
1CMSC 412 – S02 (lect 13)

Announcements
Lecture provided by Bobby Bhattacharjee

2CMSC 412 – S02 (lect 13)

Page Replacement Algorithms
FIFO
– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)
• number of page faults may increase when one increases number of

page frames (discouraging!)
– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

3CMSC 412 – S02 (lect 13)

Page Replacement Algorithms

LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page
Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

4CMSC 412 – S02 (lect 13)

FIFO Example (3 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (1,2,5)
• access 2 - (1,2,5)
• access 3 - (2,5,3) fault, replacement
• access 4 - (5,3,4) fault, replacement
• access 5 - (5,3,4)

– 9 page faults

5CMSC 412 – S02 (lect 13)

LRU Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement
• access 5 - (1,2,5) fault, replacement
• access 1- (2,5,1)
• access 2 - (5,1,2)
• access 3 - (1,2,3) fault, replacement
• access 4 - (2,3,4) fault, replacement
• access 5 - (3,4,5) fault, replacement

– 10 page faults

6CMSC 412 – S02 (lect 13)

LRU Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (2,3,4,1)
• access 2 - (3,4,1,2)
• access 5 - (4,1,2,5) fault, replacement
• access 1- (4,2,5,1)
• access 2 - (4,5,1,2)
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 8 faults

7CMSC 412 – S02 (lect 13)

FIFO Example (4 frames)
– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault
• access 2 - (1,2) fault
• access 3- (1,2,3) fault
• access 4 - (1,2,3,4) fault, replacement
• access 1 - (1,2,3,4)
• access 2 - (1,2,3,4)
• access 5 - (2,3,4,5) fault, replacement
• access 1- (3,4,5,1) fault, replacement
• access 2 - (4,5,1,2) fault, replacement
• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

8CMSC 412 – S02 (lect 13)

Thrashing

Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages
– the situation is called thrashing
– need to select one or more processes to swap out

Swapping
– write all of the memory of a process out to disk
– don’t run the process for a period of time
– part of medium term scheduling

How do we know when we are thrashing?
– check CPU utilization?
– check paging rate?
– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

