Announcements

- Deadline for midterm re-grades is Thursday
- Start on project #4 before spring break
Steps of Project

● **Enable Paging**
 – Map all of physical memory
 • Identity map

● **Get separate page table for User Process**
 – Map user pages at 2GB
 – Update Segment Info
 – Context switch PTBR

● **Get page faults working**
Segmentation

- **Segmentation is used to give each program several independent protected address spaces**
 - each segment is an independent protected address space
 - access to segments is controlled by data which describes size, privilege level required to access, protection (whether segment is read-only etc)
 - segments may or may not overlap
 - disjoint segments can be used to protect against programming errors
 - separate code, data stack segments
Disjoint Segments can be used to exploit expanded address space

- In 16 bit architectures e.g. (8086 and 80x86 in V86 mode) each segment has only 16 bits of address space
- In distributed networks consisting of multiple 32 bit machines, segmentation can be used to support single huge address space

Segments can span identical regions of address space - *flat model*

- Windows NT and Windows ‘95 use 4 Gbyte code segments, stack segments, data segments
X86 Segmentation + Paging

Stored in Segment Register

Virtual Address

selector + Offset

Seg Descriptor

directory | page | offset

Page Directory

Page Table

Page Frame

Stored in Segment Register

Virtual Address

Selector + Offset

Seg Descriptor

directory | page | offset

Page Directory

Page Table

Page Frame
64 bit processors

- Problem: 2 level page tables are too small
- Solution 1:
 - Use more levels & larger page size
 - Alpha:
 - 3 level
 - variable size pages
 - w8KB pages
 - 43 bits of virtual address
 - 13 bits page offset
 - 3x10=30 bits in page tables
 - w64KB pages
 - 55 bits of virtual address
 - 16 bits page offset
 - 3x13 = 39 bits in page tables
Sparc & IBM Power 64 bit processors

- **Ultra Sparc 64 bit MMU**
 - 8KB, 16KB, 512KB, 4MB pages supported
 - Software TLB miss handler
 - 44 bit virtual address

- **Power 4**
 - Variable sized pages up to 16MB
 - Inverted page tables
 - TLB
 - 1024 entry 4-way set associate
 - TLB cache
 - Called ERAT
 - 128 entry 2-way set associative
Other 64-bit Designs

- **AMD-64**
 - 54 bit physical memory
 - With 4KB pages
 - 48 bits of virtual address are used
 - 4KB pages
 - 12 bits page
 - $4 \times 9 = 36$ bits via 4-level page tables
 - 2MB pages
 - 21 bits page
 - $3 \times 9 = 27$ bits via 3-level page tables