute names
• same spatial attribute value overcomes problem

of spatial index resulting in more than one tuple
per feature as in a disjoint decomposition such
as a PM quadtree for lines

• example
a. retrieve all pieces of each segment of a polyline
b. retrieve all pieces of a polyline

zk34

SAND BROWSER MENUS AND ACTION BUTTONS

• File: browser control menu

1. Open: invoke SAND BROWSER on an additional relation
• menu containing a schema for each relation (i.e.,

attribute names and types)
• default values for rendering attributes on a relation-

by-relation basis

2. Save: make a relation from the tuples that satisfy the
current browsing condition and save it
• check box

3. Quit: exit SAND BROWSER

• Display: output specifications menu

• Options: anything else that was forgotten — a catch-all!

1. rendering attribute settings

2. name of type of objects being displayed (i.e., tuples)

• Action buttons

1. First: first item in a particular scan order

2. Next: next item in a particular scan order

• Mode radio button:

1. browse by tuples OR

2. browse by objects (sets of tuples)

• Condition menus

1. spatial

2. non-spatial

zk35

SAND BROWSER SAVE MODES

• Two modes:
1. FULL: tuples satisfying entire query

• need to let query execute to completion if invoked in
middle of ranking process

• save entire relation if no ranking condition has been
specified

2. PARTIAL: tuples computed so far
• enables saving results of a partial ranking (e.g.,

nearest 5 neighbors)

• Should also form indices for the attributes
1. copy existing indices

• can be just a subset of the indices
2. new indices

• Create a name for the objects represented by the
relation’s tuples

• Rendering attributes

• Not a view as tuples are copied when forming new relation
1. difficult to implement views as they represent a

sequence of operations that are applied to a database
of relations
• like common subexpression elimination for query

expression
• view is not precomputed

2. if any modifications to relations, then must update view
3. implementing views in SAND BROWSER would require

saving geometric query objects and ranking objects
which have been input by the user as well as the
operations that were performed

zk36

ISSUES IN SPATIAL DATABASES

1. Representation

• bounding boxes versus disjoint decomposition

2. How are spatial integrity constraints captured and
assured?

• edges of a polygon link to form a complete object

• line segments do not intersect except at vertices

• contour lines should not cross

3. Interaction with the relational model

• spatial operations don’t fit into SQL

a. buffer
b. nearest to ...
c. others ...

• difficult to capture hierarchy of complex objects (e.g.,
nested definition)

4. Spatial input is visual

• need a graphical query language

zk37

5. Spatial output is visual

• unlike conventional databases, once operation is
complete, want to browse entire output together
rather than one tuple at-a-time

• don’t want to wait for operation to complete before
output
a. partial visual output is preferable

• e.g., incremental spatial join and nearest
neighbor

b. multiresolution output is attractive

6. Functionality

• determining what people really want to do!

7. Performance

• not enough to just measure the execution time of an
operation

• time to load a spatial index and build a spatially-
indexed output is important

• sequence of spatial operations as in a spatial
spreadsheet
a. output of one operation serves as input to another

• e.g., cascaded spatial join
b. spatial join yields locations of objects and not just

the object pairs

zk38

CHALLENGES:

1. Incorporation of geometry into database queries
without user being aware of it!
• find geometric analogs of conventional database

operations (e.g., ranking semi-join yields discrete
Voronoi diagram)

• extension of browser concept to permit more general
browsing units based on connectivity (e.g., shortest
path), frequency, etc.

2. Spatial query optimization
• different query execution plans
• use spatial selectivity factors to choose between them

3. Graphical query specification instead of SQL

4. Incorporation of time-varying data
• how to represent rates?

5. Incorporation of imagery

6. Develop spatial indices that support both location-
based (“what is at X”?) and feature-based queries
(“where is Y”?)

7. Incorporate rendering attributes into database objects
or relations
• queries based on the rendering attributes
• Ex: find all red regions
• query by content (e.g., image databases)

8. GIS on the Web and distributed data and algorithms

9. Knowledge discovery

10. Interoperability

zk39

SELECTED REFERENCES
(Also see http://www.cs.umd.edu/~hjs/pubs.html)

1. C. Esperança and H. Samet, An overview of the SAND
spatial database system, to appear in Communications
of the ACM, 1997.
http://www.cs.umd.edu/~hjs/pubs/sandprog.ps.gz

2. G. Hjaltason and H. Samet, Ranking in Spatial
Databases in Advances in Spatial Databases —4th
Symposium, SSD’95, M. J. Egenhofer and J. R.
Herring, Eds., Lecture Notes in Computer Science 951,
Springer-Verlag, Berlin, 1995, 83-95.
http://www.cs.umd.edu/~hjs/pubs/incnear.ps

3. H. Samet, Spatial Data Structures in Modern Database
Systems: The Object Model, Interoperability, and
Beyond, W. Kim, Ed., Addison-Wesley/ACM Press,
1995, 361-385.
http://www.cs.umd.edu/~hjs/pubs/kim.ps

4. H. Samet, Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS,
Addison-Wesley, Reading, MA, 1990. ISBN 0-201-
50300-0.

5. H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA, 1990. ISBN
0-201-50255-0.

6. H. Samet and W. G. Aref, Spatial Data Models and
Query Processing in Modern Database Systems: The
Object Model, Interoperability, and Beyond, W. Kim,
Ed., Addison-Wesley/ACM Press, 1995, 338-360.
http://www.cs.umd.edu/~hjs/pubs/kim2.ps

7. C. D. Tomlin, Geographic Information Systems and
Cartographic Modeling, Prentice-Hall, Englewood
Cliffs, NJ, 1990. ISBN 0-13-350927-3.

