Announcements

- Project #6 is on the web
- Deadline for MT#2 re-grade requests is today
Monitoring

- **Record (log) significant events**
 - attempts to login to the system
 - changes to selected files or directories
- **Possible to compromise the log**
 - the user or software breaking in could delete all or part of the logs
 - could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use WORM drives
 - send data to a secure remote host
Tripwire

- Compute a set of expectorations about system
 - Hash of file contents
 - Dates on files

- Store database of values
 - On read-only media
 - Offline

- Periodically
 - Compare database to current system
 - Report any differences
Encryption: protecting info from being read

- **Given a message** \(m \)
 - use a key \(k \), and function \(E_k \) to compute \(E_k(m) \)
 - store or send only \(E_k(m) \)
 - use a second second key \(k \) and function \(D_{k'} \) such that
 - \(D_{k'}(E_k(m)) = m \)
 - \(E_k \) and \(D_{k'} \) need not be kept a secret

- **If \(k=k' \)** it’s called **private key encryption**
 - need to keep \(k \) secret
 - example DES

- **if \(k \neq k' \)**, it’s called **public key encryption**
 - need only keep one of them secret
 - if \(k' \) is secret, anyone can send a private message
 - if \(k \) is secret, it is possible to “sign” a message
 - still need a way to authenticate \(k \) or \(k' \) for a user
 - example RSA
Transposition Cipher

- **To Break:**
 - each letter is itself, so normal distribution of letters is seen
 - guess number of columns (verify with known plaintext)
 - order columns using trigram frequency

- **Block of text is used to break up digrams**

```
Start Here

MEGABUCK
7 4 5 1 2 8 3 6
please transfer one million dollars to my swiss bank account six two

Plaintext
pleasetransferonemilliondollarto
mystiswissbank accountsixtowoto
dollar

Ciphertext
AFLLSKOSOELAWAIAATOOSSSCTCLNOMA?

ESLYNTWRNNTSOWDPAEDBUOERIRICX
```

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block \(n \) with into block \(n+1 \)
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.
One Time Pad

- Key Idea: randomness in key
- Create a random string as long as the message
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- Almost impossible to break
- Some practical problems
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message
Secure Socket Layer

- **Goal:**
 - Provide secure access to remote services
 - Authenticate remote servers to local users
 - Allow remote systems to authenticate users
 - Permit encrypted communication

- **Approach**
 - Public Key Cryptography
 - Certificates (signed by certificate authorities)
 - Server sends:
 - Certificate (signed use CA’s private key)
 - Certificate contains server’s public key
 - Client responds by encrypting reply using servers public key
 - Server checks response with private key
Sending Data

- **Data is split into packets**
 - limited size units of sending information
 - can be
 - fixed sized (ATM)
 - variable size (Ethernet)

- **Need to provide a destination for the packet**
 - need to identify two levels of information
 - machine to send data to
 - comm abstraction (e.g. process) to get data
 - address may be:
 - a globally unique destination
 - for example every host has a unique id
 - may unique between hops
 - unique id between two switches