Announcements

- Reading Chapter 13
- Midterm #2 will be returned on Thursday

Project #4 Intro

- Includes code for VFS layer
 - Need to add fields to user struct to make it work
 - Provides support for PFAT filesystem (read only)
- Supplied bitset implementation

Booting the OS

- How does the OS get loaded and started?
- Process is called booting
 - want to use the OS to load itself
 - but what loads the OS?
- ROM monitor
 - knows how to read from a fixed location on disk and jump into it
- Bootstrap program
 - knows how to load a program from the filesystem and jump into it
- Alternative:
 - put more info into ROM about booting
 - MAC OS has most of the info in ROM
 - hard to change OS without changing ROMs

CMSC 412 – S02 (lect 19)

Booting the OS (cont.)

- put info into ROM about booting
 - MAC OS has most of the info in ROM
 - hard to change OS without changing ROMs
- Network Booting
 - ROM knows how to request a boot packet from the network
 - · once the packet is received, execute it
 - useful for systems without local disks
 - used by OS developers to ease edit/compile/boot cycles

Swap Space

- Where is swap space located?
 - Is it a "normal" file in the filesystem?
 - Is is in a special location on disk?

• "normal" file

- ✓ simple, just looks like a file
- ✓ easy to change size
 - use normal tools
- slow since it requires all of the filesystem overhead
- separate disk partition
 - ✓ faster
 - harder to change size (need a new partition)

Backups

- Disks can fail, so need to provide a way to copy them
- Two types of backups
 - full backup (all of the data on disks)
 - incremental (data that has changed since last backup)
 - can mark changed files with a field
 - · can use the data of the file compared to the last backup
 - permits several levels of backup
 - may want multiple levels of incremental (day, week changes)
- Does the system need to be shutdown for backups?
 - what if a file is moved during a backup?
 - it could get copied 0, 1, or 2 times.
 - easiest answer is to shutdown the machine from dumps

Security

- security vs. protection
 - protection provides a mechanism to control access to resources
 - security also includes external features such as users
- security requires precluding unauthorized
 - access to data
 - modification of data
 - destruction of data
- several major types of security
 - physical: must protect access to resource it self
 - if you have physical access to a machine, you can break security.
 - users: if a user gives away access (or info) computer security if useless
 - software: OS and system software must provide protection

Who do you trust?

- It's easy to get paranoid
- Do I trust a login prompt?
- Do I trust the OS that I got from the vendor?
- Do I trust the system staff?
 - should I encrypt all my files?
- Networking
 - do you trust the network provider?
 - do you trust the phone company?
- How do you bootstrap security?
 - always need one "out of band" transfer to get going

Computer Threat Model

- must consider acceptable risks
 - value of item to be protected
 - \$2,000 of computer time to steal 50 cents of data
 - this is a sufficient deter someone
 - but computers keep getting faster
- Basic Ideas:
 - confine access to only the highest level needed
 - run programs as root only if needed
 - don't give system access to all users