Announcements

- **Program #0**
 - Due Friday

- **Reading**
 - Threads - Chapter 4 (ch 5, 6th Ed)
Process State Transitions

- new
- ready
- running
- waiting
- terminated

Transitions:
- ready to running: dispatch
- running to ready: interrupt
- ready to waiting: I/O request or event wait
- waiting to ready: I/O request or event wait done
- running to terminated: exit
- ready to terminated: Kill
- new to ready: admitted
Components of a Process

- **Memory Segments**
 - Program - often called the text segment
 - Data - global variables
 - Stack - contains activation records

- **Processor Registers**
 - program counter - next instruction to execute
 - general purpose CPU registers
 - processor status word
 - results of compare operations
 - floating point registers
Process Control Block

- Stores all of the information about a process
- PCB contains
 - process state: new, ready, etc.
 - processor registers
 - Memory Management Information
 - page tables, and limit registers for segments
 - CPU scheduling information
 - process priority
 - pointers to process queues
 - Accounting information
 - time used (and limits)
 - files used
 - program owner
 - I/O status information
 - list of open files
 - pending I/O operations
Storing PCBs

- Need to keep track of the different processes in the system
- Collection of PCBs is called a process table
- How to store the process table?
- First Option:

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ready</td>
<td>Waiting</td>
<td>New</td>
<td>Term</td>
<td>Waiting</td>
<td>Ready</td>
</tr>
</tbody>
</table>

- Problems with Option 1:
 - hard to find processes
 - how to fairly select a process
Queues of Processes

- Store processes in queues based on state
forking a new process

- create a PCB for the new process
 - copy most entries from the parent
 - clear accounting fields
 - buffered pending I/O
 - allocate a pid (process id for the new process)

- allocate memory for it
 - could require copying all of the parents segments
 - however, text segment usually doesn’t change so that could be shared
 - might be able to use memory mapping hardware to help
 - will talk more about this in the memory management part of the class

- add it to the ready queue
Process Termination

- **Process can terminate self**
 - via the exit system call

- **One process can terminate another process**
 - use the kill system call
 - can any process kill any other process?
 - No, that would be bad.
 - Normally an ancestor can terminate a descendant

- **OS kernel can terminate a process**
 - exceeds resource limits
 - tries to perform an illegal operation

- **What if a parent terminates before the child**
 - called an orphan process
 - in UNIX becomes child of the root process
 - in VMS - causes all descendants to be killed
Termination (cont.) - UNIX example

- **Kernel**
 - frees memory used by the process
 - moved process control block to the terminated queue
- **Terminated process**
 - signals parent of its death (SIGCHILD)
 - is called a zombie in UNIX
 - remains around waiting to be reclaimed
- **parent process**
 - wait system call retrieves info about the dead process
 - exit status
 - accounting information
 - signal handler is generally called the reaper
 - since its job is to collect the dead processes
Relationship between Kernel mod and User Mode

User Process

Unique: Program Stack Heap

Initial Thread

Kernel Mode thread of A user process

Kernel Threads:
Each has own stack (separate from user mode)
Share heap with other kernel threads
Run same program (kernel) as other kernel threads

System Calls

Idle Thread

User Process

Unique: Program Stack Heap
Threads

- processes can be a heavy (expensive) object
- threads are like processes but generally a collection of threads will share
 - memory (except stack)
 - open files (and buffered data)
 - signals
- can be user or system level
 - user level: kernel sees one process
 + easy to implement by users
 - I/O management is difficult
 - in a multi-processor can’t get parallelism
 - system level: kernel schedules threads
Important Terms

- **Threads**
 - An execution context sharing an address space
- **Kernel Threads**
 - Threads running with kernel privileges
- **User Threads**
 - Threads running in user space
- **Processes**
 - An execution context with an address space
 - Visible to and scheduled by the kernel
- **Light-Weight Processes**
 - An execution context sharing an address space
 - Visible to and scheduled by the kernel
Dispatcher

- The inner most part of the OS that runs processes
- Responsible for:
 - saving state into PCB when switching to a new process
 - selecting a process to run (from the ready queue)
 - loading state of another process
- Sometimes called the short term scheduler
 - but does more than schedule
- Switching between processes is called context switching
- One of the most time critical parts of the OS
- Almost never can be written completely in a high level language