Announcements

- Reading Chapter 19
Types of Software Threats

- **Trojan Horse**
 - a program that looks like a normal program
 - for example a login program written by a user
 - UNIX example: never put “.” early in your path

- **Trap door**
 - hole left by the programmers to let them into the system
 - “system” password set to a default value by the vendor

- **Worms**
 - programs that clone themselves and use resources
 - Internet worm:
 - exploited several bugs and “features” in UNIX
 - .rhosts files
 - bug in finger command (overwrite strings)
 - sendmail “debug” mode to run commands
Viruses

- Most common on systems with little security
 - easy to write to boot blocks, system software
 - never run untrusted software with special privileges
- Possible to write system independent viruses
 - MS Word virus
 - uses macros to call into the OS
Access Matrix

- Abstraction of protection for objects in a system.
 - Rows are domains (users or groups of users)
 - Columns are objects (files, printers, etc.)
 - Items are methods permitted by a domain on an object
 - read, write, execute, print, delete, …

- Representing the Table
 - Simple representation (dense matrix) is large
 - Sparse representation possible: each non-zero in the matrix
 - Observation: same column used frequently
 - Represent groups of users with a name and just store that
 - Create a default policy for some objects without a value

- Revocation of access
 - When are access rights checked?
 - Selective revocation vs. global
Access Matrix

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>Laser Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>read</td>
<td></td>
<td>execute</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td>execute</td>
<td>print</td>
</tr>
<tr>
<td>D3</td>
<td>read, write</td>
<td></td>
<td>execute</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td>execute</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td>delete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Rows represent users or groups of users
- Columns represent files, printers, etc.
Capabilities

- Un-forgeable Key to access something
- Implementation: a string
 - I.e. a long numeric sequence for a copier)
- Implementation: A protected memory region
 - tag memory (or procedures) with access rights
 - example - x86 call gate abstraction
 - permit rights amplification
Monitoring

- **Record (log) significant events**
 - attempts to login to the system
 - changes to selected files or directories

- **Possible to compromise the log**
 - the user or software breaking in could delete all or part of the logs
 - could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use WORM drives
 - send data to a secure remote host
Add new slides about

- Auditing, tripwire
Encryption: protecting info from being read

- **Given a message** m
 - use a key k, and function E_k to compute $E_k(m)$
 - store or send only $E_k(m)$
 - use a second second key k' and function $D_{k'}$ such that
 - $D_{k'}(E_k(m)) = m$
 - E_k and $D_{k'}$ need not be kept a secret
- If $k = k'$ it’s called **private key encryption**
 - need to keep k secret
 - example DES
- If $k \neq k'$, it’s called **public key encryption**
 - need only keep one of them secret
 - if k' is secret, anyone can send a private message
 - if k is secret, it is possible to “sign” a message
 - still need a way to authenticate k or k' for a user
 - example RSA
Transposition Cipher

- Block of text is used to break up digrams
- To Break:
 - each letter is itself, so normal distribution of letters is seen
 - guess number of columns (verify with known plaintext)
 - order columns using trigram frequency

<table>
<thead>
<tr>
<th>M</th>
<th>E</th>
<th>G</th>
<th>A</th>
<th>B</th>
<th>U</th>
<th>C</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Plaintext
pleasetransferonemilliondollarto
myswissbankaccountsixtwotwo

dollarst
omyswiss
bankacco
untsixtw
otwoabcd

Ciphertext
AFFLSKSOSELAIAOTOSSCTCLNMOMAY
ESILYNTWRNNTSOWDPAEDOBUERIRICX|

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
One Time Pad

- **Key Idea: randomness in key**
- **Create a random string as long as the message**
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- **Almost impossible to break**
- **Some practical problems**
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message
Add slide about SSL
Add Slide about

- Protection Domains (18.2)
- Unix
 - Setuid
 - Daemon processes