Announcements

- Reading Chapter 13
- Midterm #2 is on Tuesday
 - Covers through Tu lecture
 - Can repeat info from first midterm
Access Times

- **Seek:** Move disk arm over appropriate track
 - Seek times vary depending on locality
 - Times are order of milliseconds

- **Rotational delay:** Wait until desired information is under disk arm
 - A disk that rotates at 10,000 RPM will take 6.0 ms to complete a full rotation
 - Improving only a few percent per year

- **Transfer time:** time taken to transfer a block of bits
 - Minimum transfer is one sector
 - Depends on recording density of track, rotation speed, block size
 - Achieved transfer rate for many blocks can also be influenced by other system bottlenecks (software, hardware)
 - Rates range from 2 to 40 MB per second
Disk Scheduling

- First come, first served
 - ordering may lead to lots of disk head movement
 - i.e. 1, 190, 3, 170, 4, 160 etc.
 - total number of tracks traversed: 863

- Shortest seek time first: select request with the minimum seek time from current head position
 - move head to closest track
 - i.e. 1,3,4,160,190
 - total number of tracks traversed: 189
 - potential problem with distant tracks not getting service for an indefinite period
Disk Scheduling

- **Scan scheduling** - read-write head starts at one end of the disk, moves to the other, servicing requests as it reaches each track
 - Consider example: 1, 190, 3, 170, 4, 160
 - If head starts at track 64 and moves towards 0, the ordering would be 4,3,1,160,170,190
 - Total distance 265

- **C-Scan (circular scan)**
 - disk head sweeps in only one direction
 - when the disk head reaches one end, it returns to the other
 - Consider example: 1, 190, 3, 170, 4, 160
 - If head starts at track 64 and moves towards 0, the ordering would be 4,3,1,190,170,160
 - Total distance 282
Disk Cache

- Buffer in main memory for disk sectors
- Cache contains copy of some of the sectors on a disk. When I/O request is made for a sector, a check is made to find out if sector is in the disk cache
- Replacement strategy:
 - Least recently used: block that has been in the cache longest with no reference gets replaced
 - Least frequently used: block that experiences fewest references gets replaced
Virtual Memory and File Cache

- Both need to contend for memory
- Possible solutions:
 - Fixed size allocation of buffer cache (i.e. 20% of memory)
 - Unified buffer cache and virtual memory system
 - All pages (memory and file buffer) compete for all of memory
 - Allows large processes or lots of file access as needed
Memory Mapped Files

- **Can treat files like memory**
 - Allows fast random access to files
 - Uses file cache to make operations fast

- **Interface**
 - Use mmap call to map file into memory (similar to open)
 - Use normal memory operations to access file (instead of read/write)
 - Use munmap to “close” file
Bad Blocks

- **Some blocks on a disk may not work**
 - could be bad from the start (when disk is installed)
 - could go bad during use

- **Two options to manage bad blocks**
 - disk drive maps the blocks to “replacement” blocks
 - special blocks that are held in reserve for this purpose
 - OS keeps track of where the bad blocks are located and avoids them

- **Replacement blocks**
 - can be located in tracks at one location, or around the disk
 - provide correct behavior, but change disk performance

- **Even if the disk re-maps bad blocks**
 - OS could lose data stored on disk
 - needs to be able to recover filesystem from partial update
Booting the OS

- How does the OS get loaded and started?
- Process is called booting
 - want to use the OS to load itself
 - but what loads the OS?
- ROM monitor
 - knows how to read from a fixed location on disk and jump into it
- Bootstrap program
 - knows how to load a program from the filesystem and jump into it
- Alternative:
 - put more info into ROM about booting
 - MAC OS has most of the info in ROM
 - hard to change OS without changing ROMs