Announcements

- Project #4 is due on Thursday
- Project #5 is on the web
Monitoring

- **Record (log) significant events**
 - attempts to login to the system
 - changes to selected files or directories

- **Possible to compromise the log**
 - the user or software breaking in could delete all or part of the logs
 - could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use WORM drives
 - send data to a secure remote host
Encryption: protecting info from being read

- **Given a message** m
 - use a key k, and function E_k to compute $E_k(m)$
 - store or send only $E_k(m)$
 - use a second second key k' and function $D_{k'}$ such that
 - $D_{k'}(E_k(m)) = m$
 - E_k and $D_{k'}$ need not be kept a secret

- **If** $k=k'$ **it’s called private key encryption**
 - need to keep k secret
 - example DES

- **If** $k \neq k'$, **it’s called public key encryption**
 - need only keep one of them secret
 - if k' is secret, anyone can send a private message
 - if k is secret, it is possible to “sign” a message
 - still need a way to authenticate k or k' for a user
 - example RSA
Transposition Cipher

- **To Break:**
 - each letter is itself, so normal distribution of letters is seen
 - guess number of columns (verify with known plaintext)
 - order columns using trigram frequency
- **Block of text is used to break up digrams**

Read Vertically

<table>
<thead>
<tr>
<th>M</th>
<th>E</th>
<th>G</th>
<th>A</th>
<th>B</th>
<th>U</th>
<th>C</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>please transfer onemillion dollars to my swiss bank account six two two</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Here</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plaintext
- please transfer onemillion dollars to my swiss bank account six two two

Ciphertext
- A F L L S K S O S E L A W A I A T O O S S T C L N M O M A
- E S I L Y N T W R N N T S O W D P A E D O B U O E R I C X

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

From: *Computer Networks*, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
One Time Pad

- Key Idea: randomness in key
- Create a random string as long as the message
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- Almost impossible to break
- Some practical problems
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message
Sending Data

- **Data is split into packets**
 - limited size units of sending information
 - can be
 - fixed sized (ATM)
 - variable size (Ethernet)

- **Need to provide a destination for the packet**
 - need to identify two levels of information
 - machine to send data to
 - comm abstraction (e.g. process) to get data
 - address may be:
 - a globally unique destination
 - for example every host has a unique id
 - may unique between hops
 - unique id between two switches
Ethernet

- 10 Mbps (to 100 Mbps)
- millisecond latency
- limited to several kilometers in distance
- variable sized units of transmission
- bus based protocol
 - requests to use the network can collide
- addresses are 48 bits
 - unique to each interface
Hub based Ethernet

- Logically it is still a bus
- Physically, it is a star configuration
 - the hub is at the center of the network
- Hubs provide:
 - better control of hosts
 - possible to restrict traffic to only the desired target
 - can shutdown a host’s connection at the hub if its Ethernet device is misbehaving
 - easier wiring
 - can use normal telephone wire to connect links (called 10 base-T)
- 100 Megabit Ethernet
 - is only available with Hubs
 - requires different hubs than 10base-T
Ethernet Collisions

- If one host is sending, other hosts must wait
 - called Carrier Sense with Multiple Access (CSMA)
- Possible for two hosts to try to send at once
 - each host can detect this event (cd- Collision Detection)
 - both hosts must re-send information
 - if they both try immediately, will collide again
 - instead each waits a random interval then tries again
- Only provides statistical guarantee of transmission
 - however, the probability of success if higher than the probability of hardware failures and other events
ATM (Asynchronous Transfer Mode)

- 155Mbps and up
- fixed sized unit of transmission called a cell
 - cells are 48 bytes plus 5 bytes header
- switch based protocol
- for both local area and wide area networking
- addresses are VCI
 - virtual circuit ids
TCP/IP Protocol

- **Name for a family of Network and Transport layers**
 - can run over many link layers:
 - Arpanet, Ethernet, Token Ring, SLIP/PPP, T1/T3, etc.

- **IP - Internet Protocol**
 - network level packet oriented protocol
 - 32 bit host addresses (dotted quad 128.8.128.84)
 - 8 bit protocol field (e.g. TCP, UDP, ICMP)

- **TCP - Transmission Control Protocol**
 - transport protocol
 - end-to-end reliable byte streams
 - provides ports for application specific end-points

- **UDP - user datagram protocol**
 - transport protocol
 - unreliable packet service
 - provides ports for application specific end-points
TCP/IP History

- Arpanet was the origin of today’s Internet
 - started in 1969 to connect universities and DoD sites
 - early example of packet switched network
 - original links were 64kbps and 9.6kbps

- Current TCP protocol
 - started in use Jan 1, 1983
 - This was a flag day
 - all systems had to change to the new protocol at once
 - with the modern Internet this would be hard to do