Announcements

- Reading Chapter 19
- Last day to request midterm #2 re-grades is Th
Booting the OS

- How does the OS get loaded and started?
 - Process is called booting
 - want to use the OS to load itself
 - but what loads the OS?
- ROM monitor
 - knows how to read from a fixed location on disk and jump into it
- Bootstrap program
 - knows how to load a program from the filesystem and jump into it
- Alternative:
 - put more info into ROM about booting
 - MAC OS has most of the info in ROM
 - hard to change OS without changing ROMs
Booting the OS (cont.)

- put info into ROM about booting
 - MAC OS has most of the info in ROM
 - hard to change OS without changing ROMs

- Network Booting
 - ROM knows how to request a boot packet from the network
 - once the packet is received, execute it
 - useful for systems without local disks
 - used by OS developers to ease edit/compile/boot cycles
Booting in GeekOS

- **PC Architecture**
 - Reads first sector on drive and then executes it
 - Hardware thinks it is a 16 bit 8088 processor at boot
 - Provides backwards compatibility

- **Boot Sector**
 - contains code to read
 - kernel.bin into memory
 - setup.bin into memory
 - uses bios to access drives
 - Includes a boot record to find kernel

- **Setup code**
 - Detects amount of memory
 - Moves processor to protected mode
 - Jumps to 32 bit code (and 32 bit mode)
 - Sets up initial kernel stack
GeekOS Booting Notes

- **Kernel and setup files**
 - Are normal files in whatever filesystem we have
 - Bootinfo record in boot sector tells how to find them
 - Must be in contiguous blocks on disk
 - A restriction in the boot sector code

- **Once booted**
 - Boot sector is ignored by main filesystem
 - Rest of disk is available to be used as desired

- **Have special utility to write boot sector**
 - Gosfs has a call GOFS_BootInfo
Swap Space

- **Where is swap space located?**
 - Is it a “normal” file in the filesystem?
 - Is it in a special location on disk?

- **“normal” file**
 - simple, just looks like a file
 - easy to change size
 - use normal tools
 - slow since it requires all of the filesystem overhead

- **separate disk partition**
 - faster
 - harder to change size (need a new partition)
Backups

- Disks can fail, so need to provide a way to copy them
- Need to plan for disasters too
 - What if the building burns down?

- Two types of backups
 - full backup (all of the data on disks)
 - incremental (data that has changed since last backup)
 - can mark changed files with a field
 - can use the date of the file compared to the last backup
 - permits several levels of backup
 - may want multiple levels of incremental (day, week changes)
Backups

- Does the system need to be shutdown for backups?
 - what if a file is moved during a backup?
 - it could get copied 0, 1, or 2 times.
 - easy answer is to shutdown the machine for backup
 - more typical setup:
 - Compute backup set
 - Backup files
 - Compute new backup set
 - Add any files that were missed
Security

- **security vs. protection**
 - protection provides a mechanism to control access to resources
 - security also includes external features such as users

- **security requires precluding unauthorized**
 - access to data
 - modification of data
 - destruction of data

- **several major types of security**
 - physical: must protect access to resource itself
 - if you have physical access to a machine, you can break security.
 - users: if a user gives away access (or info) computer security if useless
 - software: OS and system software must provide protection
Who do you trust?

- It’s easy to get paranoid
- Do I trust a login prompt?
- Do I trust the OS that I got from the vendor?
- Do I trust the system staff?
 - should I encrypt all my files?
- Networking
 - do you trust the network provider?
 - do you trust the phone company?
- How do you bootstrap security?
 - always need one “out of band” transfer to get going